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Abstract. Metaheuristics are known to be effective in finding good
solutions in combinatorial optimization, but solving stochastic problems
is costly due to the need for evaluation of multiple scenarios. We propose a
general method to reduce the number of scenario evaluations per solution
and thus improve metaheuristic efficiency. We use a sequential sampling
procedure exploiting estimates of the solutions’ expected objective values.
These values are obtained with a predictive model, which is founded on an
estimated discrete probability distribution linearly related to all solutions’
objective distributions; the probability distribution is continuously refined
based on incoming solution evaluation. The proposed method is tested
using simulated annealing, but in general applicable to single solution
metaheuristics. The method’s performance is compared to descriptive
sampling and an adaptation of a sequential sampling method assuming
noisy evaluations. Experimental results on three problems indicate the
proposed method is robust overall, and performs better on average than
the baselines on two of the problems.

Keywords: single solution metaheuristics · stochastic optimization ·
sequential sampling · prediction-based search

1 Introduction

Stochastic optimization problems gain interest because most real-world problems
involve uncertainty. Some practical examples of stochastic combinatorial problems
are operating room scheduling [38], renewable energy applications [37] and
transportation [27]. We define this class of problems as follows.

Definition 1. Given a finite set of solutions X, random variables ω and a
real-valued objective function f , we define a Stochastic Combinatorial Opti-
mization Problem (SCOP): minx∈X Eω[f(x, ω)].

Noting that the expectation could be replaced by another risk functional like an
α-quantile; we will limit ourselves to the expectation for clarity.

SCOPs are significantly more complex than deterministic combinatorial opti-
mization problems. While both aim at finding an optimal solution, in SCOPs
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solutions need to be evaluated against uncertainty. Uncertainty does not impact
the feasibility of a SCOP’s solution, as the set of feasible solutions X we consider
is independent of the uncertain parameter ω. However, uncertainty affects the
solution’s objective value, as it is obtained by evaluating each uncertain parameter
realization. Hence SCOPs have additional complexity from solution evaluation.

Several modelling frameworks exist to tackle SCOPs. Exact modelling frame-
works, like mathematical or dynamic programming [36,6], are designed to guaran-
tee finding an optimal solution. However, due to the complexity of general SCOPs,
these frameworks are often limited to small problems or unrealistic modelling
assumptions. Non-exact methods, on the other hand, are particularly successful
in finding good solutions in reasonable time. Specifically, metaheuristics – general
non-exact frameworks that utilize heuristics – have shown to be effective for both
deterministic and stochastic problems as they efficiently search the solution space
[7,16]. However, metaheuristics for SCOPs are still limited in performance due
to facing the challenge of evaluating found solutions against uncertainty [7]. This
is in practice often done using simulation, which can be expensive and therefore
slows down the search [15].

There is significant research on metaheuristics for specific SCOPs [7,16]. For
example, [31] improve the efficiency of adaptive large neighbourhood search for a
stochastic surgery scheduling problem. However, there is little work on methods
that improve metaheuristic efficiency for SCOPs in general. This paper advances
this research area with three specific contributions:

– A generic method that improves the efficiency of metaheuristics when solving
SCOPs. The method utilizes prior information in a memory-efficient way and
uses a predictive model to estimate the solutions’ expected objectives and to
estimate the variance of this estimate.
– The notion of a general output scenario distribution. This provides a means to
compare solution quality. We provide two approaches to estimate this distribution.
– Application of the method in combination with simulated annealing to demon-
strate its effectiveness on three different problems.

2 Background

2.1 Stochastic Optimization

We focus on the discrete stochastic optimization problems, as in Definition
1. Within this framework it is assumed that the distribution of the uncertain
parameter ω is known. Given a tractable mathematical formulation of the SCOP,
the model can be solved efficiently with a guaranteed optimal solution. However,
for a wide range of problems these exact methods become computationally too
expensive [7,12].

One reason for this is that uncertainty makes evaluating both objectives and
constraints complicated as it potentially requires integration over continuous
random variable ω. To circumvent this, discretization is often used to make SCOPs
tractable [8]. A common approach for this is sample average approximation [18]
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in which random samples are being drawn from the continuous probability
distribution. These scenarios are assumed as being equally likely and the SCOP
then has a deterministic equivalent formulation as an approximation, where
each component of each uncertain variable is replaced by all potential scenarios.
This still poses a challenge because to compute the average objective value, the
objective function f(x, ω) in Definition 1 still needs to be evaluated for each
scenario ω.

This evaluation is challenging because the objective function f need not even
be a closed-form function. For example, it can be the optimal value of another
optimization problem as in the case of a common class of SCOPs – two-stage
problems. There, the goal is to find an optimal here-and-now decision before
knowing the uncertain parameters’ realizations, while the wait-and-see decisions
are optimized after the uncertain parameters are realized. In other situations f
cannot even be mathematically modelled. This is because processes and systems
are often modelled by simulation and therefore, in practical SCOPs, evaluating f
is often done by a simulation. Simulation–optimization thus studies optimization
methods under the assumption that f(x, ω) is a black box. The main challenge
there is to limit the number of simulations, as they can be expensive [1]. Because
of the above two examples, we assume the following:

Assumption 1 Objective function f in Def. 1 does not have a closed form,
implying that the expected objective Eω[f(x, ω)] also does not have a closed form.

Assumption 1 implies that when ω has a continuous distribution, we need to
approximate the expected objective using a discrete distribution. In the sequel,
Ω is denoted as the set that includes all potential realizations of ω.

2.2 Metaheuristics for Stochastic Optimization

Metaheuristics are designed to find good solutions fast and, within a limited
time, they often outperform exact methods. Simulated annealing, tabu search
and genetic algorithms are effective metaheuristics trying to find better solutions
by modifying earlier-found solutions. The modified solutions are the potential
moves to make and they are evaluated before further moves are made. This
procedure repeats itself until a final solution is returned. Initially designed for
solving deterministic problems, metaheuristics have also shown to be effective for
SCOPs [7,16]. Stochastics makes the objective evaluation computationally more
expensive for a solution x as, based on Assumption 1 and Def. 1, we need to
evaluate f(x, ω) for every scenario ω ∈ Ω to find the exact expectation. The more
expensive the evaluation of f and the higher the computational costs of a move
(creating a new solution), the slower the metaheuristic search becomes. We show
in Example 1 that even for problems with a simple f the required additional
evaluations can increase the computational costs significantly. We first properly
introduce simulated annealing.

Simulated annealing (SA) is an archetypal metaheuristic, outlined high-level
in Algorithm 1. SA is a single solution metaheuristic keeping a single current
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Algorithm 1 Simulated Annealing

Input: budget b0, initial temperature t0, initial solution x
Output: final solution x

1: Let t← t0, b← b0
2: while b > 0 do
3: Reduce budget b
4: Update temperature t
5: Get move x′ and evaluate x′

6: if Paccept(x, x
′, t) high enough then

7: x← x′

8: return solution x

solution in memory at all times, as opposed to population-based metaheuristics
like genetic algorithms. Depending on the quality of a move and the value of
a parameter t called the temperature, the new candidate solution is accepted
or rejected. After this a new move is made in the following iteration. A higher
temperature encourages exploration, i.e., the algorithm is more likely to accept
solutions, even if they are worse. A lower temperature encourages exploitation, as
it only accepts better solutions. Over time, the temperature is decreased within
the SA procedure. Given this definition of SA, we now present Example 1.

Example 1. Consider a project scheduling problem in which the goal is to min-
imize the total makespan of a project. The project consists of set A with n
activities that need to be scheduled. The scheduling of activities is constrained
by some resources that the activities require. This is known as the Resource
Constrained Project Scheduling Problem (RCPSP). A deterministic solution
to this problem is most commonly defined as a list of activity start times
(sa1

, . . . , san
) : ai ∈ A, sai

∈ R+. If the duration of activities is uncertain however,
the actual start times are unknown upfront. Because of this a solution becomes a
policy. We define a solution as a priority list of activities (a1, . . . , an) : ai ∈ A.
This list is the order in which activities will start, such that an activity can never
start before another activity that is higher on the priority list [11]. Now we use
SA to find a good solution. As a move, we swap the place of two activities in the
priority list. The evaluation consists of building a realized schedule f(x, ω) for
each scenario ω ∈ Ω and taking the average of the obtained makespans. Swapping
two activities is a single operation. Building a realized schedule is n operations, as
it consists of scheduling n activities. This is done |Ω| times. Hence the evaluation
is about |Ω| ∗ n times as expensive.

2.3 Sampling

Recently there has been a resurgence of interest in sampling due to its relevance
in sequential decision making problems in general and reinforcement learning
(RL) in particular [9]. The multi-armed bandit problem is a sub-problem of RL in
which the decision maker has to decide between n actions, each with an unknown
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but fixed probability distribution of rewards [21]. This problem specifically deals
with the trade-off of exploration (new action) and exploitation (best-rewarded
action). In our problem setting, the metaheuristic is tasked with solving the
sequential decision problem of evaluating at each iteration a new scenario for a
current solution, or moving to a new solution: each action maps to a solution and
the obtained reward is the evaluated solution objective for some scenario. This is
a similar problem setting to RL, but not exactly the same: in our setting the fixed
probability distribution of rewards is still unknown, but the fixed probability
distribution of uncertain variables that determine the rewards is known. We can
exploit this by deciding which samples to draw, i.e., which scenarios to evaluate.
In the next section we present two baselines that use this principle. Note that
RL in general can be used as a metaheuristic alternative or as a hybrid [32], but
typically requires a lot of data and is therefore expected to be inferior in a setting
with (relatively) expensive solution evaluations.

3 Baseline Sampling Methods

3.1 Descriptive sampling

Our central question is how to obtain high-quality solutions with the metaheuristic
evaluating fewer scenarios per solution. In this section we provide two baselines.

The first idea to decrease the number of evaluations is to create a smaller set
of scenarios Ω when using sample average approximation. The drawback is that
the set might not be representative anymore for the underlying distribution or
data set. A method that creates a more representative set of scenarios compared
to random sampling is descriptive sampling [29]. When a set of m scenarios
is constructed, descriptive sampling creates m equally spaced (by probability
density) realizations for each random variable. The scenarios are then constructed
by selecting a random permutation for all possible realizations for each random
variable, where each realization corresponds to a scenario.

One of the drawbacks of an approach like descriptive sampling is that it
creates a representative set based on the distribution of the random variable
ω itself. We call this the input distribution, which is different from the output
distribution defined as the distribution of f(x, ω) given a solution x ∈ X. This
distinction is important as we are optimizing over this objective, and we need
the approximated output distribution to be representative of the actual output
distribution if we want to make good optimization decisions. We show with
Example 2 that a representative set for the input distribution is not necessarily
a representative set for the output distribution.

Example 2. Consider a RCPSP as described in Example 1, with 3 activities
A = {a, b, c}. Due to limited resources at most 2 activities can be scheduled at
the same time. The duration of activity a is fixed at da = 2, and the duration
of b and c are independent and uniformly distributed db, dc ∼ U(0, 4). Our
goal is to find the priority list for which the expected makespan is minimized.
Consider descriptive sampling with two scenarios for realizations of (db, dc). Out
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of 4 possible descriptive samples (consisting of durations in {1, 3}), we assume
we get ω = (1, 1) and ν = (3, 3). Since db and dc have the same distribution
and the project will start with two activities at the same time, effectively there
are two different solutions possible: (a, b, c) and (b, c, a). We have the following
relationships between the expected makespans of the solutions:

E{db,dc∼U(0,4)}[f((b, c, a), (db, dc))] = 3 1
3

< E{db,dc∼U(0,4)}[f((a, b, c), (db, dc))] = 3 1
2
,

E{(db,dc)∈{ω,ν}[f((b, c, a), (db, dc))] = 4 > E{(db,dc)∈{ω,ν}[f((a, b, c), (db, dc))] = 3 1
2
.

This shows that while the true optimal solution is (b, c, a), descriptive sampling
would return (a, b, c) as optimal.

3.2 Sequential sampling

A second idea aimed at efficient evaluation is to use sequential sampling within
the metaheuristic. In sequential sampling there is not a given set or number
of scenarios sampled, but after every sample a decision is made to continue
sampling or not. In the case of population-based metaheuristics, multiple new
solutions are encountered at the same time. This means that the sequential
sampling strategy becomes more elaborate, as there is not just one solution for
which the sample decision needs to be made. For example, [5] apply sequential
sampling to particle swarm optimization and [14] apply sequential sampling to
an evolutionary algorithm.

Similarly, sequential sampling has been applied with SA under noise, where it
is assumed that an objective evaluation has added Gaussian noise [2]. In this case,
without a predetermined number of evaluations per solution, a solution will only
be accepted or rejected when enough evaluations have been done to make this
decision. Therefore, at any point there will be three potential decisions: accept
the solution, reject the solution or evaluate on more scenarios. [10] used this
principle to accept/reject when the solution difference between candidate and
current solution is significant. This is inefficient however, as it does not adhere to
the fundamental detailed balance equation that deterministic SA is based upon.
This balance equation ensures that SA reaches equilibrium at each temperature
level if given sufficient time, such that it converges in probability to the optimal
solution [17]. [2] impose the detailed balance equation conditions at this decision
level, under which they maximize the acceptance probability per sample, which is
a measure for the efficiency of the algorithm. The authors propose the following
acceptance probability:

Paccept(cn, t) = min(1, e−2(cn+σ2/(2t))(cn−1+σ2/(2t))/σ2

), (1)

where cn is the cumulative performance difference after n samples:

cn =
∑

ω∈Ωn
f(x, ω)− f(x′, ω), (2)

and Ωn is the set of n samples. Similarly they derive an optimal rejection rule
to apply if the solution is not accepted. However, since this rule is dependent
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Algorithm 2 Sequential Difference Sampling

Input: current solution x, candidate solution x′

Output: new current solution x

1: Let n← 0, cn ← 0, Ωx ← ∅
2: while true do
3: n← n+ 1
4: Sample ω ∈ Ω\Ωx

5: Ωx ← Ωx ∪ ω
6: Evaluate f(x, ω), f(x′, ω)
7: cn ← cn−1 + f(x, ω)− f(x′, ω)
8: Determine Paccept(cn, t)
9: if Paccept(cn, t) > u, u ∼ U(0, 1) then
10: return solution x′

11: else if cn < 0 then
12: return solution x

on an unknown prior distribution of futures moves, a more simple but effective
rejection rule is proposed: Reject if cn < 0, i.e.,

Preject(cn, t) = 1{cn<0}. (3)

If the move is neither accepted nor rejected, another sample is taken and this
process is repeated as can be seen in Algorithm 2. We fit this procedure to our
methodology as described in Section 5.

4 Sequential Predictive Sampling

Our goal is to increase efficiency by reducing the number of scenarios evaluated.
We aim to support this goal by utilizing prior information: function evaluations
of the earlier-found solutions. In most metaheuristics, solution information is
only kept if their corresponding solutions are still considered promising. By
contrast, Prudius and Andradóttir [25] introduce an averaging framework in
which solutions are evaluated partially during the search: an estimate of the
expected objective per solution is stored as the average of all obtained objectives,
which makes it possible to improve this estimate by more solution evaluations.
Our method, however, does not keep all solution evaluations in memory, as it
only deems the more recent solutions evaluations interesting.

The proposed methodology is summarized as follows. Given a new solution,
two random scenarios from Ω are evaluated (two is the minimum number that
gives us relative information). Based on this evaluation, a predictive model is set
up and returns an estimate of the expected objective as well as the variance of
this estimate. Based on this, an accept, reject or sample decision can be made
in the overarching metaheuristic. The predictive model takes a general scenario
output distribution as input. This distribution is estimated based on evaluations
done on previously found solutions.
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Commonly, a solution’s expected objective would be determined by evaluating
over all scenarios in some set of scenarios Ω. Although we want expected objectives
to be representative over all uncertainty (i.e., the whole Ω), evaluating every
solution on every scenario is not necessary. As we argue below, this is because
not all evaluations are independent.

A fundamental assumption behind any search algorithm is that some solutions
are better than others:

Assumption 2 Some solutions are better than others: ∃x, y ∈ X such that

Eω[f(x, ω)] < Eω[f(y, ω)].

Similarly, we assume that some scenarios are uniformly better than others,
recognizing that uncertainty can have a positive or a negative impact:

Assumption 3 Some scenarios are better than others: Considering x as a dis-
crete uniformly distributed random variable with as support solution space X, we
assume that for some ω, ν ∈ Ω it holds that

Ex[f(x, ω)] < Ex[f(x, ν)].

Example 3. Due to the structure of a scheduling problem, a realization with
long activity durations across all activities is worse than one with short activity
durations. Take for examples the two scenarios obtained in Example 2, defined as
the two durations of uncertain activities b and c: ω = (1, 1) and ν = (3, 3). Given
solution (b, c, a), we get as makespans: f((b, c, a), ω) = 3 < f((b, c, a), ν) = 5.
More generally for this problem, if one scenario ν dominates another scenario ω,
the makespan can never be better, i.e.,

dνi ≥ dωi ∀i =⇒ f(x, ν) ≥ f(x, ω) ∀x ∈ X.

This holds for all problems where the impact of the uncertain parameter is
similarly related to the objective function (linearly for some solutions).

Based on Assumption 2 and 3 we go one step further. The fact that both
solutions and scenarios can be better or worse, makes it realistic to assume some
dependency between evaluations that are based on these solutions and scenarios.
When an evaluation f(x, ω) is perceived as ‘good’, it is likely that x and ω are
both relatively good as well.

4.1 General scenario output distribution estimation

Given our reasoning on dependence of evaluations, we introduce a linear depen-
dence assumption that we consider to hold with a margin of error that is small
enough to help us compare evaluations. Even though the assumption will most
often not hold exactly, it will help us steer the solution evaluations.

We first define two uniform discrete distributions that we will use to relate eval-
uations: solution output distribution E and general scenario output distribution
D with as sets of atoms:

EX := {ex : x ∈ X, ex := Eω[f(x, ω)]},
DΩ := {dω : ω ∈ Ω, dω := Ex[f(x, ω)]}.
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Assumption 4 There exist linear relationships between solutions given a sce-
nario, i.e., for any x, y ∈ X:

f(x, ω)/f(y, ω) = ex/ey ∀ω ∈ Ω,

where the linear relation is decomposed as a fraction ex/ey. Further, there exist
linear relationships between scenarios given a solution, i.e., for any ω, ν ∈ Ω:

f(x, ω)/f(x, ν) = dω/dν ∀x ∈ X,

where the linear relation is decomposed as a fraction dω/dν .

Lemma 1. Given Assumption 4, we have ∀x, y ∈ X, ∀ω, ν ∈ Ω:

f(x, ω)/f(y, ν) = exdω/(eydν) ⇒ ∀c ∈ R : f(x, ω) = c exdω ∧ f(y, ν) = c eydν .

We note that constant c in Lemma 1 is irrelevant in comparing evaluations
and we therefore omit it from here on. Given Assumption 4, Lemma 1 ensures
we can have a rank-1 decomposition of matrix F , F = edT , where e and d
denote the vectorized estimates of sets EX and DΩ . In practice, Lemma 1 only
holds when the objective function is linear in the uncertain parameters, which is
unlikely when f is considered to not have a closed-form (Assumption 1). When
Assumption 4 holds, the stochastic problem effectively becomes a deterministic
problem where the solution quality can be compared exactly when all solutions
are evaluated on the same, single scenario ω ∈ Ω. Therefore, Assumption 4 serves
as a strong baseline. It ensures that when uncertainty is (close to) linear in the
evaluation function, the method performs similar to assuming the problem is
deterministic. Now that we have defined general scenario output distribution D,
we present a method to estimate it. We will use linearity throughout such that
the estimator is perfect if the rank-1 decomposition F = edT exists.

Bayesian inference is popular in estimating distributions [13]. However, the
general scenario output distribution can have any kind of shape and therefore we
refrain from assuming a prior distribution. A prior distribution can be especially
troublesome since observing only a few evaluations per solution will update the
posterior only slightly for each new solution. Furthermore, solution evaluations
are not random draws from the same distribution. Because of this we use discrete
linear updates. Given an output scenario distribution D and Assumption 4, we
can update this distribution assuming the evaluations from the last obtained
solution are most representative of the general scenario output distribution.
Denoting x as the last evaluated solution, we use:

dω ← rf(x, ω)

∑
ω∈Ωx

dω∑
ω∈Ωx

f(x, ω)
+ (1− r)dω, ∀ω ∈ Ωx, (4)

where Ωx is the set of scenarios on which x is evaluated and r is the rate by which
the current values are replaced, which makes the updates more smooth. When
using SA, this update can be done after each iteration. Note that if the rank-1
decomposition is equal to the actual evaluation matrix, i.e., F = edT , these
updates ensure the general scenario output distribution has a linear relationship
with all solution specific scenario output distributions. This leads to a perfect
predictor given a linear predictive model, hence we will use this model class.
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4.2 Predictive model

Now we have defined an approach to obtain a general scenario output distribution
D with Equation 4, we use this distribution to compare obtained solutions during
the metaheuristic search. Since we are developing a sequential sampling method,
this comparison will include specifying a accept, reject or sample decision as
introduced in Section 3.2. When evaluating a solution x, we set up the following
predictive model:

f(x, ω) = βxdω + εx,ω, (5)

where εx,ω is an error term and we estimate βx by the ordinary least squares
estimator that minimizes squared errors of the predictive model:

β̂x := argmin
βx

∑

ω∈Ωx

(f(x, ω)− βxdω)
2 =

∑
ω∈Ωx

dωf(x, ω)∑
ω∈Ωx

d2ω
.

Given the predictive model from Equation 5 with βx = β̂x, we get an estimate of
the expected objective of solution x:

µ̂x := Êω[f(x, ω)] =
1

|Ω| (
∑

ω∈Ωc
x

β̂xdω +
∑

ω∈Ωx

f(x, ω)),

where Ωc
x = Ω \ Ωx. An estimate of the objective value by itself is useful,

but additionally we also get a measure of the uncertainty of the prediction by
estimating the variances as:

V̂ar(µx) =
1

|Ω|2 ((
∑

ω∈Ωc
x

dω)
2 Var(β̂x) + |Ωc

x|Var(εx)).

V̂ar(εx) =
1

|Ωx| − 1

∑

ω∈Ωx

(f(x, ω)− β̂xdω)
2.

Var(β̂x) = V̂ar(εx)/
∑

ω∈Ωx

d2ω.

Given this setup, we know the expected objective of a solution x has a Student’s
t-distribution with |Ωx| − 1 degrees of freedom, shifted by mean µ̂x and scaled

by estimated variance V̂ar(µx), assuming error term εx,ω is normally distributed.

Hence, we effectively have an estimated variance of: σ̂2
x := V̂ar(µx)

|Ωx|−1
|Ωx|−3 .

The use of a linear model ensures that if the evaluations’ relationships are
linear, the predictive model can predict perfectly: σ̂2

x = 0.

4.3 Full SeqPre procedure

We summarize the full procedure in Algorithm 3. The comments therein show
the exact implementation of the procedure for the experiments. We note that
in the case of SA, the procedure replaces algorithmic steps 5–7 of Algorithm 1.
All the input variables are updated and kept in memory during the search.
Note that in Step 3 we always select x′ if it does not have any evaluations yet.
Note also that the while loop (steps 2–12) is guaranteed to terminate since
scenario set Ω is finite and therefore when all scenarios are evaluated σ̂2

y = 0 and
Paccept(x, x

′, t),Preject(x, x
′, t) ∈ {0, 1}.
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Algorithm 3 Sequential Predictive Sampling

Input: current and candidate solution x, x′, estimation parameters µ̂x, σ̂
2
x , scenario

set Ω, evaluated scenario set Ωx, general scenario output distribution D, temperature t
Output: new current solution x

1: Update D ▷ using Equation 4
2: while true do
3: Select y ∈ {x, x′} ▷ with P(y = x) = |Ωx|/(|Ωx|+ |Ωx′ |)
4: Sample ω ∈ Ω\Ωy ▷ at random
5: Ωy ← Ωy ∪ ω
6: Evaluate f(y, ω)
7: Update µ̂y and σ̂2

y ▷ using predictive model in Equation 5
8: Determine Paccept(x, x

′, t), Preject(x, x
′, t) ▷ using Equation 1, 3

9: if Paccept(x, x
′, t) > u, u ∼ U(0, 1) then

10: return solution x′

11: else if Preject(x, x
′, t) > u, u ∼ U(0, 1) then

12: return solution x

5 Experiments

We examine the performance of our proposed method on three problems. Ex-
periments were implemented in Python and performed on a single 2.0GHz CPU
running Ubuntu 20.4 with 32GB RAM. Source code is available on GitHub [30].

5.1 General experimental configuration

Each method uses the same underlying SA procedure as outlined in Algorithm 1.
To compare solution objectives we give each search algorithm a fixed budget b0 of
evaluations. This is common practice for search algorithms as it shows efficiency
independent of the underlying machine specifications [20]. We also denote runtime
in the results, however we want to emphasize that the experimental problems
have relatively cheap evaluations (non-extensive simulations) which makes the
overhead greater than it would be for more practical problems. As annealing
schedule, geometric annealing is used with a fixed final temperature for fair
comparison between methods:

t← t0(tf/t0)
(1−b/b0).

The final temperature is set at a small value tf = 0.01. The initial temperature is:

t0 = −h ⌈min
x∈X

f(x,Eω∈Ω [ω])⌉/ ln(p),

where ⌈·⌉ rounds up to the closest power of 10 and h = 0.1, p = 0.5 are such that
initially solutions that are 10% worse are accepted with a probability of 0.5.
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(a) SSFORU, instance size 150 (b) SCVRPTW, mean (c) SRCPSP, mean

Fig. 1: Objectives values and 95% bounds in % difference to the optimal deter-
ministic solution obj. value based on the test set and relative to budgets b0.

5.2 Methods compared

We use three benchmarks that evaluate a fixed number of scenarios at each itera-
tion. One of them evaluates the single scenario where each uncertain parameter
attains its average. This is searching for a deterministic optimal solution, so we
call this method Det. The other two variants use descriptive sampling to obtain
a set of scenarios. Scenario sets of sizes 10 and 100 are used and the methods
are denoted as Des10 and Des100. Size 10 has shown to be effective for some
problems in literature [28,4], while size 100 is assumed to be large enough to be
representative for the input distribution.

Two methods are proposed to compare to these benchmarks. The first method
is sequential difference sampling (SeqDif ) based on [2] as shown in Algorithm 2.
A random difference is sampled between the two solutions that are compared.
However, we do not assume Gaussian noise with known variance, so we estimate
the variance by updating it throughout the search:

σ̂2
i ← (σ̂i−1

√
i− 1 + cini

)2/i,

where i is the iteration and cini
is the cumulative difference as defined in Equation 2

when an accept or reject decision is made after ni samples for iteration i.
The second method is our proposed sequential predictive sampling approach

(SeqPre), as shown in Algorithm 3. Hyper-parameters as defined in Section 4 are
set at k = 50 and r = 0.9 (chosen based on empirical results). Both sequential
approaches use as decision rule the steps 9-12 in Algorithm 2, and a descriptive
set of 100 scenarios as Ω. The final obtained solutions are evaluated on a test set
of 1000 randomly drawn scenarios with a unique seed.

5.3 Description of example problems

Surgery Scheduling in Flexible Operating Rooms under Uncertainty (SSFORU)

has as goal to plan as many elective surgeries as possible in a given set of operating
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rooms, while minimizing idle and overtime for the staff and waiting time for the
patients. At any time during the day an emergency surgery can come in that
needs to be performed as soon as any operating room is available. This problem
has been studied in literature in several modifications [26] and was proposed in
this form by [34], with instance sizes of n ∈ {70, 100, 150, 200}.

We use the most generally used costs configuration (cover = 26, cidle =
2
3cover,

cwaiting = 1
5cover, cnot-scheduling = 30× 3

4cover) in literature [24,23,33]. Emergency
inter-arrival times are modelled as exponentially distributed with a rate of 4 per
day and surgery duration times are modelled as log-normal distributed fitted
by type. In the realization of a schedule, emergency surgeries are assigned to an
operating room based on the lowest expected duration of the remaining planned
elective surgeries. In the SA procedure moves are defined as removing or adding
elective surgeries and shifting the times of already planned surgeries.

Stochastic Resource Constrained Project Scheduling Problem (SRCPSP) is a
well studied problem, both the deterministic variant and different stochastic
adaptations. The goal is to minimize the total duration of a project that consists
of activities. Some activities can only start when certain others are finished
(precedence relationships), while they also have resource requirements and there
are limited resources available. We define a solution as a priority list of activities
as in Example 1, while the evaluation of a schedule consists of simulating the
realized schedule and obtaining the makespan. We test on instances 1.1–1.5 from
the PSPLIB [19] with 30 activities. The duration of the activities is uncertain
and modelled as exponentially distributed with as mean the given duration in
the instance. In the SA procedure we define a move as a swap between two
consecutive activities in the priority list. These are done randomly, limited to
swaps that adhere to the precedence relationships.

Stochastic Capacitated Vehicle Routing Problem with Time Windows (SCVRPTW)

has a given set of the same vehicles stationed at a depot, with the goal to serve a
given set of customers. The vehicles have some capacity, while each customer has
demand and a time window in which delivery is allowed. A solution is a route for
reach vehicle. We test on instances R101–R105 introduced by [35].

Both demand and travel times are uncertain and modelled as exponentially
distributed with as mean the given demand and the Euclidean distance respec-
tively. Similarly to [22], costs are determined by distance travelled. The evaluation
of a solution and scenario consists of a simulation in which vehicles travel to the
customers. When a vehicle does not have enough product or arrives after the
end of the time window, a cost penalty is incurred equal to a single trip back
and forth to the depot. When a vehicle arrives before the start of a time window
it waits. In the SA procedure a move is defined as for each route: 1) randomly
adding or removing a customer, or doing nothing; 2) randomly swapping two
consecutive customers.

5.4 Experimental results

Tables 1 and 2 show the experimental results. Baseline Det performs poorly, due
to over-fitting on the single scenario it uses. We see similar behaviour in lower
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magnitudes for Des10. Figure 1a illustrates that this over-fitting causes solutions
to not improve for larger budgets. On the other hand, Des100 does improve with
larger budgets, but performs poorly on smaller budgets.

In general the aim of the sequential sampling methods is to reach similar
objectives as Des100 in less time. We see that for SSFORU, SeqDif and SeqPre
perform similarly and better than the benchmarks. For SRCPSP and SCVRPTW
however, SeqPre performs significantly better than SeqDif. This could be caused
by the fact that differences of individual scenarios are not good enough estimates
for the actual differences, or because the estimated variance is not accurate
enough. Another difference between problem results is that Des10 performs close
to the best methods for SRCPSP and SCVRPTW. Specifically for SRCPSP we
can state that this is caused by the fact that uncertainty does not change solutions
that much, as the obtained solution is still competitive despite over-fitting. This
confirms the findings in [3].

6 Conclusions and Future Work

The central idea of this paper is that metaheuristic efficiency can be improved by
reducing the number evaluations per solution. We propose a general methodology
based on a sequential sampling procedure and a predictive model that utilizes
earlier obtained information memory-efficiently. This is done by modelling linear
relationships between both solutions and scenarios. We applied the approach to
SA on three diverse problems and found consistently strong performance.

Future work includes applying this method on metaheuristics in addition to
SA: For single solution metaheuristics the method is readily applicable, while for
population-based metaheuristcs the procedure of accepting/rejecting solutions
needs to be adjusted. A second avenue is exploring potential further improve-
ments: modelling more complex relationships between evaluations; and including
solution characteristics in the predictive model, as currently it only uses solu-
tion evaluations. Finally, more sophisticated machine learning methods could be
applied to estimate a general scenario distribution or predict objectives directly
from all obtained information. It can require more computing power to learn a
strong predictive model than to perform the search, but this could still be useful
when offline computation is cheaper.
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n Method
b0 = 5k b0 = 25k b0 = 100k b0 = 500k

Test Train s Test Train s Test Train s Test Train s

Det 298.1±4.2 32 9 344.9±5.5 29 47 327.2±6.2 29 189 322.1±6.0 29 972

Des10 188.9±2.3 120 8 179.0±2.0 103 40 170.7±1.7 94 151 165.8±1.1 89 748

7
0 Des100 394.7±15.7 388 6 204.5±9.0 194 44 163.1±1.2 152 190 158.2±0.6 144 943

SeqDif 199.3±3.4 190 10 165.6±1.3 155 59 *159.4±0.6 146 233 156.4±0.9 142 1172

SeqPre 190.9±2.4 181 11 169.3±0.8 158 61 165.8±0.9 152 243 158.5±0.6 143 1309

Det 809.4±7.0 60 11 819.0±6.9 48 58 837.6±7.9 46 227 836.4±6.4 46 1156

Des10 594.5±13.5 455 12 547.6±3.6 384 56 540.8±3.7 365 241 539.0±3.3 355 1202

1
0
0 Des100 1194.8±41.8 1177 8 669.6±35.5 647 60 514.6±1.6 483 238 505.4±1.4 466 1290

SeqDif 655.3±18.6 629 14 526.9±2.1 501 78 507.7±1.5 475 354 *501.7±1.1 462 1747

SeqPre 594.5±5.3 571 14 *521.1±1.7 494 83 510.9±1.8 478 349 505.5±1.4 469 1807

Det 381.5±3.5 32 17 380.9±3.0 24 66 382.9±2.5 20 367 385.8±2.1 18 1796
Des10 317.9±12.3 257 17 259.1±1.0 188 71 258.9±0.9 178 288 258.7±0.9 175 1323

1
5
0 Des100 764.7±21.5 764 13 412.7±21.6 407 76 248.9±3.2 238 291 242.2±0.3 228 1412

SeqDif 357.0±12.5 353 19 250.2±0.5 242 77 243.7±0.4 232 327 *241.3±0.3 227 1400
SeqPre 327.4±11.2 323 17 249.1±0.7 239 93 244.1±0.3 233 341 242.2±0.4 229 1753

Det 210.7±0.7 26 13 209.2±0.5 20 60 209.3±0.4 20 228 208.6±0.3 18 1156

Des10 219.8±10.8 188 22 140.6±0.7 106 69 138.9±0.7 102 252 140.0±0.8 100 1030

2
0
0 Des100 631.7±16.7 624 31 335.1±17.3 329 144 138.7±2.4 135 384 130.7±0.1 126 1485

SeqDif 274.2±18.0 269 21 135.9±0.4 132 87 131.8±0.2 128 321 130.7±0.2 125 1354

SeqPre 257.2±10.6 252 32 134.7±0.3 132 90 132.1±0.2 128 306 131.3±0.1 126 1672

Table 1: Results SSFORU per instance size n for different evaluation budgets
b0: average test (± SE) and train objectives in % difference to the optimal
deterministic objective based on 20 random seeds, and average time s in seconds.
* shows significant difference between the 2 best methods (paired t-test, α = 0.05).

Method
b0 = 5k b0 = 25k b0 = 100k b0 = 1M

Test Trains Test Train s Test Train s Test Train s

S
R
C
P
S
P

Det 61.1±1.6 9 2 58.8±1.2 5 8 56.6±1.3 3 31 55.5±0.9 1 317

Des10 64.0±2.4 52 2 56.4±2.1 43 8 52.6±1.1 39 35 50.1±0.7 35 351
Des100 86.9±3.2 85 2 68.2±2.8 66 8 57.7±2.0 55 33 50.7±0.9 48 348

SeqDif 65.7±2.3 64 2 59.1±1.8 57 9 55.7±1.7 54 39 52.8±1.1 51 397

SeqPre 69.2±2.2 66 3 55.8±1.5 53 17 52.6±1.1 50 67 49.4±0.7 47 677

S
C
V
R
P
T
W Det 372.1±1.7 175 6 376.2±1.3 163 32 377.8±1.2 155 127 379.6±1.0 145 1278

Des10 316.1±2.7 313 1 305.3±2.6 302 6 299.5±2.6 297 22 287.2±1.9 285 217

Des100 327.5±2.0 327 1 318.2±2.5 318 4 308.5±2.1 308 15 298.7±2.4 298 129
SeqDif 324.2±2.2 324 2 313.6±2.5 313 10 309.0±2.7 308 49 305.2±2.8 305 551

SeqPre 317.8±2.7 317 4 305.2±3.3 305 19 *294.0±2.4 294 81 287.0±1.2 287 844

Table 2: Results SRCPSP & SCVRPTW for different evaluation budgets b0: test
(± SE) and train objectives in % difference to the optimal deterministic objective
averaged over 10 random seeds and 5 instances, and average time s in seconds.
* shows significant difference between the 2 best methods (paired t-test, α = 0.05).

Authors’ pre-print. Publisher’s version of record ©Springer to appear at CPAIOR’24, Uppsala, Sweden, May 2024

15



16 Schutte et al.

References

1. Amaran, S., Sahinidis, N.V., Sharda, B., Bury, S.J.: Simulation optimization: a
review of algorithms and applications. Annals of Operations Research 240, 351–380,
(2016). https://doi.org/10.1007/s10479-015-2019-x

2. Ball, R.C., Branke, J., Meisel, S.: Optimal sampling for simulated annealing under
noise. INFORMS Journal on Computing 30, 200–215, (2018). https://doi.org/10.
1287/ijoc.2017.0774

3. Ballest́ın, F.: When it is worthwhile to work with the stochastic RCPSP? Journal
of Scheduling 10, 153–166, (2007). https://doi.org/10.1007/s10951-007-0012-1

4. Ballest́ın, F., Leus, R.: Resource-constrained project scheduling for timely project
completion with stochastic activity durations. Production and Operations Manage-
ment 18, 459–474, (2009). https://doi.org/10.3401/poms.1080.01023

5. Bartz-Beielstein, T., Blum, D., Branke, J.: Particle swarm optimization and se-
quential sampling in noisy environments. In: Metaheuristics: Progress in Complex
Systems Optimization. pp. 261–273. Springer, (2007). https://doi.org/10.1007/
978-0-387-71921-4 14

6. Bellman, R.: Dynamic programming. Science 153(3731), 34–37, (1966). https:
//doi.org/10.1126/science.153.3731.34

7. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on meta-
heuristics for stochastic combinatorial optimization. Natural Computing 8, 239–287,
(2009). https://doi.org/10.1007/s11047-008-9098-4

8. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, (2011).
https://doi.org/10.1007/978-1-4614-0237-4

9. Bouneffouf, D., Rish, I., Aggarwal, C.: Survey on applications of multi-armed and
contextual bandits. In: 2020 IEEE Congress on Evolutionary Computation (CEC).
pp. 1–8. (2020). https://doi.org/10.1109/CEC48606.2020.9185782

10. Bulgak, A.A., Sanders, J.L.: Integrating a modified simulated annealing algorithm
with the simulation of a manufacturing system to optimize buffer sizes in automatic
assembly systems. In: 1988 Winter Simulation Conference Proceedings. pp. 684–690.
(1988). https://doi.org/10.1109/WSC.1988.716241

11. Chen, Z., Demeulemeester, E., Bai, S., Guo, Y.: Efficient priority rules for the
stochastic resource-constrained project scheduling problem. European Journal of
Operational Research 270, 957–967, (2018). https://doi.org/10.1016/j.ejor.2018.04.
025

12. Dumouchelle, J., Julien, E., Kurtz, J., Khalil, E.B.: Neur2ro: Neural two-stage robust
optimization. arXiv preprint (2023). https://doi.org/10.48550/ARXIV.2310.04345

13. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Chap-
man and Hall/CRC, (1995). https://doi.org/10.1201/9780429258411

14. Groves, M., Branke, J.: Sequential sampling for noisy optimisation with cma-es. In:
Proceedings of the 2018 Genetic and Evolutionary Computation Conference. pp.
1023–1030. Association for Computing Machinery, Inc, (2018). https://doi.org/10.
1145/3205455.3205559

15. Juan, A.A., Faulin, J., Grasman, S.E., Rabe, M., Figueira, G.: A review of
simheuristics: Extending metaheuristics to deal with stochastic combinatorial op-
timization problems. Operations Research Perspectives 2, 62–72, (2015). https:
//doi.org/10.1016/j.orp.2015.03.001

16. Juan, A.A., Keenan, P., Mart́ı, R., McGarraghy, S., Panadero, J., Carroll, P., Oliva,
D.: A review of the role of heuristics in stochastic optimisation: from metaheuristics
to learnheuristics. Annals of Operations Research (2021). https://doi.org/10.1007/
s10479-021-04142-9

Authors’ pre-print. Publisher’s version of record ©Springer to appear at CPAIOR’24, Uppsala, Sweden, May 2024

16



Sequential Predictive Sampling 17

17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680, (1983). https://doi.org/10.1126/science.220.4598.671

18. Kleywegt, A.J., Shapiro, A., Homem-de-mello, T.: The sample average approxima-
tion method for stochastic discrete optimization. Society for Industrial and Applied
Mathematics 12, 479–502, (2001). https://doi.org/10.1137/S1052623499363220

19. Kolisch, Sprecher: Psplib a project scheduling problem library. European Journal of
Operational Research 96, 205–216, (1996). https://doi.org/10.1016/S0377-2217(96)
00170-1

20. Kolisch, R., Hartmann, S.: Heuristic algorithms for solving the resource-constrained
project scheduling problem: Classification and computational analysis. In: Project
Scheduling. International Series in Operations Research & Management Science.
vol. 14, pp. 147–178. Springer, (1999). https://doi.org/10.1007/978-1-4615-5533-9 7
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