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Abstract. Neural-symbolic (NeSy) AI has gained a lot of popularity
by enhancing learning models with explicit reasoning capabilities. Both
new systems and new benchmarks are constantly introduced and used to
evaluate learning and reasoning skills. The large variety of systems and
benchmarks, however, makes it difficult to establish a fair comparison
among the various frameworks, let alone a unifying set of benchmarking
criteria. This paper analyzes the state-of-the-art in benchmarking NeSy
systems, studies its limitations, and proposes ways to overcome them.
We categorize popular neural-symbolic frameworks into three groups:
model-theoretic, proof-theoretic fuzzy, and proof-theoretic probabilistic
systems. We show how these three categories have distinct strengths and
weaknesses, and how this is reflected in the type of tasks and benchmarks
to which they are applied.
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1 Introduction

Building systems that integrate learning, reasoning and optimization has long
been a dream for artificial intelligence (AI). One of the major challenges within
this context is evaluating novel ideas and frameworks on appropriate bench-
marks. Too often, the tasks and the datasets that are considered and proposed
for experimental evaluation are tailored to specific algorithms or methodolo-
gies and limited to ad-hoc scenarios and application domains. More generally,
the neuro-symbolic (NeSy) community lacks a generally accepted perspective to
test the existing approaches across a variety of different tasks and under different
conditions, making deep experimental comparisons hard to obtain [44]. In addi-
tion, when a new system is proposed, it is often tested either on appositely intro-
duced benchmarks, to emphasize the advantages of the novel approach (which is
understandable and legitimate), or on well-known “old-fashioned” datasets and
tasks. While a comparison on such classic benchmarks is useful to get an idea
of the performance of an approach for some reference points, new challenges are
necessary to drive the development of NeSy systems forward. For example, sev-
eral well-known datasets in image classification such as MNIST or CIFAR have
been used to design a variety of artificial tasks, each time with a specific goal: to
propose a setting for continual learning or few-shot learning, to introduce explicit
knowledge for reasoning, or to integrate rules and constraints for collective clas-
sification [4,24,25]. These datasets have become real benchmarking frameworks,
but their environments are too limited for evaluating the development of systems
integrating different paradigms.

To enable better benchmarking in NeSy AI we make the following contribu-
tions: (i) analyzing the current state of the art for what concerns the existing
datasets and benchmarks at the intersection of learning, reasoning and opti-
mization; (ii) studying their limitations; (iii) analyzing the existing systems that
have been applied to such data; (iv) providing a list of the desiderata that new
benchmarks should include; (v) proposing novel ideas for the evaluation and
comparison of different approaches. This is all intended to provide insight into
the abilities and limitations of current and future learning and reasoning systems.

2 A Categorization of Neural-Symbolic Benchmarking

Let us start off by taking a look at current benchmarking in NeSy AI. To do
this, we use a categorization of the different types of neural-symbolic tasks due
to Vermeulen et al. [44].

Distant Supervision. In this setting, we have a set of i.i.d. supervised examples,
but supervision is not available at the level of the classifier that needs to be
trained. Rather, it is available on the logic that is defined over the classifiers. A
classic example is that of the MNIST Addition task [24], where the training
examples are tuples of handwritten images, labelled with their sum. The learning
task however is to learn to recognize individual digits.
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Structured Prediction. In this setting, the system needs to classify entities con-
nected by a logical structure (e.g., a graph). Often, a subset of the entities is
labelled, while the label of the majority of entities needs to be inferred by taking
into account entity-specific attributes, as well as the relational structure con-
necting them. This is typically done through logic knowledge. An example is the
Citeseer [17] dataset. Here, individual entities are scientific papers, represented
as a bag of the words present in the paper. The goal is to predict the domain to
which the paper belongs. The citation graph is also provided, which includes an
edge if one paper cites another. The background knowledge is that if one paper
cites another, it likely belongs to the same domain.

Knowledge Base Completion. In this classic setting, we have a knowledge base
with missing links between the entities that need to be completed. Although
this is generally not a neural-symbolic setting, the idea is that the entities
might have sub-symbolic attributes, or that a deep learning-based system might
learn embedding representations and patterns that are not easily learned by a
symbolic system. As a result, enhancing a symbolic data collection with a neural
model may produce a significant improvement in solving the task, as shown, e.g.,
on the Countries [23,26] datasets

Learning to Optimize. In this setting, the goal is to generate solutions to com-
putationally intractable tasks. The model is trained to approximate the optimal
solution. The logic is used to make it more likely that a consistent solution is
generated.

Overview of Popular Neural-Symbolic Benchmarks

Below is an overview of popular neural-symbolic benchmarks for each these
category.

— Distant supervision (50): Add 2x2, Apply 2x2, BDD-OIA, CelebA, Chess,
CLE4EVR, CLEVR, CLEVR-Hans, CLEVR-Math, Context-sensitive gram-
mars, Crop yield prediction, CUB, DBA, DOT, Follow Suit Winner, Hand-
written formulas, Hanoi, Indoor scene classification, Kandinsky patterns,
Math, Member, MIMIC-IT, MNIST Addition, MNIST AddMul, MNIST Even-
0Odd, MNIST Following Pairs, MNIST Half, MNIST Pairs, MNIST Sequential,
MonumAI, Mutagenicity, Operator 2x2, Path, Predictive toxicology, RAVEN,
ROAD-R, RPS, Shapeworld, Shortest path, Sudoku grid validity, Tic tac
toe, Tic tac toe - next move, Trigonometry, vDEM, Visual Sudoku, V-LOL,
VQAR, Well-formed parantheses, Word-algebra problems, XOR

— Structured prediction (5): AbstRCT, Arnetminer, CiteSeer, Cora, IPC

— Knowledge base completion (16): Countries, CQ2SPARQLOWL, EMBER/
PE Malware Ontology, FB15k-237, Kinship, MedHop, MMKB, Nations,
PharmKG, Pizza ontology, PubMed, Randomly generated KBs, UMLS,
WebKB, WikiHop, WN18RR

— Learn to optimize (2): Hardware/Algorithm Dimensioning, Transprecision
computing
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3 A Comparison of Neural-Symbolic Systems

To discuss the state-of-the-art of neural-symbolic systems, we follow the cat-
egorization introduced in Marra et al. [27]. Here, NeSy systems were catego-
rized along 6 dimensions. We exploit some of these dimensions below to provide a
rough categorization of neural-symbolic systems. This is followed by an analysis
of their capabilities. An up-to-date version of the tables are available at https://
sites.google.com /view /benchmarking-in-nesy-ai.

3.1 Dimensions of Neural-Symbolic Systems

Proof- vs Model-Theoretic. The first dimension we select is the proof-theoretic
vs model-theoretic dimension, as this property has a profound impact on the type
of inference that is carried out by the systems. Proof-theoretic systems work by
finding proofs for a query by chaining together several steps of logical inference
using either backwards or forward reasoning. This type of inference thus has
a defined direction and is strongly connected to (logic) programming. On the
other hand, the model-theoretic approach considers the satisfying models for a
given logical theory, which is related to SAT-solving. Logical semantics. Marra
et al. [27] distinguish between three different levels of semantics: minimal, sta-
ble, and classical semantics. If the logical theory is limited to definite clauses,
its semantics is generally defined in terms of the least Herbrand model. It is the
unique minimal set of atoms that can be derived from the clauses. When relax-
ing this constraint allowing any type of clause, this minimal set might not be
unique. Instead, the semantics is defined by all stable models. Finally, the seman-
tics of arbitrary logical theories is defined by the classic semantic definition of
First-Order Logic. These semantics can be extended by defining a probability
distribution over models.

Structure vs Parameter Learning. For most machine learning models in a learn-
ing setting, the structure is fixed, but the parameters inside the structure have to
be learned. For many logic-based methods, however, the structure itself defines
the model as there are no other parameters. For neural-symbolic methods, this
dichotomy becomes even more important, and whether structure learning is sup-
ported becomes a defining aspect of the system. In this paper, all systems support
parameter learning, so we only indicate whether they support structure learning.

3.2 Overview

In Table 1, we give an overview of all neural-symbolic systems discussed in this
paper. A lot of entries are reused from Marra et al. [27] with permission.

3.3 Categorization

Analyzing Table 1 from [27] only according to the dimensions mentioned above,
we now identify three distinct groups of systems. In Table2 we give a per-
category overview of these properties with respect to the number of NeSy systems
having them.
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Group 1: Model-Theoretic Systems. The systems that only use a model-theoretic
approach are quite uniform. They all use classical logical semantics, and almost
none of them supports structure learning. The group is further divided into
systems that use a fuzzy or a probabilistic interpretation on top of the classical
semantics, with some systems offering (a mix of) both.

Group 2: Proof-theoretic fuzzy systems. Within the proof-theoretic dimension,
we have a clear splitting between fuzzy and probabilistic systems. Most fuzzy
systems use minimal semantics, and almost all of them support parameter learn-
ing.

Group 3: Proof-theoretic probabilistic systems. The probabilistic proof-theoretic
systems are divided between minimal and stable model semantics. Furthermore,
very few of them have support for structure learning. This is potentially due

Table 1. All neuro-symbolic systems considered in this survey.

System Inference/Semantics  |Learning Benchmark type
(P)roof |(C)lassical |(P)arameters|(D)istant supervision
(M)odel |(M)inimal |(S)tructure |(S)tructured prediction

(S)table (K)B completion
(P)robability;
(F)uzzy

oILP [35] P+M  [S+P P+S D

Concept Embedding Models (CEM) [12] M C+P+F P D

Deep Concept Reasoner (DCR) [4] P F P-+S D

Deep Logic Models (DLM) [28] M C+P+F P D+K

DeepProbLog [24] P+M  M+P P+S DS

DeepStochLog [46] P M+P P D+S

Feed-Forward Neural-Symbolic Learner (FFNSL) [9] P S+F P+S D

Greedy Neural Theorem Provers (GNTP) [30] P M+F P-+S K

Lifted Relational Neural Networks (LRNN) [37] P M+F P+S D+K

Logic Explained Networks (LEN) [7] P+M  |C+F P-+S D

Logic Tensor Networks (LTN) [3] M C+F P D+K

NeurASP [49] PIM  [S+P P D

NeuralLP [47] p M+F p K

Neural Markov Logic Networks (NMLN) [29] M C+P P+S K

Neural Probabilistic Soft Logic (NeuPSL) [32] M C+F P D-+S

NLog [42] P M-+P P D

NLProlog [45] I M+P P+S K

Neural Theorem Prover (NTP) [33] P M+F P-+S K

Reason-able Embeddings [1] M C+F P K

Relational-Concept Based Models (R-CBM) [5] P+M  P+F P+S D-+S+K

Relational Neural Machines (RNM) [26] M C+P P D+S

Relational Reasoning Networks (R2N) [26] P+M  |C+F P S+K

Semantic Based Regularization (SBR) [11] M C+F P S+K

Scallop [21] P M+P P D

SLASH [36] P+M  [S+P P D

TensorLog [8] P M-+P P S+K
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to the more expressive nature of probabilistic inference, making search over the
space of rules expensive.

3.4 Capabilities

The category of a NeSy system has a large impact on what type of tasks it
can be applied to. This is made clear by the benchmarks each system is gener-
ally evaluated on. In this section, we exemplify this by indicating which tasks
the different categories of systems are evaluated on. The resulting signature is
indicative of the capabilities of a system. We count these signatures for each
system in the categories listed above ((D) Distant supervision, (S) Structured
prediction, (K) Knowledge base completion). We then count how often each task
type appears in these signatures. Here, we omitted the optimization-based tasks
as they were not used in the systems used in this comparison.

The results of the categorization are shown in Table 3. From subtables (a)-
(c) we can see that distant supervision tasks are common among all systems.
Also, both model-theoretic and proof-theoretic systems are quite versatile. Proof-
theoretic probabilistic systems seem to be mostly focused on distant supervision.
This is probably due to the more expensive probabilistic inference that prevents
them from being successfully applied to structured prediction and knowledge-
base tasks.

Table 2. An overview of the properties of the systems in the different categories along
the 3 dimensions.

Category Proof- vs model-Semantics |Fuzzy vs probability|Structure learning|#systems
(P) Proof (C) Classical|(P) Probability (V') yes
(M)odel (M) Minimal|(F) Fuzzy (X) no

(S) Stable

model M C P+ F X 2
M C F v 1
M C F X 4
M C P v 1
M C P X 1

fuzzy P C F v 1
P C F X 1
P M F v 3
P M F X 1
P S F v 2

probabibilistic/P M P X 1
P S P v 1
P S P X 2
P M P v 1
P M P X 4
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Table 3. Capabilities of each system category. We report the count of systems
evaluated on a combination of (D)istant supervision, (S)tructured prediction, and
(K)nowledge base completion tasks.

(a) Model-theoretic (b) Proof-theoretic fuzzy - S
(c) Proof-theoretic probabilistic
D|S [K|# Systems D|S [K|# Systems
D|S |[K|# Systems
XX |2 XIX|X|1
XX |2
X |X]2 X X1
X 5
X 2 X 2
X X1
X X1 X X1
X1
X2 X3
# Systems|7 |3 |2
# Systems|6 3 |5 # Systems/4 2 |6

4 Limitations of the State of the Art

We now discuss some limitations identified in the existing benchmarks, which
have led to the recent introduction of novel benchmarks for the NeSy community.

Concerning Data. Combining data from different sources, and integrating low-
level perceptual stimuli (images, videos, text, signals) with knowledge of any
kind remains a cornerstone of most existing NeSy benchmarks. A large part
of such benchmarks utilizes images as input, whereas text remains largely under-
explored by the NeSy community [19]. The rise of Large Language Models
(LLMs) has also rapidly changed the landscape, representing an additional ele-
ment to account for. The integration of LLMs within NeSy approaches, to address
reasoning and optimization tasks, seems a very promising though challenging
research direction for the future. Images, instead, are the most frequently used
category of input data, since they can be easily manipulated to create syn-
thetic datasets with desired properties and characteristics. Moreover, they can
be employed across a wide variety of applications like, e.g., game playing, as in
Tic-Tac-Toe, constraint solving in Visual Sudoku, visual question answering as in
CLEVR-Hans [39], plain classification as in Kandinsky Patterns [31]. Knowl-
edge is usually implicit when dealing with certain input data categories, such as
knowledge graphs, whereas the definition of specific tasks often requires the use
of explicit knowledge, typically in the form of (soft or hard) logic rules: this is the
case, for example, for the many benchmarks created, with different goals, from
the MNIST dataset, or from CLEVR-based settings, such as CLE4EVR [25]. To
mitigate the lack of explicit logic knowledge, several approaches have started co-
learning a set of logic rules on knowledge graphs, or preprocess the graph with
an external rule miner such as AMIE [14] or DRUM [34], and then use them
for knowledge graph reasoning [10,18]. However, the extracted rules are often
very different, and therefore it is difficult to build a comprehensive view of the
capabilities enabled by exploiting this knowledge, even if evaluated on the same
datasets.

Concerning Paradigms and Tasks. Besides traditional paradigms and tasks, such
as classification and reasoning, interesting and novel research directions have
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emerged, leading to the identification as well as the design, of novel benchmarks.
This is the case, for example, for benchmarks inspired by an incremental or con-
tinuous learning process, such as MNIST Sequential, CLE4EVR, or KANDY.
Yet, we believe that this direction is still largely under-explored, and it actually
represents a true element of novelty that should be further considered by future
benchmarks, and by systems as well. Moreover, existing benchmarks are often
too specific and do not properly model complex and real-world interactions.
In this regard, some interesting advances toward a more general perspective
have been considered on the crossword application [50], where knowledge and
constraints can be used to solve or generate thematic world puzzles. The pos-
sibility of having a human-in-the-loop is also a crucial ingredient to enhance
explainability and trustworthiness in Al systems. Benchmarking the capability
of a system to extract the correct explanation is quite challenging, some recent
attempts, however, have been made on specific topics, such as universal algebra
[16] and electrical power grids [43]. A novel task that has been recently addressed
within the NeSy community is that of reasoning shortcuts (e.g., BDD-OIA on
autonomous driving predictions, and MNIST Half or Sequential). Although some
of the existing benchmarks allow for the definition of tasks in small-data regimes
(i.e., few-shot learning), semi-supervised learning, or even unsupervised learn-
ing, we also consider this aspect as an open challenge for the design of NeSy
benchmarks.

Concerning Performance. Measuring the performance of NeSy systems with
metrics that can capture properties beyond plain accuracy in classification or
pattern recognition still remains an open issue, and it is a highly relevant prob-
lem within the NeSy community [22]. Among the novel benchmarks proposed
within the TAILOR project, there have been some attempts to include perfor-
mance metrics that take into account properties like interpretability and trust-
worthiness. This is the case, for example, for the works that have been studying
concept learning, as well as reasoning shortcuts [25]. In this case, beyond the
accuracy of the classification task, the idea is to analyze to what extent the
learned representations are aligned with a set of pre-defined concepts. Energy
efficiency to reduce the carbon footprint is another dimension that is gaining
relevance. In this context, some recently proposed benchmarks, related to hard-
ware dimensioning and transprecision computing, are exploiting energy-related
metrics [13,38].

Concerning Implementation. From a more practical perspective, we remark that
the comparison of the same system across different benchmarks, or of different
systems on the same benchmark, is made difficult by the heterogeneity of the
formalisms used to represent data and to model background knowledge. A stan-
dardization of frameworks would represent a crucial step to improve such com-
parisons and to advance the state-of-the-art: this could be enabled by providing
APIs to the systems, by providing knowledge in different formats, or by includ-
ing benchmarks within existing platforms such as OpenML. Ongoing work is
looking into creating a knowledge representation language for NeSy that could
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be used to unambiguously and uniformly represent the knowledge in tasks and
benchmarks [20].

Concerning Domains. Analysis of existing datasets may be very useful in high-
lighting how some domains are under-represented in the panorama of bench-
marks usually considered by the NeSy community. Planning is an example of an
under-represented domain, as it can easily provide both symbolic data, such
as activity traces or maps, and numeric data, coming from perception. Novel
benchmarks have been proposed within TAILOR for goal recognition and classic
planning [6]. The medical and legal domains also represent two scenarios where
background knowledge provided by experts could be a crucial element to boost
the performance of purely data-driven systems: such knowledge could be pro-
vided in various formats, including knowledge graphs, ontologies, or even plain
natural language. Biomedical data have been proposed as benchmarks for knowl-
edge graph completion (e.g., the PharmKG benchmarks [10,51]), whereas legal
documents (e.g., online terms of service) have been proposed for tasks related to
distant supervision. Yet, more opportunities will likely emerge in these fields in
the coming years. Regarding textual documents, computational argumentation
and argument mining could be an additional research field where symbolic knowl-
edge might be employed, for example, to encode argument models. Some prelim-
inary works using NeSy systems for this kind of task have been proposed [15].
Finally, safety-critical applications have also been identified as a domain, where it
is common to have hard and soft constraints that intelligent agents have to satisfy
when interacting with the environment: even if some work in, e.g., autonomous
driving [40], reinforcement learning [48] or malware detection [2,41], has been
done in this context, a more extensive and systematic application of NeSy sys-
tems in this setting could also be an interesting research direction for the future.

5 Conclusions

In this paper, by borrowing relevant criteria from other work, we have given a
categorization and overview of popular systems and benchmarks within neural-
symbolic AI. We have categorized popular neural-symbolic frameworks into three
categories: model-theoretic, proof-theoretic fuzzy, and proof-theoretic probabilis-
tic systems. Our analysis shows that these three systems have distinct strengths
and weaknesses, and this is reflected in the type of tasks to which they are
applied. Going forward, we will further deepen our analysis of both systems and
benchmarks with a more fine-grained analysis of the state-of-the-art.
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