
Received 25 August 2023, accepted 15 September 2023, date of publication 20 September 2023,
date of current version 27 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3317533

Sequence- and Time-Dependent Maintenance
Scheduling in Twice Re-Entrant Flow Shops
EGHONGHON-AYE EIGBE 1, BART DE SCHUTTER 2, (Fellow, IEEE),
MITRA NASRI 3, (Member, IEEE), AND NEIL YORKE-SMITH1
1Department of Software Technology, Delft University of Technology, 2628 XE Delft, The Netherlands
2Delft Center for Systems and Control, Delft University of Technology, 2628 CN Delft, The Netherlands
3Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands

Corresponding author: Eghonghon-Aye Eigbe (e.eigbe@tudelft.nl)

This work was supported by the Mastering Complexity (MasCot) Program, a Nederlandse Organisatie voor Wetenschappelijk Onderzoek
(NWO) under the Scheduling Adaptive Modular Flexible Manufacturing Systems (SAM-FMS) project with Grant 17931.

ABSTRACT Industrial and academic interest converge on scheduling flow shops with sequence- and time-
dependent maintenance. We posit that anticipatory, integrated scheduling of operational and maintenance
tasks leads to superior performance to purely ‘wait-then-fix’ handling of themaintenance tasks.Motivated by
an industrial problem with (sequence dependent) setup times, maximum separation constraints, and a com-
bination of sequence- and time- dependent maintenance tasks, this paper introduces an integer programming
solution, a constraint programming solution and a heuristic solution based on list scheduling. The motivating
use case provides a unique combination of concerns that is to the best of our knowledge, not yet studied
in the literature. We build on existing work where we can by extending models for sequence-dependent
maintenance scheduling to accommodate sequence- and time-dependent maintenance scheduling and also
propose other newmodels. We show the relative performances of our methods through empirical evaluations
and also show significant improvements – up to 25% reduction in makespan – when compared to a reactive
scheduling approach that does not consider maintenance in its planning. Based on our evaluations on exact
methods, constraint programming models scale better than mixed integer programming models for this
problem.

INDEX TERMS Flexible manufacturing systems, maintenance scheduling, makespan minimisation,
re-entrant flow shops.

I. INTRODUCTION
We consider a sequence- and time-dependent maintenance
scheduling problem. Our problem is motivated by an indus-
trial use case of a large-scale printer (LSP) and is modelled
as a flow shop. The operations in this problem have ordering
constraints that enforce precedence and also maximum sep-
aration constraints that limit the delay between some of the
operations. We also face setup time considerations. There are
maintenance tasks which depend on the schedule: different
sequences of operations have different deterioration effects
on the machines. Additionally, the contribution of an opera-
tion to the total deterioration effect in a sequence is dependent

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu Liu .

on the timing of operations. Thus, our maintenance planning
problem is both sequence- and time-dependent. The key ques-
tion is how to handle both operational and maintenance tasks.

This is a challenging question because deteriorated
machines produce low-quality jobs; there are thresholds
beyond which deterioration of machines must be fixed by
carrying out a maintenance activity. The overall objective is
to find a feasible schedule that minimises the makespan.

Integrated production and maintenance planning is a chal-
lenge in many industries such as in wind farms [1], [2], in the
capital goods industry [3] and the pulp and paper industry [4].
In many cases, machine deterioration is dependent on use,
i.e., the maintenance required depends on how production
operations have been scheduled. Sometimes, this dependence
can be ignored and solutions can focus on preventive or

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

103461

https://orcid.org/0000-0003-2619-6067
https://orcid.org/0000-0001-9867-6196
https://orcid.org/0000-0002-4367-5097

E.-A. Eigbe et al.: Sequence- and Time-Dependent Maintenance Scheduling in Twice Re-Entrant Flow Shops

policy based maintenance [5], [6], [7]. Recent work in this
direction has used reinforcement learning to come up with
these policies [8]. In other cases, the maintenance and pro-
duction planning problem can be so integrated that the effect
of use patterns on maintenance cannot be ignored. Previ-
ous work along these lines has considered different ways
in which maintenance planning is integrated with produc-
tion planning such as time-dependent maintenance [9] and
position-dependent maintenance [10], [11]. The literature
also considers different models of maintenance activities
with one of the most popular models being that maintenance
activities affect the processing time of operations [12]. While
similar problems have been tackled in the literature, our work
deals with a unique combination of maximum separation
constraints and a deterioration effect not on the processing
times of jobs but on the quality of work produced.

We present three solutions to this problem namely, (i) a
mixed integer programming solution, (ii) a constraint pro-
gramming solution, and (iii) a list-scheduling based heuristic
solution that extends the capabilities of existing schedulers
to handle the kind of maintenance activities presented in this
problem.

Through empirical evaluations, we show that in compar-
ison to the reactive approach of scheduling only production
operations and then performing maintenance activities when
deterioration thresholds are crossed during a production run,
our proactive approach achieves significant improvements in
the makespan.

Parts of this paper were presented in a non-archival work-
shop [13]. In the workshop paper [13], we introduced the
list-scheduling based heuristic (Section VI). The current
paper presents the work in archival form, introduces two
other solution methods, and also expands the scope of the
evaluation to include more list-schedulers from the literature.

This paper is organised as follows: Section II discusses
related work, Section III provides the background and
problem definition, Sections IV, V and VI present mixed
integer programming, constraint programming and heuristic
solutions respectively. We perform empirical evaluations in
Section VII and Section VIII concludes the paper.

II. RELATED WORK
The literature has investigated the dynamic relationship
between machine deterioration and production scheduling
from multiple angles ranging from ways to accurately deter-
mine the deterioration of a machine [14], [15] to actually
generating schedules. We group the research themes in this
field based on two categories, namely; (i) the way deteriora-
tion is modelled and (ii) the way maintenance activities are
modelled.

Based on the deterioration model, existing research can be
split into three main categories or approaches [16]. The time-
dependent approach relates deterioration to the time at which
a job is scheduled, i.e., scheduling a job later in the schedule
incurs some additional deterioration which typically leads to
longer processing times compared to scheduling it earlier.

Closely related to this is a position-dependent approach,
where deterioration effect of an operation is dependent on the
number of preceding completed operations. Finally, there is
the sequence-dependent approach in which the deterioration
depends on the ordering or sequence of the preceding opera-
tions on the machine. As a result of the industrial challenge
addressed in this paper, we focus on the sequence-dependent
case with an additional challenge that the deterioration effect
of an operation on a machine is not known apriori and is itself
time-dependent.

The survey of Gawiejnowicz [9] into the state of
time-dependent scheduling problems has shown that the
problem has been studied for single machine, parallel
machine and dedicated machine use cases with a wide
range of solution methods. However, situations where
time-dependence of maintenance activities is coupled with
sequence-dependence are unaddressed.

Yang [17] consider the position-dependent maintenance
scheduling problem on a set of parallel machines assuming
that machines can only be maintained once within the plan-
ning horizon and with a constant maintenance duration. Ref-
erences [10], [11] and [18] all consider position-dependent
maintenance on a single machine with varying considera-
tions such as the impact of time-dependent improvements
in machine conditions, constraining job processing times
to lie within an interval, and a combination of time and
position-dependent deterioration respectively. References
[12] and [19] also consider the position dependent case but
both add due-window considerations for just-in-time schedul-
ing considerations.

The sequence-dependent approach is a more recent addi-
tion to the literature and can be considered as a generalisation
of the time- and position-dependent approaches. Notably,
[20] and [21] study sequence-dependent deterioration on a set
of parallel machines without and with maintenance activities
respectively. Reference [22] considers iterated greedy heuris-
tics for a similar problem and [23] considers the case where
the parallel machines are not identical and processing time is
based on a combination of deterioration and the speed of the
assigned machine. Recently, [16] explored multiple integer
programming models for solving the sequence-dependent
maintenance problem on parallel machines and provided a
heuristic approach for larger instances. The combination of
sequence-dependent maintenance with other approaches and
its effect in more complex manufacturing systems has not yet
been studied.

Based on themodel of maintenance activities, there are also
different approaches in the literature. Some works such as
[20] do not consider the presence of maintenance activities
at all and aim to schedule in a way that deterioration is
minimized. Other works such as [16] consider maintenance
activities that reset the status of a machine to full health
or 0% deterioration while a third category [12] considers
rate-modifying maintenance activities that restore machine
health by modifying the rate such that machines are able to
perform work faster after maintenance. The authors of [24]

103462 VOLUME 11, 2023

E.-A. Eigbe et al.: Sequence- and Time-Dependent Maintenance Scheduling in Twice Re-Entrant Flow Shops

and [25], classify maintenance activities into those that com-
pletely reset the state of the machines and those that restore
the machines to some better deterioration state only. Addi-
tionally, the maintenance activities can be of fixed duration
or can also have varying types based on how deteriorated a
machine is.

A core assumption in many scenarios is that deterioration
makes machines slower, thus increasing processing times of
operations. Our work differs fundamentally in this regard
in that using deteriorated machines does not have an effect
on processing times, but instead affects the quality of the
jobs produced. Our problem defines deterioration thresholds
beyond which maintenance activities must be carried out to
meet the quality requirements of future jobs.We also consider
the case of maintenance activities that reset the state of the
machine but also consider that there exist different classes
of maintenance activities each with their own deterioration
thresholds and incurring different costs.

An additional complication in our problem is the presence
of maximum separation constraints, which impose additional
feasibility requirements on the problem. Exact solutions are
able to easily model these additional requirements but heuris-
tics run the risk of generating infeasible solutions in some
cases. We therefore consider it necessary to design a solution
for schedules that become infeasible due to the incorporation
of maintenance activities. This concept of re-organising or
repairing a changed schedule has been studied with various
heuristics such as left and right shift [26], [27]. [28] combines
multiple of these heuristics and a genetic schedule repair
algorithm to build a solution that caters to multiple classes
of schedule disturbances in a prefabrication plant.

In the context of flow shops, an example of schedule
repair algorithms can be found in [29] which considers
re-scheduling in a two-machine flow shop where schedules
are disrupted by machine breakdowns. Additionally, [30]
considers re-scheduling due to inserting new jobs in already
planned schedules and [31] considers re-scheduling due to a
wider range of disruptions in flow shop schedules at runtime.
These cases all consider unexpected interruptions and do not
have the combination of precedence andmaximum separation
constraints which provide an additional challenge for our
problem.

In summary, there is a gap in the literature for
sequence-dependent maintenance scheduling where deteri-
oration effects of operations are not known apriori but are
themselves time-dependent. The particular industrial chal-
lenge we consider has additional requirements of maximum
separation that add to the complexity of the problem. Further,
the schedule repair that is needed for heuristic schedulers
that may produce infeasible schedules when we introduce
maintenance activities, also requires new techniques.

III. PROBLEM DEFINITION
We consider a maintenance-aware re-entrant flow shop with
setup times and relative due dates inspired by an indus-
trial use case of a large-scale printer (LSP). The LSP prints

FIGURE 1. Sample re-entrant flow shop where the operations are
represented by circles. Column-wise, we have operations of the same job
and row-wise, we have operations on the same machine with one of
these being the re-entrant machine that appears on rows 2 and 3.
Operations with the same colour or boundary lines are mapped to the
same machine. Setup times and maximum separation constraints are
shown by solid and dashed edges respectively.

different types of duplex sheets that need to be processed
twice by the same print head at a speed of 100 or more pages
per minute. In this setting, jobs to be scheduled refer to sheets
to be printed.

In three-field or Graham notation [32], the base prob-
lem without maintenance is defined as F |si, sij, limited −
wait|Cmax indicating that it is a flow shop with both
sequence-dependent and independent setup times, with max-
imum separation constraints between operations of the same
job also known as limited-wait constraints, and with an objec-
tive to minimise makespan Cmax . There is no preemption
allowed and all jobs are released at time 0.

We represent the n-job m-machine maintenance-aware
problem as the tuple (M , J ,O,P, S,D, δ,X ,OM) where
M = {µ1, . . . , µm} is the set of machines and J =
⟨J1, . . . , Jn⟩ is the sequence of jobs. The set O represents the
set of operations for every job ji ∈ J where each operation
oij has a processing time Pij. Each job has the same number
of r operations as is in a standard flow shop. Moreover,
S : O× O→ R≥0 refers to setup times, which represent the
required delay between the completion of an operation and
the start of another operation. Setup times can exist between
operations of the same job to model travelling time of a job
for instance, or between operations on the same machine to
model any machine preparation step that is needed between
operations. Operations of the same job also have maximum
separation constraints between them represented as D : O ×
O→ R>0, i.e., the maximum delay between the start times of
two consecutive operations of the same job. Such constraints
model the fact that operations of a job can often not be delayed
indefinitely due to physical constraints in the plant like the
buffer size. In a situation where such constraints do not apply,

VOLUME 11, 2023 103463

E.-A. Eigbe et al.: Sequence- and Time-Dependent Maintenance Scheduling in Twice Re-Entrant Flow Shops

separation constraints can simply be set to infinity and setup
times to zero.

The solution to the problem is a schedule�, i.e., a sequence
of both maintenance activities and production operations
where each production operation is assigned a start time such
that ωij represents the start time of operation oij.
In addition to being a flow shop with the above properties,

we have a situation with re-entrancy such that the sequence
of machines for each job is ⟨µ1, . . . , µk , µk , . . . , µm⟩, i.e.,
there is one re-entrant machine that all jobs go through twice.
Operations on the re-entrant machines are referred to as first
and second pass operations. Re-entrancy occurs in many
production processes, e.g. semi-conductor production, where
wafers revisit machines at different stages of the production
process and in painting processes where a job may revisit a
machine for multiple coats of paint. Simple re-entrant setups
have been shown to be NP-hard [33], [34]. Our motivating
use case of production printing has a twice re-entrant setup
arising from duplex printing.

We further have the constraints that (i) jobs are not allowed
to overtake each other, (ii) the required completion order of
jobs is the same as the index of the jobs, and (iii) all setup
times and due date constraints are hard constraints that must
be obeyed. This situation means that the only scheduling
freedom is in the sequence of operations on the re-entrant
machine, i.e., first and second passes of the same jobs do
not necessarily have to follow each other on this machine.
This means we can also think of this as a single machine
scheduling problem with precedence and maximum separa-
tion constraints.

In the same vein as only needing to schedule the re-entrant
machine, we limit our maintenance planning to maintaining
the re-entrant machine. While other machines also require
maintenance, only the re-entrant machine requires main-
tenance in the same time scale as the operations being
carried out, creating a very tightly coupled problem com-
pared to maintenance of other machines. Additionally, the
re-entrant machine is often a key machine of concern for
cost reasons – re-entrant machines are too expensive to sim-
ply duplicate and remove the re-entrancy – or for quality
reasons – some products need to be handled in a delicate
state (chemical products for example) andmoving the product
from one machine to the other would change its state.

A. DETERIORATION MODEL
In our motivating industrial problem, there is a deterioration
model δ : � → R≥0, that maps a scheduled sequence of
operations on a machine to a deterioration state, i.e., given a
sequence of operations on amachinewith their corresponding
start times, i.e., a schedule, δ : �× → R≥0 informs us of
the machine state at the end of the sequence. Here, δ is both
sequence- and time-dependent in the sense that deterioration
is measured by idle time of a machine part, i.e., the longer
a machine part has been left idle, the more deteriorated
it is. These idle times follow directly not only from the
sequence themselves, but also from the assigned start times

of operations in these sequences. We do not explicitly model
machine parts and instead depend on the fact that different
types of jobs use different machine parts and so it can be
inferred which machine parts have been idle based on how
long it has been since a certain job type has been scheduled.
We assume that there is a set of job types T = {τ1, . . . , τn}
that can be presented to the machine and that there is a
lexicographic ordering of job types such that every set of
machine parts used by a job type τx is contained in the set of
machine parts used by a job type τy>x . It then follows that at
the start of an operation of type τx , idle time is reset to 0 for
all operations of type τy≤x . Note that while there could be
other kinds of problems where different jobs use completely
different machine parts and such a lexicographic ordering of
types is not possible, it is still a realistic assumption for many
scenarios, e.g., scenarios where jobs come in different sizes
and bigger sizes simply use more machine parts for produc-
tion or scenarios where jobs can be customised with different
add-on properties processed by additional machine parts.

Finally, we also take as input a maintenance policy X .
In our problem, the policy has a set of maintenance activity
classes C . For every class c ∈ C , there is a correspond-
ing maintenance duration Pc similar to processing times
of production operations. The maintenance policy further
maps intervals of deterioration values [θc, 2c) to classes of
maintenance activities such that whenever the deterioration
falls in [θc, 2c), a maintenance activity of at least class c is
required before further production. Thus, [θc, 2c) defines the
interval of deterioration thresholds for a maintenance activity.
We assume that these intervals are non-overlapping and that
maintenance activities triggered by higher thresholds, i.e.,
harsher deterioration, are more intense and require longer
durations. The deterioration thresholds serve to capture the
limits at which the quality of a job would be too low if
production carries on without a maintenance activity. In this
context, a low-quality job refers to a poor print typically with
colours bleeding into each other, blurry prints or unintended
lines running across a page.

An example problem is shown in Figure 1. The problem
is represented as a constraint graph where the due dates and
setup times are treated as a system of difference constraints.
Operations are represented as circles and each column of
operations belong to one job, while each row of operations
are mapped to the same machine. Solid arrows represent the
minimum separation between operations and are made of
the sum of processing and setup times while dashed arrows
represent the maximum separation between operations and
can be thought of as relative due dates. Minimum separation
edges are represented with positive values and maximum
separation edges are represented with negative values as they
connote at least and at most constraints on the difference
between the start times of the operations they connect.

IV. INTEGER PROGRAMMING APPROACH
Mixed Integer Programming (MIP) is one of the most pop-
ular exact solving paradigms and has been applied to other

103464 VOLUME 11, 2023

E.-A. Eigbe et al.: Sequence- and Time-Dependent Maintenance Scheduling in Twice Re-Entrant Flow Shops

maintenance planning problems in the literature [16], [35]
with some success. Due to the existence of a wide variety of
commercial solvers, mixed integer formulations of a problem
are valuable as solutions can be provided by these solvers.
Furthermore, MIP models can give additional insight to the
structure of a problem. Thus, we also consider such a solution
for our problem.

In this section we present an exactMIPmodel for this prob-
lem. The model uses the concept of event based formulation
as introduced by [16] and extends this concept to accommo-
date the kind ofmaintenance policies in this problem. The key
idea here is the notion of blocks where a block is defined as a
sequence of operations uninterrupted by a maintenance activ-
ity, i.e., a block is a sequence of operations separated from
other operations in the sequence by at least one maintenance
activity. For our model, we extend this idea to also include
the effect of job types. A block is then defined as a sequence
of operations uninterrupted by either a maintenance activity
or an operation with a higher type than any other operation
within the block.

We define binary variables to mark whether an operation
starts a block or not. These variables are further indexed by
job type and maintenance activity class, i.e., an operation can
be the start of a block delineated by a class of maintenance
activities and/or the start of a block delineated by a job
type. Blocks of different types are allowed to overlap with
additional constraints added to ensure that maintenance is not
triggered more than necessary.

The model retains all variables defined in the problem
definition in Section III. Indices of variables corresponding
to operations are either of the form xij when both the job
and operation identifier are important or of the form xa when
it is only necessary to differentiate one operation from the
other. For ease of modelling, we also define binary variables
0am, ∀oa ∈ O, µm ∈ M to represent machine assignment.
Then, 0am is set to 1 if operation oa is assigned to machine
µm. 0am is not a decision variable and is part of the problem
description.

Additionally, since we only plan maintenance on the
re-entrant machines µk , many constraints only apply to oper-
ations on this machine and are denoted as R such that R =
{oa ∈ O|0ak > 0}. Furthermore, a dummy operation odummy
of processing time 0 is defined and constrained to be the
first operation on each machine. We also extend the use of
a job type τ to serve as a function that returns the type of an
operation when written as τ (o).
The following additional variables are developed for the

MIP model: ωij refers to the start time of operation oij ∈ O,
Bab is a binary variable relating to the precedence constraints
between operations oa and ob. Note that Bab refers only to
direct precedence and not the general notion of oa being
scheduled sometime before ob. We discretize job types such
that τa refers to the type of oa and assume that there is a
lexicographic ordering of job types such that processing a job
type with a higher value is sufficient to reset the machine

for lower job types according to the maintenance policy
described in Section III.
Block starts are marked by binary variables Z ca and ζ τ

a
where Z ca determines if operation oa starts a block of oper-
ations delineated by a maintenance activity of class c and
ζ τ
a determines if operation oa starts a block of operations
delineated by a job type τ . Idle time values are held by the
variables K c

a and L
τ
a , which correspond to the minimum time

elapsed since a maintenance activity of class c preceding oa
and the minimum time elapsed since an operation of type τ

preceding oa respectively. Furthermore, deterioration values
at the start of an operation oa are held by the variable δa and
are determined by the deterioration values K and L.

Some of the constraints are linearised using big-M vari-
ables namely,Mτ andMω. We define some bounds for these
variables in Section IV-B below.

A. THE INTEGER PROGRAMMING MODEL
In this section, we define the integer programming model
made up of an objective function, decision variables and
constraints.

Objective
min(Cmax) (1)

Decision variables
Bab Operation oa directly precedes ob Bab ∈ {0, 1}
ωa Start time of operation oa θa ∈ R
Lτ
a Minimum time elapsed since opera-

tion of a type τ preceding oa
La ∈ R

Ka Minimum time elapsed since any
maintenance activity preceding oa

Ka ∈ R

δa Deterioration of machine at start of oa δa ∈ R
Z ca oa starts a block delineated by a main-

tenance activity of class c
Z ca ∈ {0, 1}

ζ τ
a oa starts a block delineated by a job of

type τ

Z ca ∈ {0, 1}

Constraints

ω(i+1)j ≥ ωij ∀oij ∈ O (2a)

ωi(j+1) ≥ ωij + Pij + S(oij, oi(j+1)) ∀oij ∈ O

(2b)

ωi(j+1) ≤ ωij + D(oij, oi(j+1)) ∀oij ∈ O (2c)∑
oa∈O

Bad = 0 (2d)

∑
oa∈O∪{odummy}

Bab = 1 ∀ob ∈ O (2e)

∑
ob∈O

Bab ≤ 1 ∀oa ∈ O (2f)

Bab ≤
∑

µm∈µ

0am0bm ∀oa, ob ∈ O (2g)

ωb ≥ Bab(ωa + Pa + S(oa, ob)) ∀oa, ob ∈ O

(2h)

VOLUME 11, 2023 103465

E.-A. Eigbe et al.: Sequence- and Time-Dependent Maintenance Scheduling in Twice Re-Entrant Flow Shops

ωb ≥ Bab(ωa + Pa + Z cb (Pc)) ∀oa, ob ∈ O

c ∈ C (2i)

Lτ
b ≥ Bab(ωb − ωa − Pa) ∀oa, ob ∈ R,

τ ∈ T (2j)

Lτ
b ≥ Bab(L

τ
a + ωb − ωa)−Mωζ τ

b

∀oa, ob ∈ R, τ ∈ T (2k)

Ka ≥ 0 ∀oa ∈ R (2l)

Kb ≥ Bab(Ka + ωb − ωa)−Mω
∑
c

Z cb

∀oa, ob ∈ R (2m)

δa ≥ min(Ka,Lτ (oa)
a) ∀oa ∈ R (2n)

Mω(1− Z ca)+ (δa − θc)

≥ 0 ∀oa ∈ R, c ∈ C (2o)

MωZ ca − (δa − θc)

> 0 ∀oa ∈ R, c ∈ C (2p)

Mτ ζ τ
b − Bab(τ (oa)− τ)

≥ 0 ∀oa, ob ∈ R, τ ∈ T (2q)

Mτ (1− ζ τ
b)+ Bab(τ (oa)− τ)

≥ 0 ∀oa, ob ∈ R, τ ∈ T (2r)

Cmax = ω|J |r + P|J |r (2s)

The objective of the model is to minimise makespan
denoted by Equation (1). The constraints in Equations (2b)
to (2h) apply to all operations while the constraints in
Equations (2j) to (2r) only apply to operations scheduled on
the re-entrant machine. All non-binary variables are con-
strained to be non-negative, i.e., start times, idle times and
deterioration values all have a lower bound of 0.

Equation (2a) enforces the fixed-order relationship
between operations at the same level of the flow shop.
Equations (2b) to (2c) enforce setup times and max-
imum separation constraints between operations of the
same job respectively, while Equation (2d) enforces that
the dummy operation has no predecessors. Equation (2e)
ensures that every operation has exactly one predecessor
and Equation (2f) enforces that every operation has at most
one successor. Equation (2g) enforces that operations only
follow each other if they are mapped to the same machine
and Equation (2h) enforces that there is no overlap between
operations leaving room for setup times. These make up the
constraints that specify the problem without maintenance.

The maintenance constraints follow below. Equation (2i)
enforces that there is no overlap between operations while
leaving enough room for any maintenance activities that
may have been triggered. Equation (2j) and (2k) specify
constraints on the minimum time elapsed since an operation
of a certain type has come through the machine. Similarly,
Equations (2l) and (2m) specify the minimum time elapsed
since a maintenance activity of a certain class has been sched-
uled. The constraints represented by Equations (2j) to (2m)
are defined in a cumulative way based on predecessor opera-
tions. Equations (2k) and (2m) are activated depending on the

presence of a job type or a maintenance activity respectively.
This toggle is implemented by big-M values that are activated
based on the binary variables Z and ζ .

The actual deterioration value is computed by Equation (2n)
which is set to the minimum of both K and L. Equation (2n)
computes deterioration based on the idle time so far and is
set to the minimum of K and L so that maintenance is only
triggered when necessary. Equations (2o) and (2p) specify
that maintenance activities are triggered whenever deterio-
ration thresholds are crossed thereby starting a new block
while Equations (2q) and (2r) similarly start a new block
based on the relationship between types of operations, i..e,
a new block is triggered whenever an operations predecessor
has a higher type. Note that this model allows multiple
maintenance classes to be triggered simultaneously if the
threshold violations cross multiple thresholds. However,
Equation (2h) means that the gap left for maintenance cor-
responds to the largest processing time of all triggered main-
tenance activities, thus not paying unnecessary maintenance
costs.

Finally, Equation (2s) calculates the makespan which in a
fixed order problem, is the finishing time of the last operation
of the last job.

B. BOUNDS FOR BIG-M VALUES
1) Mω

Throughout the model, Mω is used as a big-M constraint
in two instances. The first is in Equations (2m) and (2k) to
sum up the minimum times since the last maintenance or
the last occurrence of a type of job and in Equations (2o)
and (2p) to toggle maintenance if deterioration thresholds are
crossed. In each of these cases, the upper bound is the maxi-
mum possible deterioration value that can occur. Because our
deterioration deals with idle times, we are then looking for a
value that is larger than or equal to the maximum time the
machine can be left idle.

An idea for this bound is to use an upper bound on the
makespan as there always exists a solution with a better
makespan than one in which the machine is left idle for the
upper bound on the makespan.

This upper bound assumes the worst case which is that
every operations incurs the maximum possible setup time
and the maintenance activity with the longest duration occurs
before every operation. Thus, the bound is

Mω
=

∑
oa∈O

(
Pa +max

c∈C
(Pc)+ max

ob∈O
(S(oa, ob))

)
. (3)

2) Mτ

The tightest bound forMτ is the largest job type available in
the problem. This holds because:

– Mτ is an upper bound on the types of jobs,
– we assume that job types are all given integer values

corresponding to their quality requirements,

103466 VOLUME 11, 2023

E.-A. Eigbe et al.: Sequence- and Time-Dependent Maintenance Scheduling in Twice Re-Entrant Flow Shops

– we assume there is a lexicographical ordering of these
types that corresponds with the order of the integers
representing each job type.

C. LINEARISING THE MODEL
Some equations are still quadratic namely Equations (2h),
(2i), (2k) and (2m). They however all involve the product
of a binary variable and a non-negative continuous variable
and can also be linearised via the big-M method. The corre-
sponding M is alsoMω. A detailed explanation of how this
linearisation is achieved can be found in [36].

Additionally, Equation (2n) requires us to compute the
minimum which is also a non-linear equation. We define one
more auxilliary binary variable γa that is set to 1 if Ka is less
than Lτ (oa)

a and linearise the minimum constraint by replacing
it with the following set of equations:

δa ≤ Ka ∀oa ∈ R, (4a)

δa ≤ Lτ (oa)
a ∀oa ∈ R, (4b)

δa ≥ Ka −Mω(1− γa) ∀oa ∈ R, (4c)

δa ≥ Lτ (oa)
a −Mω(γa) ∀oa ∈ R, (4d)

Ka − Lτ (oa)
a ≤Mω(1− γa) ∀oa ∈ R, (4e)

Lτ (oa)
a − Ka ≤Mω(γa) ∀oa ∈ R. (4f)

Equations (4a) and (4b) set the deterioration value δa to be
upper bounded by the minimum of Ka and L

τ (oa)
a . However,

this is not enough as δa is still free to take any values less than
this and can lead to violations of maintenance constraints.
We further use Equations (4c) and (4d) which set δa to be
lower bounded by the minimum of Ka and L

τ (oa)
a . This lower

bound is also achieved via big-M constraints which activate
either equation based on γa. The combination of the lower and
upper bounds ensure that δa is exactly set to the minimum of
the two values Ka and L

τ (oa)
a . Finally, Equations (4e) and (4f)

set γa to 0 if Ka is less than L
τ (oa)
a and 1 otherwise.

V. CONSTRAINT PROGRAMMING APPROACH
Constraint programming (CP) has recently been shown to
perform well for scheduling problems [37]. This motivates
us to also explore a constraint programming solution. In this
section, we present a CP model.

Our CP model uses the idea of interval variables and
sequence variables. These are known constraint program-
ming concepts [37] with the following definitions. Interval
variables refer to operations to be scheduled and are declared
with a length equal to the processing time of the operation.
The goal of the solver is to assign a start time to each of these
variables. An additional characteristic of interval variables
are that they have the option to either be compulsory, i.e.,
they must exist in any schedule produced by the solver, or be
optional. Sequence variables on the other hand, represent
orderings of interval variables. The solver receives these as
a set of interval variables with its goal being to decide on a
sequencing of these interval variables.

Apart from constraints and variables, constraint program-
ming also provides some auxiliary functions such as startOf
and typeOf which help us access variable properties – in this
case, their assigned start times and types respectively.

We define two classes of interval variables, (i) operations
which are always present and each retain the representa-
tion of oa and (ii) maintenance activities which are optional
and referred to as mca where mca is a maintenance activity
of class c that precedes an operation oa. The variables K ,
L and R retain their definitions from the MIP model in
Section IV.
Given that we have |A| maintenance classes and |R| oper-

ations in total on the re-entrant machine, we define |A||R|
maintenance activities since the worst case is that there is one
maintenance activity of a class before every regular operation.
We add constraints such that the maintenance activities are
included in the sequence only when deterioration thresholds
are violated.

Sequence variables are defined per machine and ref-
erenced as Sequencem for corresponding machine µm
where Sequencem contains all operations mapped to µm
including the optional maintenance activities. For the
re-entrant machine, we define an additional sequence variable
SequencePlainm as a sequence of only production opera-
tions – excluding maintenance activities – and constrain
this sequence to follow the same ordering as Sequencem.
The purpose of this duplicate sequence is to ensure that
sequence-dependent setup times are respected. The details
of how we achieve this follow in the constraint definitions
below.

Objective
min(Cmax) (5)

Decision variables
Sequencem Sequence of production and

maintenance operations on
machine µm

SequencePlainm Sequence of production
operations on machine µm

Lτ
a Minimum time elapsed since

operation of a type τ preced-
ing oa

La ∈ R

Ka Minimum time elapsed
since any maintenance
activity preceding oa

Ka ∈ R

Constraints

C1 :before(Sequence1, oi1, o(i+1)1)∀oi1 ∈ O (C1)

C2 :sameSubsequence(Sequence1, Sequencem)
∀µm ∈ µ (C2)

C3 :sameSubsequence(Sequencem, SequencePlainm)

for re-entrant machine µk (C3)

C4 :startOf(oi(j+1)) ≥ startOf(oij)+ Pij + S(oij, oi(j+1))
∀oij ∈ O (C4)

VOLUME 11, 2023 103467

E.-A. Eigbe et al.: Sequence- and Time-Dependent Maintenance Scheduling in Twice Re-Entrant Flow Shops

C5 :startOf(oi(j+1)) ≤ startOf(oij)+ D(oij, oi(j+1))
∀oij ∈ O (C5)

C6 :noOverlapDirect(Sequencem,P, S)

∀µm ∈ µ (C6)

C7 :noOverlapDirect(SequencePlaink ,P, S)

for re-entrant machine µk (C7)

C8 :if(min(Ka,Lτ (oa)
a) ≥ θc ∧min(Ka,Lτ (oa)

a) < 2c)⇒

presenceOf(mca) = 1

∀oa ∈ R, c ∈ C (C8)

C9 :if(presenceOf(mca) = 1)⇒ Ka = 0

∀oa ∈ R, c ∈ C (C9)

C10 :if(presenceOf(mca) = 0)⇒

Ka = KindexOfPrev(Oa) + startOf(Oa)
− startOfPrev(Oa) ∀oa ∈ R, c ∈ C (C10)

C11 :if(typeOfPrev(oa) ≥ typeOf(oa))⇒
Lτ
a = startOf(oa)− endOfPrev(Oa)
∀oa ∈ R, τ ∈ T (C11)

C12 :if(typeOfPrev(oa) < typeOf(oa))⇒
Lτ
a = Lτ

indexOfPrev(oa) + startOf(oa)

− startOfPrev(oa) ∀oa ∈ R, τ ∈ T (C12)

C13 :Cmax = endOf(o|j|r) (C13)

In this model, Constraint C1 enforces an ordering between
the first operations of each job. The before constraint
enforces precedence relationships between two operations
in a sequence. We enforce the order of the first operations
of each job which we know will be on the first machine
(as we have a flow shop). Constraint C2 builds on C1 to
then enforce that this ordering is respected across all other
sequences using the sameSubsequence constraint. Note
that we only enforce a subsequence because the re-entrant
machine has operations on multiple levels of the flow shop.
The sameSubsequence is set up such that only operations at
the same level are constrained with the fixed ordering, which
is in line with the requirements of our problem. Constraint C3
uses the sameSubsequence in a similar way to constrain
the duplicate sequences – with and without maintenance
activities included – to have the same ordering.

Next, Constraints C4 and C5 enforce the sequence-
independent setup times andmaximum separation constraints
respectively. Both of these apply to operations of the same job
as is seen with the index of operations in the constraints.

Sequence-dependent setup time and no overlap constraints
are handled by Constraints C6 and C7, which ensure that
both the separations required by processing times and
sequence-dependent setup times are obeyed. Since mainte-
nance activities are also included in our sequences, we ensure
correctness of Constraints C6 by extending the process-
ing and setup times accordingly with setup times set to
0 for operations before or after maintenance activities. The
noOverlapDirect constraint works such that the separation

denoted by sequence-dependent setup times applies only
between direct successors, i.e., say an operation oa is fol-
lowed by ob with a maintenance activity mcb in-between, the
setup time between oa and ob will not be enforced. Thus,
setting the maintenance setup time to 0 can lead to constraint
violations as the problem is now under constrained. It is wor-
thy of note that there exists a noOverlapIndirect constraint,
which applies sequence dependent setup time constraints to
all successors; however, this over-constrains the problem.1

We use the noOverlapDirect constraint and circumvent
under-constraining the problem by using the supporting Con-
straint C7 on a duplicate sequence without maintenance.

Constraint C8 enforces the presence of a maintenance
activity whenever the minimum deterioration is within the
limits of threshold violations. We do not explicitly calculate
a deterioration variable δ in this model but this is essentially
the left hand side of Constraint C8.We depend on the fact that
our problem defines non-overlapping maintenance threshold
intervals to ensure that at most one maintenance activity is
triggered before an operation.

Constraints C9 and C10 deal with the computation of
the minimum time elapsed since a maintenance activity has
occurred. Since we are guaranteed to trigger at most one
maintenance activity per operation, we do not maintain dif-
ferent minimum elapsed times per maintenance class as was
done in the MIP model. Similarly, Constraints C11 and C12
compute the minimum time elapsed since a job of a certain
type has been through the machine.

Finally, C13 calculates the makespan, which we again
know to be the finishing time of the last operation of the last
job.

Worthy of note is that Constraints C10 and C12 are
cumulative constraints that could be expressed using the
cumulFunction constraint, which keeps track of each inter-
val variables contribution to a function [37]. However, many
implementations of this function within available solvers
require that the contribution of each interval variable be
known apriori whereas, in our case, the contribution of each
interval variable is itself based on decision variables [37] due
to maintenance also being time-dependent.2

VI. HEURISTIC SOLUTION APPROACH
While exact approaches such as those presented in
Sections IV and V have lots of advantages, they often do not
scale well. In this section, we present an alternate heuristic
solution approach to handle larger problem instances. The
work presented in this section has appeared earlier in a
workshop paper [13].
Our heuristic approach is based on extending list sched-

ulers to integrate maintenance activities in the schedule.
Heuristic list schedulers have been developed for the

1Given a sequence of operations oa → ob → oc, sequence-dependent
setup times will be considered from oa → ob, ob → oc and oa → oc
whereas the only sequence-dependent setup times that should be considered
are from oa → ob and ob → oc.

2Start times of operations are decision variables.

103468 VOLUME 11, 2023

E.-A. Eigbe et al.: Sequence- and Time-Dependent Maintenance Scheduling in Twice Re-Entrant Flow Shops

Algorithm 1Maintenance Aware List Scheduling (MALS)
1: function MALS(flow shop f , operation ordering order ,

ranking rank) ▷ returns schedule �

2: �←<> ▷ empty schedule
3: �′← ∅ ▷ empty set of schedules
4: �′′← ∅ ▷ empty set of schedules
5: op← dummy ▷ operation initialised to dummy

operation
6: for oc in order do
7: �′← generateOptions(oc, f , �)
8: for ω ∈ �′ do
9: ω← triggerMaintenance(oc, op, f , ω)

10: �′′← �′′ ∪ {ω}

11: �← selectHighestRanked(�′′, rank)
12: op← oc
13: �′′← ∅

return �

industrial problem we consider [38], [39], [40] and are
also suitable for online scheduling. Thus, we look into
extending them to handle integrated production and mainte-
nance scheduling. The typical flow of a list scheduler is to
order operations according to some metric and insert them
in a schedule one after the other until all operations are
scheduled [40].

A. MAINTENANCE-AWARE LIST SCHEDULING
To make a list scheduling approach maintenance-aware,
we propose to evaluate the effect of any operation placement
on maintenance triggering before making a decision. This
leads to a schedule with the necessary maintenance activities
triggered by the operation sequence already included. This
is shown in Algorithm 1. In Line 1, the scheduler takes as
input the flow shop to be scheduled, the chosen ordering
of the operations order , and the ranking of decisions rank .
Lines 2–6 initialise the variables used in the algorithm, i.e.,
an empty schedule � that is filled with operations by the
algorithm, empty sets of schedules �′ and �′′ used to keep
track of scheduling options, and an operation op to track the
last operation that was inserted in the schedule. Specifically,
op is initialised to a dummy operation for the first run where
no insertions have occurred yet. In Line 7, the scheduler
loops through each operation oc in the chosen order and
Line 8 finds positions to place the operation in the schedule
being built with each possible option resulting in a different
schedule stored in the set �′. For every one of these sched-
ules, we trigger predicted maintenance in Line 10, which
updates the schedules with predicted maintenance activities
included. We keep track of the last regular operation placed
in the schedule op to reduce the amount of work it takes to
trigger maintenance as the schedule is already evaluated up
to that operation op. Eventually, we pick the best option in
Line 12 where the ‘best’ is as determined by the supplied
ranking rank .

Algorithm 2 Trigger Maintenance
1: function triggerMaintenance(current operation oc, pre-

vious operation op, flow shop f , schedule �) ▷ returns
schedule �

2: for oi ∈ ⟨op, . . . , oc⟩ do
3: 1← δ(⟨o1, . . . , oi⟩, µk) ▷ predict deterioration

state
4: if X (1)is defined then ▷ deterioration triggers

maint.
5: ac← X (1) ▷ insert maint. activity
6: �← insertMaintenanceOperation(ac, �)
7: �← updateStartTimes(f , �)
8: feasible← checkFeasibility(f , �)
9: if ¬ feasible then
10: �← repairSchedule(f , �)

return �

FIGURE 2. Edge update after inserting a maintenance activity. The original
constraints between operations o22 and o32 are now between operation
o22 and the maintenance activity with new edges added to connect the
maintenance activity to operation o32 This ensures the original
constraints of the problem are present and the maintenance activity is
scheduled before operation o32.

The steps shown in Algorithm 1 are generic and can be cus-
tomised to any list scheduler of choice. However, evaluating
maintenance is performed according to the steps described in
Algorithm 2. For a given schedule, we first go through the
operations in the schedule from the last inserted operation op
to the current operation being inserted oc in Line 2. For each
operation, we evaluate the deterioration state in Line 3. If a
maintenance activity is triggered at any point in the schedule,
the action is then inserted and the schedule is re-evaluated
in Lines 5–9. We approach this by creating an operation ac

to represent the maintenance activity and adjusting the edges
in the graph such that the constraints of the original problem
remain intact after the insertion of the new operation. This
is illustrated in Figure 2 where we show the edges added
after inserting a maintenance activity. Since we have hard
timing constraints between operations, inserting a mainte-
nance activity can lead to a previously feasible schedule
becoming infeasible. In such a case, a schedule repair action
is triggered to return the schedule to a feasible state in Line 11.
Algorithm 2 assumes that a schedule is always repairable
and below in Section VI-B2, we show what the necessary
conditions are for this to be true.

B. SCHEDULE REPAIR
Flow shop schedules generally need to obey a certain ordering
of operations to be valid. However, re-entrant flow shops with

VOLUME 11, 2023 103469

E.-A. Eigbe et al.: Sequence- and Time-Dependent Maintenance Scheduling in Twice Re-Entrant Flow Shops

Algorithm 3 Schedule Repair Strategy
1: function repairSchedule(flow shop f , position n, sched-

ule �) ▷ returns schedule
�

2: feasible← false
3: end ← false
4: while !feasible ∧ !end do
5: (fp

′

, ofp,k)← penultimateFirstPass(n, �)
6: (ffp

′

, offp,k)← ultimateFirstPass(n, �)
7: (sp

′

, osp,k+1)← lastSecondPass(n, �)
8: if offp = o1,k then ▷ first operation on machine
9: end ← true

10: i← sp
′

+ 1
11: while i ≤ ffp

′

do
12: �← removeSecondPassOp(oi,k+1, �)
13: �← insertSecondPassOp(fp

′

, oi,k+1, �)
14: fp

′

← fp
′

+ 1
15: i← i+ 1
16: n← fp

′

17: �← updateStartTimes(f , �)
18: feasible← checkFeasibility(f , �)
19: �← triggerMaintenance(osp, o1,k , f , �)
20: return �

due dates have an additional validity criterion, which is the
due date between operations. In a case where operations that
are not completely part of the set of input operations – such as
maintenance activities – have to be scheduled, due date vio-
lations become even more likely. Since these operations are
only known when schedules are evaluated, we always have
the possibility that a schedule becomes infeasible as a result
of these insertions. Furthermore, it is still combinatorial to
decide on the repaired version of the schedule that minimizes
the makespan after an event that causes infeasibility occurs.
We therefore need to develop a schedule repair strategy for
this problem.

1) OUR STRATEGY
Schedule repair entails reorganising a schedule to obtain a
state where the schedule is valid again [41]. Since we start
from a valid schedule that is rendered infeasible by insert-
ing new operations, the infeasibility is due to a due date
violation, i.e., an operation has been delayed too long after
its preceding operation. Therefore, the fix is to systemati-
cally bring operations closer to their predecessors. However,
it is not immediately obvious which operations need to be
brought forward and how far this needs to go. As such
we define a recursive strategy where we take small steps
forward and reevaluate the fix until the schedule is feasible
again. Additionally, moving operations around can violate the
maintenance policy so after re-organisation, it is necessary to
re-evaluate the schedule. This solution falls under the class of
proactive-reactive dynamic scheduling [42].

FIGURE 3. Schedule repair strategy showing progressive steps in the
algorithm. In the first step, the schedule is infeasible because of the
maintenance activity (highlighted in green). From this point on, the future
steps re-organise the schedule until we achieve a feasible schedule in
Step 4. In Step 5, a last step is taken to trigger maintenance again as
re-ordering operations could have invalidated existing or triggered new
maintenance activities. Operations encircled in dotted lines are the
ultimate first pass from the point of failure, the ones circled in a thin line
are the penultimate first pass, and the ones circled in a thick line are the
last higher pass operation.

As shown in Algorithm 3, every time we reorganise the
operations in the schedule, we first identify three key opera-
tions, namely, the penultimate first pass operation from the
point where the schedule was broken, the last second pass
operation from the point where the schedule was broken,
and finally the last second pass operation that has been
included in the schedule. This is shown in Lines 4-6 where
we identify these key operations and their positions in the
schedule. We then move all scheduled second pass operations
belonging to jobs ranging from the last second pass to the ulti-
mate first pass in the schedule – this occurs in the remove and
insert calls on Lines 13–17. This way, the schedule has been
reorganised such that second pass operations from the point
of failure are at least a step closer to their first pass operations.
We repeat this process until the schedule becomes feasible,3

moving the point of failure a step backward each iteration –
this is as seen on Line 18 where the point of failure is updated
ahead of the next iteration. After the schedule is deemed
feasible, a last step is taken to trigger maintenance again
in Line 20 as re-ordering operations could have invalidated
or triggered maintenance activities. This re-ordering works
because due dates exist only between consecutive operations
of the same job.

Figure 3 shows an example of the schedule repair process.
In Step 1, the schedule is infeasible after the insertion of
a maintenance activity highlighted in green. The ultimate
first pass is identified as o42, the penultimate first pass as
o32 and the last second pass as o13. The operations after the
maintenance activity are then brought forward as can be seen
in the new placement of o23 in Step 2. This continues in
Steps 3 and 4 until the schedule is evaluated to be feasible.

It is valuable to point out that the overall algorithm pro-
posed is flexible enough to adopt other repair strategies
depending on the use case. An alternate example could be

3It is always possible to find a feasible solution as long as the maintenance
policy in use is safe. This is as shown in Theorem 1 below.

103470 VOLUME 11, 2023

E.-A. Eigbe et al.: Sequence- and Time-Dependent Maintenance Scheduling in Twice Re-Entrant Flow Shops

FIGURE 4. Slack between operations o22 and o23.

the strategy of reducing the rate of production to prevent or
delay maintenance activities. A host of possible rescheduling
and repair strategies are surveyed in [41].

2) SAFE MAINTENANCE POLICIES
A maintenance policy X maps a deterioration state of the
machine to an appropriate maintenance activity. The policy
in use determines when and where maintenance activities
are necessary. As discussed above, inserting a maintenance
activity in a schedule may make the schedule infeasible.
We define a safe maintenance policy as a policy that ensures
that there exists at least one maintenance-aware solution to
the flow shop provided there is a feasible schedule for the
flow shop alone without considering maintenance activities.
Since a schedule becoming infeasible after a maintenance
insertion is a result of a violated due date, there should be
enough room between consecutive first and second passes of
the same job to fit a particular maintenance activity unless
the policy is such that the maintenance activity cannot be
triggered between first and second passes of the same job.
Concretely, this means that the processing time of any main-
tenance activity ac that can be triggered between passes of
the same job oik and oi(k+1) should fit in the available time
between them, i.e.,

Pc ≤ D(oik , oi(k+1))− Pik − S(oik , oi(k+1)) ∀ oik , oi(k+1).

(6)

Theorem 1: Given an infeasible schedule, the schedule
repair strategy defined in Algorithm 3 is always able to return
it to a state of feasibility in at most |J | iterations, where |J | is
the number of jobs in the schedule, provided that a solution
exists for the problem and the maintenance policy in use is
safe.

Proof: For an insertion of a maintenance activity ac

between operations oik and oi(k+1) to become infeasible due
to a due date violation, it means that oi(k+1) has been delayed
too long, i.e.,ωi(k+1)−ωik > D(oik , oi(k+1)). To avert this, the
maintenance activity must be able to fit in the slack between
both operations. Bearing in mind that other operations could
be placed between oik and oi(k+1), the slack 9(oik , oi(k+1))
left between oik and oi(k+1) is

9(oik , oi(k+1))

= D(oik , oi(k+1))− Pik
−max((S(oik , oa)+ Pa + . . .+ S(oa, ob)+ Pb),

S(oik , oi(k+1))), (7)

where operations oa, . . . , ob represent operations possibly
placed between oik and oi(k+1). Figure 4 shows an example

where the slack between operations o22 and o23 is

9(o22, o23) = D(o22, o23)− P22 −max(S(o22, o13)− P13
−S(o13, o23), S(o22, o23)). (8)

The repair algorithm progressively brings operations closer
to their direct predecessors by at least one step per iteration.
In the last possible iteration of the schedule repair, each
operation oi(k+1) follows its direct predecessor oik . It follows
that this occurs in at most |J | iterations of the schedule
repair as the re-entrant machine can only have |J | higher
pass operations to be re-ordered. At this point, Equation (7)
becomes

9(oik , oi(k+1)) = D(oik , oi(k+1))−Pik −S(oik , oi(k+1)). (9)

For this to be infeasible, it means that ac cannot fit
in 9(oik , oi(k+1)), i.e., Pc > D(oik , oi(k+1)) − Pik −
S(oik , oi(k+1)), which violates the rules of a safe maintenance
policy shown in Equation (6).

VII. EXPERIMENTAL RESULTS
This section evaluates the empirical performance of the three
solution approaches we propose. We apply the heuristic
approach as an add-on to three existing list schedulers in the
literature to evaluate the applicability of this approach to list-
scheduling. We compare our heuristics against the two exact
approaches (integer and constraint programming) to evaluate
their accuracy and scalability.

A. EXPERIMENTAL SETUP
All experiments are performed on a 16-core 1.9GHz AMD
machine runningUbuntu 20.04with 32GBRAM.Algorithms
are implemented in C++ and the MIP and CP models are
solved by CPLEX version 22.1 and CP Optimizer version
22.1, respectively. The exact approaches are all given a
30 minute timeout.

We generate benchmarks according to the types of jobs
typically presented in our industrial use case as described
in Table 1. We generate benchmarks with patterned arrivals
of job types such that jobs of a type appear in repeated
blocks, e.g., a set of 50 jobs can be made of 20 type 1
jobs followed by 10 type 2 jobs and then 20 type 3 jobs.
We randomise the length of the blocks and number of
times these blocks repeat to mimic arrival patterns of jobs
in practice. We generate 50 instances for each job size in
{5,10,50,100,150,200,300,500,1000}.

Our heuristic approach is implemented as an extension
to three schedulers from the literature – Bounded Heuristic
Constraint Scheduler (BHCS) [39], As Soon As Possi-
ble (ASAP) Scheduler, and Modified Nawaz-Enscore-Ham
(MNEH) Heuristic [43]. BHCS is a list scheduler developed
specifically for our use case, while the ASAP scheduler is
also a list scheduler that uses the same ordering requirements
as BHCS but places operations as soon as possible (ASAP).
MNEH is a modification of the popular NEH heuristic
[44], [45] that is suitable for re-entrancy. Maintenance-
incorporated versions of these schedulers are referred to as

VOLUME 11, 2023 103471

E.-A. Eigbe et al.: Sequence- and Time-Dependent Maintenance Scheduling in Twice Re-Entrant Flow Shops

TABLE 1. Properties of jobs in use case. All timings are in seconds and job travelling times are treated as setup times between operations of the same job.

FIGURE 5. Makespan improvement of maintenance-included versions over base versions. Instances where the solver timed out without providing any
solution are marked with *.

MIBHCS, MIASAP, and MINEH respectively where the MI
prefix refers to ‘‘maintenance incorporated’’. In each of these
experiments, we tune the heuristic approach to include a
maintenance activity if a deterioration threshold is crossed
or if 90%4 of the upper bound of a threshold that affects the
quality of an operation further down the line is crossed. Since
we insert maintenance between two operations, we always
have complete information about the next operation. We can
also reliably infer what operations are further down the line
for the entire planning window based on which operations
have already been scheduled.

4This value can be tuned. We chose 90% after performing a parameter
sweep that showed this value performed best.

In the basic schedulers – BHCS, ASAP, and MNEH –
maintenance is reactive and interrupts the schedule during
production runs. We simulate the behaviour of reactive main-
tenance in these schedulers by evaluating the completed
schedules they produce for maintenance and compare these
with versions of the scheduler that incorporate our proactive
maintenance heuristic.

B. PERFORMANCE EVALUATION
Figure 5 compares the makespan of the schedules produced
by MIBHCS, MIASAP, and MINEH to the makespan of
schedules produced by BHCS, ASAP, and MNEH respec-
tively. We also compare the exact solutions CP and MIP
with the best solutions provided by MIBHCS, MIASAP, and

103472 VOLUME 11, 2023

E.-A. Eigbe et al.: Sequence- and Time-Dependent Maintenance Scheduling in Twice Re-Entrant Flow Shops

FIGURE 6. Duration of maintenance activities. Instances where the solver timed out without providing any solution are marked with *.

MINEH. MNEH has the least performance improvement due
to it not being a pure list scheduler.WithMNEH, only relative
positions of operations are decided in each iteration and there
is no partial sequence that is guaranteed to remain the same
from one iteration to the next; as such the evaluation of the
deterioration of a machine loses some meaning from one
iteration to the next since sequences change at each itera-
tion. The exact approaches – CP and MIP – should ideally
always be better than all of the heuristic approaches but they
are sometimes worse because they do not always solve till
optimality within the time out.

Figure 6 shows the distribution of the time spent on main-
tenance. We see that with maintenance-included versions,
we spend up to 70% less time onmaintenance. This is because
considering deterioration allows us to perform maintenance
before machines deteriorate to a state where we have to pay
larger maintenance costs. The difference is also this signifi-
cant because there is up to one order of magnitude difference
between the durations of different maintenance activities for
this use case (see Table 1). This difference translates to shorter
makespans for the schedulers.

In both Figures 5 and 6, there are instances where the
heuristic approach worsens the results particularly for smaller
job sets. The instances that are worsened by the heuristic are a
result of (i) scenarios where the heuristic maintenance trigger
is too conservative and performs maintenance even though
the job set could be completed without it, and (ii) scenarios
where the list scheduler picks a sequence that triggers shorter
maintenance activities.

Neither of the exact solutions are able to scale to pro-
vide solutions for larger job sets within the 30 minute

time out – this accounts for the missing columns in
Figures 5 and 6. In Table 2 we show the performance of the
CP and MIP solutions. We see that the CP model is able
to solve more instances than the MIP model but for the
instances where the MIP model is able to provide solutions,
the optimality gap is smaller.

The runtime increases with the number of jobs as expected
and Table 3 shows the average runtime over the job size of the
different schedulers compared in this evaluation. The exact
approaches are given a 30 minute timeout and in bold are the
solutions with the worst run times for a job size. Instances
where no solution was provided by a method before time out
are left unfilled and are the worst for that job size. The heuris-
tic solutions are able to provide solutions in runtimes below
350ms for job sizes up to 500. Above that, the runtime grows
to 1800ms. The biggest time sink for the heuristic solutions
is how often the maintenance evaluation and consequently
schedule repair is triggered.5 This is based on the operation of
the base scheduler itself. MNEH evaluates whole sequences
while ASAP and BHCS evaluate partial sequences at every
decision point thus triggering maintenance evaluations more
often, leading to higher runtimes.

In summary, we find that the heuristic approach is scal-
able and can produce competitive results compared to exact
solvers even for small instance sizes. In general, we also
find that apart from improving the actual goal of reduced
makespan, integrated production and maintenance planning
can also reduce the total time spent on maintenance which
can result in reduced costs in some cases.

5Runtimes of ASAP, BHCS, and MNEH are similar.

VOLUME 11, 2023 103473

E.-A. Eigbe et al.: Sequence- and Time-Dependent Maintenance Scheduling in Twice Re-Entrant Flow Shops

TABLE 2. Performance of CP and MIP solutions.

TABLE 3. Average runtime of solution methods (s).

VIII. CONCLUSION
Efficient maintenance scheduling is important for sustained
productivity of industrial processes. This paper studied the
problem of sequence- and time-dependent maintenance and
presented three solution methods namely, mixed integer pro-
gramming, constraint programming and a heuristic solution.
As the problem ismotivated by an industrial use case, we have
evaluated all the methods on jobs in this case. We show that
list scheduling heuristics can be extended to include proactive
maintenance with significant performance gains over reactive
approaches.

This paper considers maintenance activities that are on the
same time scale as the jobs themselves. An interesting future
direction is to include longer-term maintenance planning in
the scope and to investigate the combined problem of pro-
duction and maintenance planning over multiple time scales.

Additionally, we solve the problem from a predictive
maintenance perspective, i.e., where maintenance actions are
carried out based on the health status of machines. How-
ever, this requires knowledge of how machines deteriorate
and this information is not always available. Many other
papers consider a preventive maintenance perspective where
the challenge is either scheduling around a set maintenance
schedule or determining what the maintenance schedule itself
should be. While we know that preventive maintenance runs
the risk of either maintaining machine too little or too often
compared to the needs-based approach of predictive mainte-
nance, and both preventive and predictive maintenance have
been shown to outperform reactive maintenance approaches,
it is still interesting to compare both approaches and deter-
mine what problem properties make it necessary to use one
or the other. This is because even when complete information
on the health status of machines is available, the gains made
by integrating them in the decision making process may not
necessarily be worth the increased runtime.

ACKNOWLEDGMENT
The authors thank Hadi Ara, Joost van Pinxten, and Joan
Marcè i Igual for their support.

REFERENCES
[1] J. Kang and C. G. Soares, ‘‘An opportunistic maintenance policy for

offshore wind farms,’’ Ocean Eng., vol. 216, Nov. 2020, Art. no. 108075.
[2] Z. Ren, A. S. Verma, Y. Li, J. J. E. Teuwen, and Z. Jiang, ‘‘Offshore wind

turbine operations and maintenance: A state-of-the-art review,’’ Renew.
Sustain. Energy Rev., vol. 144, Jul. 2021, Art. no. 110886.

[3] S. Chansombat, P. Pongcharoen, and C. Hicks, ‘‘A mixed-integer linear
programming model for integrated production and preventive maintenance
scheduling in the capital goods industry,’’ Int. J. Prod. Res., vol. 57, no. 1,
pp. 61–82, Jan. 2019.

[4] F. N. Avilés, R. M. Etchepare, M. M. Aguayo, and M. Valenzuela,
‘‘A mixed-integer programming model for an integrated production plan-
ning problem with preventive maintenance in the pulp and paper industry,’’
Eng. Optim., vol. 55, no. 8, pp. 1352–1369, Aug. 2023.

[5] H. Gharoun, M. Hamid, and S. A. Torabi, ‘‘An integrated approach to joint
production planning and reliability-based multi-level preventive main-
tenance scheduling optimisation for a deteriorating system considering
due-date satisfaction,’’ Int. J. Syst. Sci., Oper. Logistics, vol. 9, no. 4,
pp. 489–511, Oct. 2022.

[6] R. J. K. Netto, E. de Freitas Rocha Loures, E. A. P. Santos, and
C. F. dos Santos, ‘‘Joint industrial preventive maintenance and production
scheduling: A systematic literature review,’’ in Proc. Int. Conf. Flexible
Automat. Intell. Manuf. Cham, Switzerland: Springer, 2023, pp. 614–621.

[7] N. Zhang, K. Cai, Y. Deng, and J. Zhang, ‘‘Determining the optimal
production–maintenance policy of a parallel production system with
stochastically interacted yield and deterioration,’’ Rel. Eng. Syst. Saf.,
vol. 237, Sep. 2023, Art. no. 109342.

[8] A. Valet, T. Altenmüller, B. Waschneck, M. C. May, A. Kuhnle, and
G. Lanza, ‘‘Opportunistic maintenance scheduling with deep reinforce-
ment learning,’’ J. Manuf. Syst., vol. 64, pp. 518–534, Jul. 2022.

[9] S. Gawiejnowicz, ‘‘A review of four decades of time-dependent schedul-
ing: Main results, new topics, and open problems,’’ J. Scheduling, vol. 23,
no. 1, pp. 3–47, Feb. 2020.

[10] S.-J. Yang, ‘‘Single-machine scheduling problems with both start-time
dependent learning and position dependent aging effects under deterio-
rating maintenance consideration,’’ Appl. Math. Comput., vol. 217, no. 7,
pp. 3321–3329, Dec. 2010.

[11] W. Liu, X. Wang, L. Li, and P. Zhao, ‘‘A maintenance activity scheduling
with time-and-position dependent deteriorating effects,’’ Math. Biosci.
Eng., vol. 19, no. 11, pp. 11756–11767, 2022.

[12] B. Mor and G. Mosheiov, ‘‘Scheduling a maintenance activity and due-
window assignment based on common flow allowance,’’ Int. J. Prod.
Econ., vol. 135, no. 1, pp. 222–230, Jan. 2012.

[13] E.-A. Eigbe, B. De Schutter, M. Nasri, and N. Yorke-Smith, ‘‘Predictive
maintenance scheduling in twice re-entrant flow shops with relative due
dates,’’ in Proc. 15th Workshop Scheduling Planning Appl. (SPARK) 32nd
Int. Conf. Automated Planning Scheduling (ICAPS), 2022.

[14] Y.-C. Su, F.-T. Cheng, M.-H. Hung, and H.-C. Huang, ‘‘Intelligent
prognostics system design and implementation,’’ IEEE Trans. Semicond.
Manuf., vol. 19, no. 2, pp. 195–207, May 2006.

[15] G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi, ‘‘Machine
learning for predictive maintenance: Amultiple classifier approach,’’ IEEE
Trans. Ind. Informat., vol. 11, no. 3, pp. 812–820, Jun. 2015.

[16] M. Delorme,M. Iori, and N. F.M.Mendes, ‘‘Solutionmethods for schedul-
ing problems with sequence-dependent deterioration and maintenance
events,’’ Eur. J. Oper. Res., vol. 295, no. 3, pp. 823–837, Dec. 2021.

103474 VOLUME 11, 2023

E.-A. Eigbe et al.: Sequence- and Time-Dependent Maintenance Scheduling in Twice Re-Entrant Flow Shops

[17] S.-J. Yang, ‘‘Parallel machines scheduling with simultaneous consid-
erations of position-dependent deterioration effects and maintenance
activities,’’ J. Chin. Inst. Ind. Eng., vol. 28, no. 4, pp. 270–280, Jun. 2011.

[18] L. Jin, X. Yu, and Z. Dong, ‘‘Single-machine scheduling with piece-rate
maintenance, interval constrained processing times and rejection penal-
ties,’’ in Proc. 3rd Joint Int. Inf. Technol. Mech. Electron. Eng. Conf.
(JIMEC), 2018, pp. 32–37.

[19] H. Zhu, M. Li, Z. Zhou, and Y. You, ‘‘Due-window assignment and
scheduling with general position-dependent processing times involving a
deteriorating and compressible maintenance activity,’’ Int. J. Prod. Res.,
vol. 54, no. 12, pp. 3475–3490, Jun. 2016.

[20] A. J. Ruiz-Torres, G. Paletta, and E. Pérez, ‘‘Parallel machine scheduling
to minimize the makespan with sequence dependent deteriorating effects,’’
Comput. Oper. Res., vol. 40, no. 8, pp. 2051–2061, Aug. 2013.

[21] A. J. Ruiz-Torres, G. Paletta, and R. M’Hallah, ‘‘Makespan minimisation
with sequence-dependent machine deterioration and maintenance events,’’
Int. J. Prod. Res., vol. 55, no. 2, pp. 462–479, Jan. 2017.

[22] V. L. A. Santos and J. E. C. Arroyo, ‘‘Iterated greedy with random vari-
able neighborhood descent for scheduling jobs on parallel machines with
deterioration effect,’’ Electron. Notes Discrete Math., vol. 58, pp. 55–62,
Apr. 2017.

[23] J. Ding, L. Shen, Z. Lü, and B. Peng, ‘‘Parallel machine scheduling with
completion-time-based criteria and sequence-dependent deterioration,’’
Comput. Oper. Res., vol. 103, pp. 35–45, Mar. 2019.

[24] A. S. Xanthopoulos, A. Kiatipis, D. E. Koulouriotis, and S. Stieger, ‘‘Rein-
forcement learning-based and parametric production-maintenance control
policies for a deteriorating manufacturing system,’’ IEEE Access, vol. 6,
pp. 576–588, 2018.

[25] Y. Wang, E. Elahi, and L. Xu, ‘‘Selective maintenance optimization
modelling for multi-state deterioration systems considering imperfect
maintenance,’’ IEEE Access, vol. 7, pp. 62759–62768, 2019.

[26] R. J. Abumaizar and J. A. Svestka, ‘‘Rescheduling job shops under random
disruptions,’’ Int. J. Prod. Res., vol. 35, no. 7, pp. 2065–2082, Jul. 1997.

[27] E. Kutanoglu and I. Sabuncuoglu, ‘‘Routing-based reactive scheduling
policies for machine failures in dynamic job shops,’’ Int. J. Prod. Res.,
vol. 39, no. 14, pp. 3141–3158, Jan. 2001.

[28] W. T. Chan and T. H. Wee, ‘‘A multi-heuristic GA for schedule repair in
precast plant production,’’ in Proc. 13th Int. Conf. Automated Planning
Scheduling (ICAPS), 2003, pp. 236–245.

[29] A. Allahverdi, ‘‘Two-machine proportionate flowshop scheduling with
breakdowns to minimize maximum lateness,’’ Comput. Oper. Res., vol. 23,
no. 10, pp. 909–916, Oct. 1996.

[30] P. Caricato and A. Grieco, ‘‘An online approach to dynamic rescheduling
for production planning applications,’’ Int. J. Prod. Res., vol. 46, no. 16,
pp. 4597–4617, Aug. 2008.

[31] K. Katragjini, E. Vallada, and R. Ruiz, ‘‘Rescheduling flowshops under
simultaneous disruptions,’’ in Proc. Int. Conf. Ind. Eng. Syst. Manage.
(IESM), Oct. 2015, pp. 84–91.

[32] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan, ‘‘Opti-
mization and approximation in deterministic sequencing and scheduling:
A survey,’’ Ann. Math., vol. 5, pp. 287–326, Jan. 1979.

[33] M.Y.Wang, S. P. Sethi, and S. L. van deVelde, ‘‘Minimizingmakespan in a
class of reentrant shops,’’Oper. Res., vol. 45, no. 5, pp. 702–712, Oct. 1997.

[34] H. Emmons, G. Vairaktarakis, H. Emmons, and G. Vairaktarakis, ‘‘Reen-
trant flow shops,’’ Flow Shop Scheduling: Theoretical Results, Algorithms,
and Applications, 2013, pp. 269–289.

[35] F. Hnaien, F. Yalaoui, A. Mhadhbi, and M. Nourelfath, ‘‘A mixed-integer
programming model for integrated production and maintenance,’’ IFAC-
PapersOnLine, vol. 49, no. 12, pp. 556–561, 2016.

[36] H. P. Williams,Model Building in Mathematical Programming. Hoboken,
NJ, USA: Wiley, 2013.

[37] P. Laborie, J. Rogerie, P. Shaw, and P. Vilím, ‘‘IBM ILOG CP optimizer
for scheduling: 20+ years of scheduling with constraints at IBM/ILOG,’’
Constraints, vol. 23, no. 2, pp. 210–250, Apr. 2018.

[38] U. Waqas, M. Geilen, J. Kandelaars, L. Somers, T. Basten, S. Stuijk,
P. Vestjens, and H. Corporaal, ‘‘A re-entrant flowshop heuristic for online
scheduling of the paper path in a large scale printer,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2015, pp. 573–578.

[39] J. V. Pinxten, U. Waqas, M. Geilen, T. Basten, and L. Somers, ‘‘Online
scheduling of 2-Re-entrant flexible manufacturing systems,’’ ACM Trans.
Embedded Comput. Syst., vol. 16, no. 5s, pp. 1–20, Oct. 2017.

[40] R. van der Tempel, J. van Pinxten, M. Geilen, and U. Waqas, ‘‘A heuristic
for variable re-entrant scheduling problems,’’ in Proc. 21st Euromicro
Conf. Digit. Syst. Design (DSD), Aug. 2018, pp. 336–341.

[41] G. E. Vieira, J. W. Herrmann, and E. Lin, ‘‘Rescheduling manufacturing
systems: A framework of strategies, policies, and methods,’’ J. Sched.,
vol. 6, no. 1, pp. 39–62, 2003.

[42] D. Ouelhadj and S. Petrovic, ‘‘A survey of dynamic scheduling in manu-
facturing systems,’’ J. Scheduling, vol. 12, no. 4, pp. 417–431, Aug. 2009.

[43] B. Jeong and Y.-D. Kim, ‘‘Minimizing total tardiness in a two-machine re-
entrant flowshop with sequence-dependent setup times,’’ Comput. Oper.
Res., vol. 47, pp. 72–80, Jul. 2014.

[44] M. Nawaz, E. E. Enscore, and I. Ham, ‘‘A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem,’’ Omega, vol. 11, no. 1,
pp. 91–95, Jan. 1983.

[45] W. Liu, Y. Jin, and M. Price, ‘‘A new improved NEH heuristic for per-
mutation flowshop scheduling problems,’’ Int. J. Prod. Econ., vol. 193,
pp. 21–30, Nov. 2017.

EGHONGHON-AYE EIGBE received the M.Sc.
degree (cum laude) in embedded systems from
the Delft University of Technology, where she
is currently pursuing the Ph.D. degree with the
Software Technology Department. Her current
research interests include robust scheduling, main-
tenance planning, and the intersection of machine
learning and optimization.

BART DE SCHUTTER (Fellow, IEEE) received
the Ph.D. degree (summa cum laude) in applied
sciences from KU Leuven, Belgium, in 1996.
He is currently a Full Professor and the Head
of department with the Delft Center for Sys-
tems and Control, Delft University of Technology,
The Netherlands. His current research interests
include multi-level and multi-agent control, model
predictive control, learning-based control, and
control of hybrid systems, with applications in

intelligent transportation systems and smart energy systems. He is a Senior
Editor of the IEEE TRANSACTIONSON INTELLIGENT TRANSPORTATION SYSTEMS and
an Associate Editor of the IEEE TRANSACTIONS ON AUTOMATIC CONTROL.

MITRA NASRI (Member, IEEE) received the
B.Sc. and M.Sc. degrees in computer engineer-
ing (software systems) from the Iran University
of Science and Technology, Iran, in 2005 and
2008, respectively, and the Ph.D. degree from
the University of Tehran, Tehran, Iran, in 2015.
She is currently an Assistant Professor with
the Eindhoven University of Technology (TU/e),
Eindhoven, The Netherlands. Before joining TU/e,
she was an Assistant Professor with the Delft Uni-

versity of Technology (TUDelft). Her current research interests include
modeling, designing, and verifying real-time systems. She has been an ACM
Member, since 2018. Since 2022, she has been an Executive Member of the
IEEE Technical Committee on Real-Time Systems (TCRTS) which steers
RTSS, RTAS, and ICCPS conferences, and the IEEE Benelux Chapter on
Communication and Vehicular Technology (COM/VT).

NEIL YORKE-SMITH received the Ph.D. degree
in artificial intelligence from Imperial College
London, in 2004. He is currently an Associate
Professor with the Delft University of Technol-
ogy, The Netherlands, where he directs the STAR
Laboratory. His current research interests include
data-driven optimization, reinforcement learning,
agent-basedmodeling, and social simulation. He is
a Senior Member of AAAI and ACM.

VOLUME 11, 2023 103475

