
Solving the Multi-Choice Two Dimensional Shelf Strip Packing Problem with
Time Windows

Matthias Horn*, Emir Demirović, Neil Yorke-Smith
Algorithmics group, Delft University of Technology, The Netherlands

{m.g.horn,e.demirovic,n.yorke-smith}@tudelft.nl

Abstract

In the tool coating field, scheduling of production lines re-
quires solving an optimisation problem which we call the
multi-choice two-dimensional shelf strip packing problem
with time windows. A set of rectangular items needs to be
packed in two stages: items are placed on shelves, which in
turn are placed on one of several available strips. Crucially,
the item’s width depends on the chosen strip and each item
is associated with a time window such that items can only be
placed on the same shelf if their time windows overlap. In
collaboration with an industrial partner, this real-world opti-
misation problem is tackled in this paper by both exact and
heuristic methods. The exact method is an arc-flow-based in-
teger linear programming formulation, solved with the com-
mercial solver CPLEX. Experimental evaluation shows that
this approach can solve instances to proven optimality with
up to 20 different item sizes. Larger, more realistic instances
are solved heuristically by an adaptive large neighbourhood
search, using first fit and best fit decreasing approaches as re-
pair heuristics. In this way, we obtain high-quality solutions
with a remaining optimality gap below 3.3% for instances
with up to 2000 different item sizes. The work reported is
due to be incorporated into an end-to-end decision support
system with the industrial partner.

1 Introduction
In the multi-choice two-dimensional shelf strip packing
problem with time windows (M2SSPTW), a set of rectan-
gular items needs to be packed into different types of strips
with finite width but infinite height. The packing is done in
two stages. First the items are placed on shelves which are,
in the second step, placed on a strip. Hence, a shelf is a set of
items that share the same horizontal line of a strip. A special
feature is that the width of an item depends on the chosen
strip and that each shelf has an additional height that also
depends on the chosen strip. In addition, each item is associ-
ated with a time window (TW) s.t. items can only be placed
on the same shelf if their TWs overlap. The objective is to
minimise the total height over all strips. Figure 1 shows an
example of an M2SSPTW instance with two strips and six
items.

*Currently at TU Vienna
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Strip 1

1

1
total height of

strip 1

Strip 2

2 2
1

2

height of
a shelf of strip 2

height of
tallest item

Figure 1: Packing example of an M2SSPTW instance with
two strips S = {1, 2} and two item types I = {1, 2} with
three items per type. The width of the item depends on the
strip (see e.g. the width of an item of type 1 for strip 1 and
strip 2).

One application of the M2SSPTW problem is in the field
of tool coating, where it arises as a crucial sub-problem. In
coating facilities, a batch of tools has to be coated with a
coating material. For that purpose, a so-called planetary is
assembled with tools and then put into one of several coating
machines. The assembly of a planetary takes place in several
steps. First, tools must be placed on cups. Each cup has a
certain number of insert positions where tools can be posi-
tioned. Depending on the cup chosen, a tool can cover more
than one insert position when placed on that cup. Since the
space between insert positions varies with the chosen cup,
the number of covered insert positions also varies with the
cup. Second, a planetary contains several bars on which the
cups equipped with tools are stacked. Finally, the assembled
planetary is loaded into a coating machine and a feasible
start time for the coating process is selected.

The overall coating problem consists of both bin packing
and scheduling aspects. The M2SSPTW covers the first part,
which deals with the placement of tools on cups. In this sce-
nario the tools correspond to items and the cups correspond
to shelves/strips. The width of an item corresponds to the
number of covered insert positions when the tool is placed
on a specific cup. The second part considers the schedul-
ing aspects of the problem by determining which coating
machine should process which fully equipped planetary at
which time.

So far, our industrial partner has not used any optimisa-
tion algorithm. The employees decided how tools should be

Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023)

491

placed on the planetary ad hoc, trying to save as much space
as possible. However, they must make these decisions under
time pressure to equip the planetary in time, so they may not
consistently achieve the best solution.

A future deployment will include cooperation with a soft-
ware company that provides a graphical interface for a
static planning tool and incorporates the industrial partner’s
database system. The next step will be to embed our algo-
rithms in this static planning tool. The final goal is to pro-
vide an end-to-end decision support system where our algo-
rithms are a crucial part of solving the optimisation problem
dynamically.

To our knowledge, the combination of shelf strip pack-
ing, strip-depending items and TWs is not considered in
the literature so far. In contrast, it is a problem faced daily
in the (coating) industry. We contribute by, first, formalis-
ing the real-world problem as M2SSPTW problem. Second,
we devise approaches to solve the problem exactly by an
arc-flow based integer linear programming (ILP) formula-
tion and heuristically by an adaptive large neighbourhood
search (ALNS). The initial solutions of the ALNS are con-
structed by adapted first fit decreasing (FFD) and best fit de-
creasing (BFD) heuristics. The ALNS uses five destruction
heuristics and eight repair heuristics. At each iteration a de-
struction and a repair heuristic are randomly selected and
applied on the incumbent solution in order to find improved
solutions. The destruction heuristic removes part of the solu-
tion whereas the repair heuristic tries to reinsert the removed
parts in a different way. The ALNS is able to obtain solutions
with an optimality gap of at most 3.3% in a reasonable time.

The remainder of this work is organised as follows. Af-
ter discussing related work in Section 2 we provide a for-
mal problem description in Section 3. To solve instances to
proven optimality, Section 4.1 describes an arc-flow based
ILP formulation. In Section 4.2, we devise an FFD and a
BFD approach to solving larger instances heuristically. Sec-
tion 4.3 provides an ALNS meta-heuristic to improve ob-
tained solutions from FFD or BFD even further. Computa-
tional Results will be reported and discussed in Section 5.
Finally, Section 6 concludes this work with an outline of
promising next research directions.

2 Related Work
The M2SSPTW problem is related to the well-known
strongly NP-hard bin packing (BP) problem, e.g. see (Garey
and Johnson 1978, 1979). The BP problem and numerous
of its variants are well studied in the literature and various
approximation algorithms have been devised (Coffman Jr.
et al. 2013).

The most related problem is the two-dimensional shelf
strip packing (2SSP) problem (Caprara, Lodi, and Monaci
2005). The M2SSPTW generalises the 2SSP with two main
extensions: the M2SSPTW problem considers time windows
and the width of items depends on the chosen strip type. For
the 2SSP, an asymptotic (fully) polynomial time approxi-
mation scheme has been proposed by Caprara, Lodi, and
Monaci (2005) that solves a series of ILPs. Let n be the num-
ber of items and let ε be the accuracy, the algorithm runs in

O(n log n) time with a multiplicative constant double expo-
nential in 1/ε. To get a fully polynomial running time, the
linear programming (LP) relaxations of the ILPs are solved
approximately, which is paid with a huge constant that is
added to the objective value. In Section 5, we will present
the results of the algorithm (without LP rounding).

Another related problem is the multi-choice vector bin
packing (MVBP) problem introduced by Patt-Shamir and
Rawitz (2012), where multi-dimensional items have sev-
eral incarnations s.t. the sizes in each dimension depend on
the chosen incarnation. Furthermore, there are different bin
types, each with its own cost and multi-dimensional size.
The task is to pack each item with a chosen incarnation in a
set of bins s.t. the overall bin cost is minimised. The aspect
of different item incarnations applies to some extend also
for the M2SSPTW problem with the main difference that
items of the M2SSPTW problem depend on the chosen strip.
The suggested solution approach by Patt-Shamir and Rawitz
(2012) is a polynomial-time approximation algorithm if the
number of considered dimensions for the items is constant. It
is possible to transform an instance of the M2SSPTW prob-
lem to an instance of the MVBP problem by adding at least
for each strip type and for each distinct item height an ad-
ditional dimension to the MVBP instance. Then the num-
ber of dimensions for the items of the MVBP instance is no
longer constant. Consequently, the proposed algorithm will
no longer be a polynomial time algorithm. Therefore, apply-
ing their approximation algorithm to the M2SSPTW prob-
lem does not seem promising.

The MVBP problem can be solved exactly by an arc-flow
formulation-based integer program proposed by Brandão
and Pedroso (2013, 2016). The basic idea is to create for
each bin type a directed graph with one root node and one
target node such that an arc corresponds to a specific in-
carnation of an item that is packed into a bin of the cor-
responding bin type. A path from the root node to the tar-
get node describes a feasible packing of a subset of items
indicated by the arcs along the path. Hence, to solve the
MVBP problem, paths must be selected such that all items
appear precisely one time in a specific incarnation on one of
the chosen paths and thereby minimising the total bin cost.
That can be done by a flow formulation-based ILP. To cre-
ate the graphs, Brandão and Pedroso (2013, 2016) suggest a
dynamic programming-based procedure that assigns to each
node a state that consists of a vector. This state vector con-
tains a dimension for each item dimension that indicates the
current occupancy in that dimension. Furthermore, Brandão
and Pedroso (2013, 2016) can remove a many nodes and arcs
by lifting states and using compression techniques based on
solving one-dimensional knapsack problems. In Section 4.1,
we will use an adaptation of this procedure that considers
time window constraints and non-additive item heights to
solve the M2SSPTW directly without transforming it into
the MVBP problem.

Another variant is the MVBP with conflict constraints,
which was heuristically solved by Benazouz and Faure
(2015, 2018) using a first fit decreasing algorithm. Their al-
gorithm is strongly adapted to their industrial problem of
automatically assigning power plants control function. Nev-

492

ertheless, their work is relevant for us since time window
constraints can be modelled as conflict constraints. In Sec-
tion 4.2, we will introduce our own first fit decreasing algo-
rithm to solve the M2SSPTW problem.

3 Problem Description
An instance of the M2SSPTW consists of a set of nI item
types I = {1, 2, . . . , nI} and nS different strips S =
{1, 2, . . . , nS}. Every item type i ∈ I has a height hitemi ∈
R>0 and a time window Wi = [ei, li] with an earliest day
ei ∈ N≥0 and a latest day li ∈ N≥0. Quantity qi ∈ N>0

indicates the number of items of type i that must be packed
into a strip. Each strip s ∈ S has a width of one and each
shelf that is packed into strip s is associated with a height
hshelfs ∈ R>0. Since the width of an item depends on the
item type and on the strip, we definewis ∈ R>0 as the width
of an item of type i that is packed into a shelf of strip s. Note
that wis ∈ R>0 can also be greater than one to indicate that
an item of type i cannot be packed into a shelf of strip s.

A solution consists of a set S of shelves. Let s∗ ∈ S be
a shelf that is packed into strip st(s∗) ∈ S. A shelf s∗ con-
tains a set of items I(s∗) = {(i, q), . . . } where tuple (i, q)
indicates the number of items q of item type i ∈ I that are
placed on s∗. The time window W (s∗) = [e(s∗), l(s∗)] of
s∗ is the intersection of all time windows from all items that
are placed on s∗, i.e., W (s∗) =

⋂
(i,q)∈I(s∗)Wi. Further-

more, let ws(s∗) =
∑

(i,q)∈I(s∗) q wis be the total width of
all items placed on s∗ if assigned to strip s. A solution is
feasible if all items are placed on a shelf s.t. wst(s∗)(s

∗) ≤ 1
and W (s∗) 6= ∅ holds for each s∗ ∈ S . The objective is to
minimise the total height, i.e.,

min
∑
s∗∈S

(
hshelfst(s∗) + max

(i,q)∈I(s∗)
hitemi

)
. (1)

Note that the M2SSPTW is NP-hard since the BP problem
can be reduced to it.

4 Solution Approaches
4.1 Integer Linear Programming
Before we solve instances of the M2SSPTW problem
heuristically, we examine up to which size we can optimally
solve instances. To this end, we use ideas from Brandão and
Pedroso (2013, 2016) to model the M2SSPTW problem as
an arc-flow formulation. The basic idea is that we create for
each strip s ∈ S an arc-flow graphGs = (Vs, As) with node
set Vs and arc setAs. The node set includes a source node Ss
and a target node Ts. An arc corresponds to the insertion of
an item of a specific item type i into a shelf of strip s. Each
path from Ss to Ts corresponds to a specific feasible place-
ment of items on a shelf of strip s. The height of a path is
the largest item’s height plus the height hshelfs . To solve the
M2SSPTW problem, paths must be selected s.t. all items are
placed on any strip and the total height of the selected paths
is minimised.

The M2SSPTW problem is solved by using an ILP to
compute a flow from Ss to Ts for each graph Gs s.t. all
items are placed on any strip and the objective function is

minimised. To create graph Gs each node v ∈ Vs is as-
sociated with a state σv = (h(v), w(v), e(v), l(v)), where
h(v) corresponds to the so far largest height of the assigned
items to the shelf from Ss to node v, width w(v) corre-
sponds to the so far claimed width, and [e(v), e(l)] de-
scribes the remaining time window during that items can
still be placed on the shelf. The state of the source node is
σSs = (0, 0,mini∈I ei,maxi∈I li).

Note that this state definition differs from the definition
in Brandão and Pedroso (2013, 2016) since they solve the
(multi-choice) vector bin packing ((M)VBP) problem where
the sizes of each dimension of items are added up if the items
are put into the same bin. However, we consider rectangular
items where only the widths are added up. For the heights
of the items placed on the same shelf, we have to compute
the maximum. In principle, we can model the M2SSPTW
problem as an MVBP problem and use the same state defini-
tion suggested by Brandão and Pedroso (2013, 2016). How-
ever, this requires additional dimensions for the items of the
MVBP problem for at least every strip times every distinct
item height. Therefore this approach seems not to be promis-
ing. Instead, we use the described state definition that re-
quires a constant number of four dimensions.

We still use the (slightly adapted) dynamic programming
based procedure proposed by Brandão and Pedroso (2013,
2016) to create and compress for each strip an arc-flow graph
Gs. To this end, we need to define our own transition func-
tion τs (σu, i) = σv with h(v) = max(h(u), hitemi),w(v) =
w(u)+wis, e(v) = max(e(u), ei), and l(v) = min(l(u), li)
that describes the transition from one state to another state
if an item of type i is inserted into a shelf of strip s given
state σu if w(u) +wis ≤ 1 and [e(u), l(u)]∩Wi 6= ∅ holds.
Otherwise transition function maps to the infeasible state 0̂,
i.e., τc (σu, i) = 0̂. The arc set of graph Gs is defined as

As = {(u, v, i) | τs(σu, i) = σv, i ∈ I, u, v ∈ Vs \ {Ts}} (2)
∪ {(u,Ts,−1) | u ∈ Vs \ {Ss}}

Note that no node in Vs maps to the infeasible state. Hence,
arcs that correspond to infeasible transitions are not included
in Gs. Furthermore, the last term of Eq. (2) adds so called
loss arcs, which do not indicate item assignments but con-
nect each node to the target node. Figure 2 shows a small
example of an arc-flow graph with one strip and two item
types.

S1 (2, 1/4, 1, 1) (2, 1/2, 1, 1) (2, 1, 1, 1)

(2, 3/4, 1, 1) T1

1 1 2

2

2

Figure 2: Arc-flow graph example with one strip and two
item types I = {1, 2} with w11 = 1/4, w12 = 1/2, and
q1 = q2 = 2. Both item types have a height of two and
the same time window [1, 1]. Dotted arcs correspond to loss
arcs, which connect nodes to the target node.

Finally, to break symmetries, we have to define an or-
dering among items: see Brandão and Pedroso (2016). The
items are sorted in non-increasing order according to their

493

heights. To break ties, we prefer the widest item. For more
details on the algorithms to create and compress arc-flow
graphs, we refer to (Brandão and Pedroso 2013, 2016).

After creating an arc-flow graph Gs for each strip s ∈ S,
the following ILP model is solved using integer flow vari-
ables 0 ≤ fsa ≤ qi to represent the flow over arc a =
(u, v, i) ∈ As. The objective function∑

s∈S

∑
a=(u,Ts,−1)∈As

fsa (h(u) + hshelfs) (3a)

minimises the total height of the strips by taking into account
the height of each used shelf and the height of the tallest item
placed on that shelf. The flow conservation constraints∑

a∈δ−u

fsa −
∑
a∈δ+u

fsa = 0 (3b)

for each s ∈ S, u ∈ Vs \ {Ss,Ts} ensures that only source
and target nodes produces and consumes flow, respectively.
The expressions δ−u and δ+u denote incoming and outgoing
arcs, respectively. Constraints∑

s∈S

∑
a=(u,v,i)∈As

fsa = qi (3c)

for each i ∈ I ensure that all items are inserted into a shelf.
Besides the presented arc-flow-based ILP model, we also

considered an alternative ILP that uses binary decision vari-
ables to indicate the assignment of an item to a shelf of a
specific strip. However, preliminary results showed that this
ILP model does not compete with the ILP model (3a)–(3c).

4.2 First Fit and Best Fit Decreasing
A first fit decreasing (FFD) approach is used to find a heuris-
tic solution for the M2SSPTW problem quickly. For this
purpose, the item types are sorted in non-increasing order
according to their heights. To break ties between two items
of the same height, we prefer the wider item, i.e. item type i
that maximises mins∈S wis. According to this order, the first
item type i is selected and all items of this type are placed
on a shelf. This is done by iterating over all shelves that are
opened so far. If items can be feasibly inserted into a shelf
then we insert them. An item can be feasibly inserted into
a shelf as long as the shelf, containing the item, can be as-
signed to at least one strip. Hence, we do not immediately
assign shelves to a strip. If there are remaining items of type
i after the iteration over all opened shelves then a new shelf
is opened. This procedure is repeated for all item types until
all items are placed on a shelf. Finally, all shelves are as-
signed to a strip s.t. shelf s∗ ∈ S is assigned to strip s ∈ S
that minimises hshelfs and ws(s∗) ≤ 1 holds.

The best fit decreasing (BFD) approach does not insert
items at the first possible position, like FFD, but instead
inserts items at the best possible position according to a
heuristic criterion. Let S be the set of shelves created so
far, initialised with S = ∅. Again, the item types are con-
sidered in the same order as for FFD. As many items of
type j ∈ I as possible are inserted into shelf s∗ that
meets the time window constraints and maximises the term

maxs∈S b(1− ws(s∗))/wjsc, that is the maximum number
of items that can be inserted into a shelf from S . A new shelf
is opened if there is no shelf to insert items feasibly and there
are remaining items left of type j. These steps are repeated
until every item of type j is inserted into a shelf. Then the
next item type is considered until all items of all item types
are inserted. Finally, as with FFD, all shelves are assigned to
a specific strip.

4.3 Adaptive Large Neighbourhood Search
The idea of adaptive large neighbourhood search (ALNS)
is to apply a set of destruction and repair heuristics on an
initial solution in order to find improved solutions. At each
iteration, a destruction heuristic and a repair heuristic are
randomly selected. The destruction heuristic removes some
parts of the solution and the subsequently applied repair
heuristic tries to reinsert the removed parts in a different
way s.t. an improved solution may be obtained. The ALNS
meta-heuristic was first successfully applied by Ropke and
Pisinger (2006). Recently, ALNS has also been successfully
applied to two-dimensional bin-packing problems (He et al.
2021; Zeng and Zhang 2021).

Destruction Heuristics The presented destruction heuris-
tics are inspired by Ropke and Pisinger (2006). For the
M2SSPTW problem, there are two kinds of destruction
heuristics. Those that remove a certain number of items from
shelves, and those that remove a certain number of whole
shelves from a solution. Let dalns ∈ (0, 1] be the proportion
of items/shelves that are removed from the solution. There-
fore the number of items to be removed is chosen randomly
from 1, . . . , bdalns

∑
i∈I qic and the number of shelves to be

removed is chosen randomly from 1, . . . , bdalns |S|c.
Random Shelf Removal. Remove uniformly randomly k se-
lected shelves from S .
Random Item Removal. Select randomly k shelves from
S . For each selected shelf s∗ sort the items I(s∗) =
{(i1, q1), (i2, q2), . . . , (in, qn)} in non-increasing order s.t.
i1 is the tallest item type and in the smallest item type. Then
sample uniformly a random number x from interval [1, n]. If
x ≤ n/2 then all items of types ix till in are removed from
s∗; otherwise all items of types i1 till ix.
Related Shelf Removal. This removal heuristic follows the
ideas by Shaw (1997, 1998). Hence, shelves are deleted that
are related s.t. items placed on these shelves might be effi-
ciently reinserted together again. The proximity ηshelfs∗1 ,s

∗
2

mea-
sures the dissimilarity of two shelves s∗1, s

∗
2 ∈ S as

ηshelfs∗1 ,s
∗
2
= αshelf min

s∈S
max{0, ws(s

∗
1) + ws(s

∗
2)− 1} (4)

+ (1− αshelf)

∣∣∣∣ (e(s∗1) + l(s∗1))− (e(s∗2) + l(s∗2))

2maxi∈I li

∣∣∣∣
where the first term measures how well the items of two
shelves would fit into just one shelf and the second term
covers the temporal aspect, i.e., the distance between the
centre of the time windows W (s∗1) = [e(s∗1), l(s

∗
1)] and

W (s∗2) = [e(s∗2), l(s
∗
2)] of shelves s∗1 and s∗2, respectively.

Variable αshelf ∈ [0, 1] is a weight parameter that controls

494

the emphasis on the difference between the first and the sec-
ond term of Eq. (4).

The following procedure is applied to remove k shelves
from S . Let D be the set of selected shelves.

1. select a shelf s∗ ∈ S at random; set D ← {s∗}
2. while |D| < k do

• randomly select a shelf s∗ from D

• compute ηshelf
s∗,s∗′

for each shelf s∗
′ ∈ S \D

• let {s∗1, s∗2, . . . } be the sequence of shelves in S \ D
sorted according to non-decreasing proximity ηshelfs∗,s∗i

,
i = 1, 2, . . . , |S \D|

• select shelf s∗j with j = d|S \ D|Rpe, where R is a
uniformly distributed random number from [0, 1) and
p is a parameter set to six (see (Ropke and Pisinger
2006)).

• D ← D ∪ {s∗j}

Related Item Removal. Similar to the related shelf removal
heuristic, the related item removal heuristic attempts to find
similar item types s.t. item of these types can be inserted
back together more efficiently. Instead of removing whole
shelves from the solution, this heuristic removes all items of
certain item types.

The proximity ηitemi1,i2
of two item types i1, i2 ∈ I is:

ηitemi1,i2 = αitem min
s∈S

max{0, wi1s + wi2s − 1} (5)

+ (1− αitem)

(
1− |Wi1 ∩Wi2 |

min{|Wi1 |, |Wi2 |}

)
where αitem ∈ [0, 1] is a weight parameter that controls
the emphasis of the difference between the first and the last
term. The first term measures how well items of the two item
types would fit into one shelf and the second term measures
how well the corresponding time window overlap.

To select k item types a similar procedure is used as by
the related shelf removal heuristic.
Open Shelf Removal. This removal heuristic attempts to re-
move open shelves, i.e., shelves that have some space left.
We consider also a shelf as open if it can be moved to an-
other strip s.t. there is leftover space on the shelf and further
items can be inserted. Let {s∗1, s∗2, . . . } be the sequence of
shelves in S sorted according to non-increasing values of
maxs∈S 1 − ws(s∗). Apply following procedure to select k
shelves from S . Let D be the set of selected shelves.

1. while |D| < k do

• select shelf s∗j with j = d|S \ D|Rpe, where R is a
uniformly distributed random number from [0, 1) and
parameter p = 6.

• D ← D ∪ {s∗j}

Repair Heuristics Repair heuristics attempt to reinsert
items previously removed by one of the removal heuristics.
Best Fit and First Fit Heuristics. We use the FFD and BFD
algorithms from Section 4.2 to repair a solution. In addition
to a deterministic version of the algorithms, we also use a

non-deterministic version that introduces some randomness
in the following way: We iterate over the already sorted item
types. With a probability of 25% an item type gets swapped
with its direct successor. In case the of the FFD algorithm,
we additionally shuffle the shelves in S .
Close Shelf Heuristics. This heuristic attempts to add items
by prioritising closing the remaining space on open shelves.
An open shelf is a shelf that can hold at least one other item.
Compared to BFD, this heuristic changes the point of view
from items to shelves. Instead of choosing the best possible
shelf to insert a specific item, this heuristic chooses the best
possible item to close a specific shelf.

First, all open shelves are sorted according to some crite-
rion which we will describe at the end of this paragraph. The
heuristic starts with the first shelf s∗ according to the cho-
sen sorting criterion. From the set of non yet inserted items,
select qj items of type j that can be feasible inserted into
s∗ and minimise the term mins∈S 1 − ws(s∗) − qj wjs. In
the case of ties, we prefer the item type from which more
items can be inserted. Note that the strip type of s∗ can be
changed during the insertion. This step is repeated until no
additional item can be feasibly placed on s∗. Then the next
shelf, according to the sorted sequence of open shelves, is se-
lected and the previous steps are repeated. If all open shelves
are processed, the BFD heuristic is used to insert remaining
items.

We use two different sorting criteria for shelves. The first
criterion sorts the shelves in non-decreasing order accord-
ing to their tallest contained item height, whereas the sec-
ond sorts the shelves in non-decreasing order according to
the number of non-inserted items that can be feasibly in-
serted into the shelf. Both sort criteria prefer the shelf with
less available space in case of ties. Furthermore, we consider
non-deterministic versions of the close shelf heuristic by it-
erating over the sorted shelves and swapping with a proba-
bility of 25% two subsequent shelves. In total, we use four
sorting criteria for the close shelf heuristic.

In preliminary experiments, we also considered using the
ILP model from Section 4.1 within the LNS as a repair oper-
ator to solve subproblems optimally. It turns out that CPLEX
takes too long to solve the subproblems, such that the over-
all performance of the LNS breaks down and provides worse
solutions than without using the ILP model.

Selection of Destruction and Repair Heuristics At each
iteration a destruction and a repair heuristic are randomly
selected by the roulette wheel selection principle. In the fol-
lowing, we describe the selection of a destruction heuristic.
The same procedure can be applied similarly to select a re-
pair heuristic. Let hdes be the number of used destruction
heuristics and let wdes

i be the current weight of the i-th de-
struction heuristic, 1 ≤ i ≤ hdes. The probability to select
the i-th destruction heuristic is wdes

i /
∑hdes

j=1 w
des
j .

The weights are updated by evaluating the performance of
the corresponding heuristic from earlier iterations by track-
ing for each heuristic i the score σdes

i that measures how well
heuristic i performed. For this purpose, the search process is
divided into segments of lalns iterations. At the beginning of
each segment, the scores are reset to zero. All weights are

495

initialised with 1.0 and updated after each segment by

wdes
i ← (1− γ)wdes

i + γ σdes
i /ndesi (6)

for all heuristics i, where ndesi denotes the number of times
heuristic iwas applied during the last segment and γ ∈ [0, 1]
is a parameter to control the speed of the weight adjustment.

The score of selected heuristic i is updated by

σdes
i ← σdes

i +

σ1 if found new best solution
σ2 if found better solution than current
σ3 if acc. worse solution than current
0 otherwise

(7)

after every iteration. We use the same parameter values as
Ropke and Pisinger (2006): σ1 = 33, σ2 = 9, σ3 = 13.

We also accept worse solutions based on a simulating an-
nealing approach to avoid local optima. We accept a so-
lution S ′ with a total height H ′ that is worse than the
current solution S with a total height H with probability
exp(−(H ′−H)/T alns), where T alns ≥ 0 is the current tem-
perature. At every iteration the temperature is decreased by
T alns ← T alns calns, were calns ∈ [0, 1] is the cooling rate.
At the beginning the temperature is initialised with T alns

start.

5 Computational Results
All tested algorithms were implemented in C++. All tests
were performed on a single core of an Intel Xeon E5-6248R
processor with a memory limit of 32GB RAM. The ILP
models from Section 4.1 were solved with CPLEX 20.1 us-
ing default settings. Instances are available at https://doi.org/
10.4121/20382753.

We created two non-trivial sets, A and B, of ran-
dom benchmark instances. The first set A is generated
completely randomly, whereas the second set B is based
on real-world data.1 Each instance class of benchmark
set A consists of 30 instances for each combination of
nI ∈ {10, 20, 50, 100, 150, 200, 250} item types and nS ∈
{3, 4, 5} strips. Set B is based on the scenario from Sec-
tion 1 where tools have to be coated. Further, we assume
that there are much smaller tools (items) than larger tools
and that there are four different cups (shelves). Hence,
we create 30 instances for each combination of nI ∈
{750, 1000, 1250, 1500, 1750, 2000} and a fixed number of
strips, nS = 4. Small tools can only be placed on the first
and second cups; the largest tools can only be placed on the
third and fourth cups; medium tools can be placed on any
cup. To this end, we choose a thin item with a probability of
0.5 and a medium or wide item with a probability of 0.25
each.

The parameters of the devised ALNS algorithm from
Section 4.3 were tuned to quickly obtain high-quality
solutions within a CPU time limit of 5 minutes per
run. To this end, we used the automatic parameter con-
figuration tool irace (López-Ibáñez et al. 2016) and
tuned parameters for benchmark sets A and B sepa-
rately. We created two independent tuning instance sets

1Real data from industrial tool coating problem instances. Due
to commercial confidentiality, the actual data cannot be disclosed.

0 100 200
nI

0

5

10

15

20

ga
p

[%
]

APPR = 0.9
APPR = 0.5
APPR = 0.2

FFD
BFD

ALNS
ILP

0 100 200
nI

10 3

10 2

10 1

100

101

102

co
m

p.
 ti

m
e

[s
]

Figure 3: Optimality gaps and computation times obtained
from APPR for different values of ε as well as from FFD,
BFD, ALNS, and ILP (CPLEX).

0s 900s 1800/0 30% 60%
time (s) gap (%)

0
10
20
30
40
50
60
70
80
90

In
st

an
ce

s
(#

)

nI : 50
nI : 100
nI : 150
nI : 200
nI : 250

Figure 4: Performance plot of CPLEX results using the arc-
flow-based ILP formulation from Section 4.1 with a time
limit of 1800 seconds.

for the benchmark sets A and B by creating for each
instance class five instances and tuned seven parame-
ters: reaction factor γ ∈ {0.0, 0.1, 0.2, . . . , 1.0}, start
temperature T alns

start ∈ {10, 15, . . . , 60}, cooling factor
calns ∈ {0.9, 0.95, 0.99, . . . , 0.999999}, segment length
lalns ∈ {10, 20, 50, 100, 200, . . . , 50000}, destroy rate
dalns ∈ {1, 10, 15, 20, 25, . . . , 90}, and weight parameters
αshelf , αitem ∈ {0.0, 0.1, . . . , 1.0}, for the related shelf and
related item removal heuristics. We used a budget of 10000
runs. In this way the following configurations were obtained
by irace: γ = 0.7, calns = 0.99995, T alns

start = 45,
lalns = 50000, dalns = 10%, αshelf = 0.2, and αitem = 0.3
for benchmark set A and γ = 0.4, calns = 0.99, T alns

start = 20,
lalns = 200, dalns = 1%, αshelf = 0.4, and αitem = 0.3 for
benchmark set B.

In the following we will present first results of ex-
periments that compare the approximation algorithm from

496

FFD BFD ALNS ILP (CPLEX)

nS nI %-gap σ%-gap t[s] %-gap σ%-gap t[s] %-gap σ%-gap %-opt %-gap σ%-gap %-opt t[s]

A

3

10 4.67 3.46 <1 1.20 1.75 <1 0.05 0.14 83 0.00 0.0 100 <1
20 5.16 3.86 <1 2.19 1.92 <1 0.06 0.15 73 0.00 0.0 100 <1
50 6.39 3.06 <1 2.95 0.93 <1 0.29 0.24 3 0.00 0.0 100 5

100 6.33 2.33 <1 4.45 0.94 <1 0.72 0.33 0 0.02 0.05 70 172
150 6.31 2.08 <1 4.34 0.86 <1 1.10 0.28 0 0.08 0.08 10 280
200 6.47 1.61 <1 4.97 0.72 <1 1.59 0.33 0 0.22 0.27 3 299
250 6.30 1.53 <1 5.18 0.72 <1 2.02 0.39 0 0.48 0.48 0 299

4

10 5.23 4.76 <1 1.41 1.84 <1 0.11 0.42 87 0.00 0.0 100 <1
20 5.43 2.91 <1 2.27 1.15 <1 0.11 0.27 73 0.00 0.0 100 <1
50 6.51 2.35 <1 4.47 1.75 <1 0.37 0.32 3 0.00 0.0 100 59

100 7.67 2.11 <1 5.78 1.13 <1 1.00 0.29 0 0.24 0.19 0 299
150 7.46 1.43 <1 6.25 1.02 <1 1.65 0.31 0 1.34 1.58 0 299
200 7.17 1.04 <1 6.19 0.85 <1 2.04 0.30 0 4.01 2.80 0 300
250 7.66 1.20 <1 6.55 0.81 <1 2.65 0.48 0 6.35 3.00 0 302

5

10 6.20 4.27 <1 1.44 1.52 <1 0.13 0.35 77 0.00 0.0 100 <1
20 6.89 3.64 <1 3.43 1.79 <1 0.13 0.35 63 0.00 0.0 100 <1
50 7.47 2.12 <1 4.84 1.46 <1 0.52 0.48 3 0.07 0.20 83 160

100 8.80 2.18 <1 6.49 1.18 <1 1.55 0.50 0 0.92 0.93 0 298
150 8.36 1.85 <1 6.92 1.02 <1 2.05 0.42 0 5.97 5.35 0 300
200 8.64 1.35 <1 7.26 1.19 <1 2.50 0.38 0 11.27 5.80 0 300
250 8.76 1.15 <1 7.41 1.02 <1 3.08 0.49 0 15.57 11.27 0 304

B 4

750 5.70 0.47 <1 4.31 0.42 <1 3.23 0.27 0 - - - -
1000 5.45 0.43 <1 4.09 0.39 <1 3.08 0.31 0 - - - -
1250 5.05 0.29 <1 3.87 0.32 <1 2.88 0.18 0 - - - -
1500 4.91 0.26 <1 3.82 0.26 <1 2.88 0.23 0 - - - -
1750 4.84 0.31 <1 3.86 0.32 <1 2.85 0.19 0 - - - -
2000 4.67 0.25 <1 3.71 0.24 <1 2.82 0.30 0 - - - -

Table 1: Aggregated main results of FFD, BFD, ALNS, and CPLEX for benchmark sets A and B.

Caprara, Lodi, and Monaci (2005) with our own devised al-
gorithms FFD, BFD, and ALNS. The goal of the second type
of experiments is to solve as many instances as possible with
CPLEX using the ILP model from Section 4.1. The last ex-
periments compare the performance of FFD, BFD, ALNS,
and CPLEX for bechmark sets A and B.

Our first experiments compare the approximation algo-
rithm from Caprara, Lodi, and Monaci (2005), denoted as
APPR, with the FFD, BFD, and ALNS algorithm from Sec-
tions 4.1–4.3. For ALNS we used the tuned parameters
and BFD to construct an initial solution. The obtained so-
lution quality of the APPR algorithm depends on the ac-
curacy parameter ε ≥ 0. Note that APPR cannot handle
multiple choice properties of items as well as time win-
dow constraints. Therefore, in the following experiments,
we consider only instance classes from set A with nC =
4 by using only the first cup and ignoring all time win-
dows. Figure 3 compares obtained average optimality gaps
and average computation times for different values of ε ∈
{0.2, 0.5, 0.9}. The optimality gaps are computed by 100% ·
(OBJ−LB)/LB where OBJ is the obtained objective value
from one of the used approaches and LB is the best lower
bound obtained from the ILP model. As expected, we obtain
better results from APPR if we decrease the accuracy value
ε. Solutions obtained with values 0.9 and 0.5 for ε cannot
compete with the solution quality obtained from the other

considered approaches. However, for ε = 0.2, the obtained
optimality gaps are smaller than the gaps obtained from FFD
and BFD for instances with more than 50 item types. Note
that for smaller values of ε, the APPR algorithm could not
compute a solution within the memory limit of 32GB. The
best gaps are always obtained from CPLEX, followed by
ALNS. Regarding computation times, the fastest approaches
are FFD and BFD.

Our second experiments disclose the performance of
CPLEX using the ILP model from Section 4.1. The goal is
to solve as many instances to proven optimality as possible
by using a time limit of 1800 seconds. All instances with up
to 20 item types can be solved to proven optimality within
at most 15 seconds. For the remaining instances of set A,
Figure 4 provides a performance plot by aggregating over
the number of strips. Hence, for this plot, we group all in-
stances of set A by the number of different item types such
that a group contains 90 instances with three, four and five
strips. The plot in Figure 4 is divided into two parts: the left
part shows the number of instances that CPLEX has solved
within a certain number of seconds. For instances that could
not be solved to proven optimality within 1800 seconds, the
right part shows the remaining optimality gap for the num-
ber of instances. Almost all instances with 50 item types can
be solved to optimality. The remaining five instances have
a small average optimality gap of 0.41%. No instances with

497

250 item types can be solved to proven optimality within
1800 seconds; for five instances CPLEX cannot find a fea-
sible solution. The remaining instances have an average op-
timality gap of 4.77%. While CPLEX provides excellent re-
sults for instances of set A, for most of the larger instances
of set B, CPLEX could not obtain even a single feasible so-
lution within the given time limit.

Finally, Table 1 presents the main aggregated (heuristic)
results obtained from FFD, BFD, ALNS, and CPLEX for
benchmark sets A and B. Columns %-gap state the average
optimality gap of final solutions and columns σ%-gap provide
the corresponding standard deviations. To compute the op-
timality gap, we use the best lower bound obtained from
CPLEX for instances of set A, for the larger instances of
set B, we solved the LP relaxation of the ILP model from
Section 4.1. Columns %-opt provides the percentage of in-
stances that could be solved optimally. Columns t list the av-
erage computation times of the algorithm. In this scenario,
we are interested in obtaining high-quality heuristic solu-
tions in a short time. Therefore we use a time limit of 300
CPU seconds for all considered approaches. For the ALNS,
we used the tuned parameters and BFD to obtain an initial
solution. Table 1 reveals that FFD and BFD can solve, on
average, all instance classes in under 30 milliseconds. Gen-
erally, if the number of strips increases, the obtained solu-
tion quality worsens. This is observed for all considered ap-
proaches. On average, BFD produces better solutions with
an optimality gap of at most 7.5% than FFD, which produces
solutions with a gap of at most 8.8%. For instances of set A
with three and four strips and up to 150 item types, CPLEX
provides excellent results. However, ALNS is able to pro-
vide better solutions for instances with five strips and more
than 150 item types within the same time. CPLEX could not
derive a feasible solution for instances of set B within the
time limit, whereas the best solutions obtained from ALNS
have a gap of at most 3.3%. Interestingly, for instances of set
B, the quality of obtained solutions increases with the num-
ber of item types. This is because these instances are based
on real-world instances with a relatively high proportion of
small items. This makes it easier for the heuristics to find
good solutions since small items can be used to fill up the
remaining spaces.

6 Conclusions
We considered the industrial problem of packing a set of
rectangular items into a set of strips in two stages. We de-
vised an exact ILP approach that can solve instances with
up to 20 different item types to proven optimality. For prob-
lem instances with up to 2000 item types, we designed
FFD/BFD approaches that can greedily construct solutions
in under one second. These solutions are further improved
by an ALNS that uses five different destruction heuristics
and eight repair heuristics. After five minutes, the solutions
obtained from ALNS have an average optimality gap below
3.3%.

The following steps of the deployment process will be to
deeply analyse our obtained solutions by evaluating histor-
ical data provided by our industrial partner. However, we

can already report that using our algorithms can save enor-
mous time due to the obtained computation times of our al-
gorithms. Furthermore, already based on the results, the se-
nior management is excited to introduce scheduling technol-
ogy into their core production process.

Further research may consider more repair and destruc-
tion heuristics for the ALNS to obtain even better solutions.
On the exact side, column generation approaches may be a
promising direction to solve larger instances to optimality.

Acknowledgements
Thanks to the anonymous reviewers. This work was partially
supported by TAILOR, a project funded by the EU Horizon
2020 programme under grant 952215.

References
Benazouz, M.; and Faure, J. M. 2015. Safety-Level Aware
Bin-Packing Approach for Control Functions Assignment.
In 15th IFAC Symposium on Information Control Problems
in Manufacturing, volume 48, 507–512.
Benazouz, M.; and Faure, J.-M. 2018. Safety-Level Aware
Bin-Packing Heuristic for Automatic Assignment of Power
Plants Control Functions. IEEE Transactions on Automation
Science and Engineering, 15(2): 602–612.
Brandão, F.; and Pedroso, J. P. 2013. Multiple-choice vector
bin packing: Arc-flow formulation with graph compression.
Technical report. DCC-2013-13, Faculdade de Ciencias da
Universidade do Porto.
Brandão, F.; and Pedroso, J. P. 2016. Bin packing and related
problems: General arc-flow formulation with graph com-
pression. Computers & Operations Research, 69: 56–67.
Caprara, A.; Lodi, A.; and Monaci, M. 2005. Fast Ap-
proximation Schemes for Two-Stage, Two-Dimensional Bin
Packing. Mathematics of Operations Research, 30(1): 150–
172.
Coffman Jr., E. G.; Csirik, J.; Galambos, G.; Martello, S.;
and Vigo, D. 2013. Bin Packing Approximation Algo-
rithms: Survey and Classification, 455–531. New York, NY:
Springer.
Garey, M. R.; and Johnson, D. S. 1978. “Strong” NP-
Completeness Results: Motivation, Examples, and Implica-
tions. Journal of ACM, 25(3): 499–508.
Garey, M. R.; and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
He, K.; Tole, K.; Ni, F.; Yuan, Y.; and Liao, L. 2021. Adap-
tive large neighborhood search for solving the circle bin
packing problem. Computers & Operations Research, 127:
105140.
López-Ibáñez, M.; Dubois-Lacoste, J.; Cáceres, L. P.; Birat-
tari, M.; and Stützle, T. 2016. The irace package: Iterated
racing for automatic algorithm configuration. Operations
Research Perspectives, 3(Supplement C): 43–58.
Patt-Shamir, B.; and Rawitz, D. 2012. Vector bin pack-
ing with multiple-choice. Discrete Applied Mathematics,
160(10): 1591–1600.

498

Ropke, S.; and Pisinger, D. 2006. An Adaptive Large Neigh-
borhood Search Heuristic for the Pickup and Delivery Prob-
lem with Time Windows. Transportation Science, 40(4):
455–472.
Shaw, P. 1997. A new local search algorithm providing high
quality solutions to vehicle routing problems. Technical re-
port, Departure of Computer Science, University of Strath-
clyde, Scotland.
Shaw, P. 1998. Using constraint programming and local
search methods to solve vehicle routing problems. In In-
ternational Conference on Principles and Practice of Con-
straint Programming (CP 98), volume 1520 of LNCS, 417–
431. Springer.
Zeng, J.; and Zhang, X. 2021. An Adaptive Large Neigh-
borhood Search for Two-Dimensional Packing with Conflict
Penalty. In 2021 8th International Conference on Depend-
able Systems and Their Applications (DSA), 12–19. IEEE.

499

