ARTICLE IN PRESS

European Journal of Control xxx (xxxx) xxx

ELSEVIER

Contents lists available at ScienceDirect

European Journal of Control

journal homepage: www.sciencedirect.com/journal/european-journal-of-control

Model predictive building climate control for mitigating heat pump noise pollution

Yun Li ^{a,*}, Jicheng Shi ^b, Colin N. Jones ^b, Neil Yorke-Smith ^c, Tamas Keviczky ^a

- ^a Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
- ^b Automatic Control Laboratory, EPFL, Lausanne, Switzerland
- c STAR Lab, Delft University of Technology, Delft, The Netherlands

ARTICLE INFO

Recommended by T. Parisini

Keywords:
Heat pump noise pollution
Noise mitigation
Building climate control
Model predictive control

ABSTRACT

Noise pollution from heat pumps (HPs) has been an emerging concern to their broader adoption, especially in densely populated areas. This paper explores a model predictive control (MPC) approach for climate control of buildings, aimed at minimizing the noise nuisance generated by HPs. By exploiting a piecewise linear approximation of HP noise patterns and assuming linear building thermal dynamics, the proposed design can be generalized to handle various HP acoustic patterns with mixed-integer linear programming (MILP). Additionally, two computationally efficient options for defining the noise cost function in the proposed MPC design are discussed. Numerical experiments on a high-fidelity building simulator are performed to demonstrate the viability and effectiveness of the proposed design. Simulation results show that minimizing the excess of HP noise over ambient noise is effective in mitigating the HP noise nuisance. Further, compared with the conventional MPC-based building climate control scheme, the proposed approach can effectively reduce the HP noise pollution with only a minor energy cost increase.

1. Introduction

As an energy-efficient heating/cooling device, heat pumps (HPs) have gained widespread adoption across Europe, driven by the goal of reducing fossil fuel usage and carbon emissions. Currently, approximately 24 million HPs are installed in European buildings, and this number is expected to reach 60 million by 2030 (European Heat Pump Association (EHPA), 2024). This growing adoption of HPs to move away from fossil fuels could reduce Europe's gas demand for heating by at least 21 billion cubic meters in 2030, and potentially cut CO2 emissions by 46% (Ambrose, 2024; European Commission, 2023). However, despite the benefits of flexible and efficient renewable heating and carbon reduction, a new concern about HPs has been raised: noise.

Noise can induce stress and impact both psychological and physiological well-being. Noise generated by HPs, particularly air source heat pumps (ASHPs) commonly installed in residential areas, has emerged as a primary concern hindering their broader acceptance in these settings (Langerova et al., 2025; Torjussen, 2020). Consequently, HP installation and operation must account for acoustic impacts on the surrounding environment, especially in residential zones where noise levels are subject to legislative noise directives. For example, in the UK, the noise pressure level must be below 42 dB at a distance of one meter

from a neighbor's door or window (Ambrose, 2024; Torjussen, 2020). Similar regulations also apply in other countries as outlined in European Heat Pump Association (EHPA) (2020). Addressing HP noise pollution is thus essential for maintaining acoustic health and fostering the acceptance of HPs, which can further support carbon emissions reduction. Recent initiatives, such as IEA HPT Annex 51 and Annex 63 underscore the growing attention on HP noise concerns (Reichl, 2022, 2023).

Various solutions for reducing HP noise have been explored, including adding sound-absorbing materials or insulation enclosures, using flexible mountings to dampen vibrations, and implementing active noise cancellation techniques (Langerova et al., 2025; Thielecke et al., 2023; Wagner et al., 2020). While these measures can reduce HP noise, they often require intrusive modifications, making it costly or even impractical to retrofit existing HPs for improved acoustic performance.

With advancements in smart metering, computing technology, and building management systems, an alternative approach to reducing HP noise without invasive modifications is to design optimal HP control strategies. The primary noise sources of air source heat pumps are the compressors and, especially, the fans in the outside units of HPs, which significantly contribute to ambient noise (Langerova et al., 2025;

E-mail addresses: y.li-39@tudelft.nl (Y. Li), jicheng.shi@epfl.ch (J. Shi), colin.jones@epfl.ch (C.N. Jones), n.yorke-smith@tudelft.nl (N. Yorke-Smith), T.Keviczky@tudelft.nl (T. Keviczky).

https://doi.org/10.1016/j.ejcon.2025.101323

Received 9 June 2025; Accepted 9 July 2025

Available online 29 July 2025

0947-3580/© 2025 The Authors. Published by Elsevier Ltd on behalf of European Control Association. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

 $^{^{}st}$ Corresponding author.

European Journal of Control xxx (xxxx) xxx

Y. Li et al.

Torjussen et al., 2019). Modern inverter HPs allow for modulation of compressor and fan speeds, enabling noise level adjustments based on thermal output requirements. Thus, it is possible to adjust the HP power inputs to mitigate noise while maintaining comfortable indoor thermal climate

Model predictive control (MPC) has shown promise as an advanced control strategy for HP and building climate control, owing to its flexibility in handling system constraints, economic considerations, and predicted weather conditions (Drgoňa et al., 2020; Oldewurtel et al., 2012). The effectiveness of the MPC-based heat pump and building climate control in improving system performance, such as reducing economic cost, increasing indoor comfort, and engaging demand-side management, has been experimentally demonstrated in existing works, see Shi et al. (2025), Tang et al. (2024) and references therein.

Motivated by the above discussion, this paper investigates an MPC design to mitigate HP noise within the context of building climate control. To the best of our knowledge, this is the first study to address the noise nuisance from HP operation in building sectors by designing optimal building climate control schemes. The main contributions of this paper are summarized as:

- The reduction of HP noise pollution is investigated for the first time in optimal building climate control. A general MPC formulation that considers both HP noise pollution reduction and energy cost savings is proposed.
- Leveraging piecewise linear approximation, the proposed design is adaptable to various HP noise patterns through a mixed-integer linear programming (MILP) formulation. Two options for the noise cost function in the MPC design are discussed.
- Numerical experiments using a high-fidelity building simulator are performed to demonstrate the viability and effectiveness of the proposed approach.

The remaining parts of this paper are organized as follows. Section 2 presents the problem setting about building thermal dynamics, HP noise patterns, and our design objective. Section 3 delves into the details of the proposed MPC design. The viability and effectiveness of the proposed approach are numerically tested in Section 4. Finally, Section 5 concludes this paper.

2. Problem setting

This work aims to mitigate the noise pollution caused by the operation of HPs while maintaining indoor thermal comfort by redesigning indoor climate control strategies. In the following, we will illustrate our problem setting about indoor thermal dynamics, heat pump noise and ambient noise, as well as the control design objective.

2.1. Building thermal dynamics

Without loss of generality, the indoor thermal dynamics are assumed to be approximately modeled as the following linear system

$$y_{t+1} = Ay_{t,k_v} + Bu_{t,k_u} + Ev_{t,k_v}$$
 (1)

where $y_{t+1} \in \mathbb{R}^n$ is the predicted indoor temperature vector at time instant t+1, $\mathbf{y}_{t,k_y} \in \mathbb{R}^{nk_y}$ is the stacked historical indoor temperature measurements during time period $[t-k_y+1,t]$, which is defined as $\mathbf{y}_{t,k_y} := [y_t^T, y_{t-1}^T, \dots, y_{t-k_y+1}^T]^T$; similarly, $\mathbf{u}_{t,k_u} \in \mathbb{R}^{mk_u}$ and $\mathbf{v}_{t,k_v} \in \mathbb{R}^{pk_v}$ are the stacked HP power input and ambient climate conditions during time intervals $[t-k_u+1,t]$ and $[t-k_v+1,t]$, respectively; A,B and E are system matrices describing the evolution of indoor temperature at time instant t+1 driven by past indoor temperature, HP control input and ambient climate conditions. The above linear model encompasses a wide range of the prediction models for indoor thermal dynamics developed by black-box approaches, e.g., Auto Regressive with eXogeneous inputs (ARX), and gray-box approaches, e.g., RC-network (Bacher & Madsen, 2011; Drgoňa et al., 2020; Wang & Chen, 2019).

2.2. Heat pump and ambient noises

For HP noise concerns, our primary focus is on the noise generated by the fan in the outside unit. In residential settings, HP fan noise generally ranges from 40–60 decibels, and is typically the main source of HP noise disturbance for nearby residents. As shown in Langerova et al. (2025) and Stignor et al. (2024), the noise generated by HPs is a nonlinear and nonconvex function of the HP power, and roughly follows a logarithm-like or sigmoid-like function. However, due to the lack of definitive studies showing that all ASHPs adhere to such a noise pattern, we impose no explicit assumption about the relationship between the HP noise level and power consumption.

In our control scheme design, we only assume the existence of a general noise pattern as defined in (2), which can be derived through theoretical analysis or experimental data:

$$L^{\text{hp}} = f(u) \tag{2}$$

where $L^{\rm hp}$ is the HP noise level in decibels, u is the HP power input, and $f(\cdot)$ is a function representing the HP noise pattern. The implicit assumption behind the above analysis is that the noise generated by HPs varies with their electrical power consumption, i.e., thermal output, and follows a certain predictable pattern. This assumption requires that the considered HPs should be inverter HPs, whose fan speed can be modulated and power input is adjustable, since the fan speed and power input for ON/OFF controlled HPs are generally fixed to certain nominal values and cannot be modulated to adjust the corresponding noise level.

When defining the acoustic nuisance caused by a HP, another factor that should be considered is ambient noise (background noise), which might be caused by traffic noise, alarms, extraneous speech, animal noise, and more. In this work, we impose no specific pattern for ambient noise, assuming only that the predicted ambient noise levels are accessible. This is a practical assumption, and there are many works available that focus on developing ambient noise prediction algorithms, see Renaud et al. (2023), Zhang et al. (2020) and references therein. Thus, without loss of generality, in our upcoming MPC design, we assume that the predicted ambient noise level $L^{\rm amb}$ within the MPC prediction horizon is available.

2.3. Control design objective

The main control objective is to mitigate the acoustic nuisance caused by HP operation in the surrounding environment. It should be noted that reducing the acoustic nuisance of HPs does not equate to minimizing absolute HP noise, which would typically mean shutting down HPs. Instead, it involves reducing the relative impact of HP noise compared to ambient noise levels. Through appropriate HP control, the combined noise from the HP and its surroundings should be dominated by the ambient noise, effectively concealing HP noise within it and thereby mitigating acoustic pollution. In addition to reducing noise pollution, the control objective should also consider indoor comfort and energy costs.

For simplicity in MPC design, our approach does not account for the spectral characteristics of noise signals. Future studies incorporating human factors determining the human-perceived noise nuisance associated with different noise frequencies are warranted.

3. Model predictive control design

This section develops an MPC design framework for mitigating HP noise nuisance within the context of building climate control. Specifically, it will be shown how to design computationally tractable formulations to cope with various HP noise patterns with MILP formulations. Besides, several options for defining the noise cost function in MPC will be discussed.

3.1. MPC formulation

In this subsection, a general MPC problem is formulated to adaptively reduce the effect of HP noise on the environment. An MPC problem achieving our design objective can be formulated as follows

$$\min_{u_t} \underbrace{\sum_{t=0}^{N} l(u_t, y_t) + \eta}_{J_o} \underbrace{\sum_{t=0}^{N} h(L_t^{\text{hp}}, L_t^{\text{amb}})}_{J_n}$$
(3a)

s.t.
$$y_{t+1} = A\mathbf{y}_{t,k_v} + B\mathbf{u}_{t,k_u} + E\mathbf{v}_{t,k_v},$$
 (3b)

$$L_t^{\text{hp}} = f(u_t), \tag{3c}$$

$$y_t \in \mathcal{Y} \text{ and } u_t \in \mathcal{U}, \ \forall t \in \{0, \dots, N\},$$
 (3d)

where N is the length of prediction horizon, J_o is total operational cost with $l(u_t, y_t)$ as the stage cost at sampling instant t, J_n is the total noise cost within the prediction horizon with $h(L_t^{\text{hp}}, L_t^{\text{amb}})$ as the stage noise cost defined based on HP noise L_t^{hp} and ambient noise L_t^{amb} , $\eta \geq 0$ is a user-defined weighting factor for balancing the operational cost and noise nuisance, constraint (3b) is the building thermal dynamics defined in (1), constraint (3c) defines the noise pattern of the HP in (2), \mathcal{Y} and \mathcal{U} in (3d) are admissible regions of indoor temperature and heat pump power input. This optimization problem defines a general control task to minimize the weighted sum of HP operational cost and HP noise cost while ensuring indoor comfort constraints and HP input constraints. Within the context of the building climate control, the operational cost function J_o is generally defined as the energy cost during the prediction horizon, which is formulated as a linear (convex) function of HP power consumption and will not influence the computational tractability of the proposed scheme, see Oldewurtel et al. (2012). Besides, the formulation of hard constraints for indoor comfort requirements (3d) can be relaxed as soft constraints by introducing slack variables to ensure the feasibility of the MPC problem in practical implementation.

Remark 1. It should be highlighted that the design objective is to mitigate the HP noise nuisance w.r.t. the environment noise. Consequently, the definition of the noise cost function J_n in (3a) should reflect the relative noise nuisance of the HP, rather than its absolute value. For example, intuitively, when the ambient environment is noisy, the HP can operate with louder noise, possibly to achieve higher energy efficiency or lower energy bills, without incurring a high acoustic nuisance. Similarly, when the ambient environment is quiet, even a moderate noise level of HP can lead to more nuisance because the HP noise plays a dominating role in the total noise.

3.2. Piecewise affine approximation of HP noise pattern

Assuming a general HP noise pattern, this subsection presents a piecewise linear approximation of the HP noise pattern and develops a computationally tractable formulation.

As explained in Section 2.B, since the specific noise pattern might vary depending on the individual HP system, we make no explicit assumption about the HP noise pattern, and aim at developing methods that are adaptable to a broader range of HP noise patterns for enhancing the applicability of the proposed approach.

In this work, piecewise affine functions are utilized to approximate the HP noise pattern, which might be nonlinear and nonconvex. Fig. 1 shows an example of using three pieces of affine functions to approximate a sigmoid-like noise pattern. To provide a general approximation scheme, we assume that affine functions comprising k pieces are used in HP noise approximation. The admissible scope of HP control input is partitioned into k intervals that are defined by $\alpha = [\alpha_0, \ldots, \alpha_k]^{\rm T}$ with $[\alpha_i, \alpha_{i+1}]$ $(i=0,\ldots,k-1)$ representing one interval, where the HP noise pattern is approximated via a piecewise affine function.

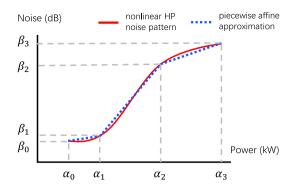


Fig. 1. Nonlinear heat pump noise pattern and its piecewise affine approximation.

Correspondingly, the vector $\beta:=[\beta_0,\ldots,\beta_k]$ is defined with β_i as the HP noise level when its power input $u=\alpha_i$. Then, for any HP power input $u\in[\alpha_i,\alpha_{i+1}]$, there exist real-valued parameters λ_i and λ_{i+1} such that

$$u = \lambda_i \alpha_i + \lambda_{i+1} \alpha_{i+1} \tag{4}$$

with $0 \le \lambda_i \le 1$ and $\lambda_i + \lambda_{i+1} = 1$. Correspondingly, the value of the approximated HP noise level $\hat{L}^{\rm hp}$ is

$$\hat{L}^{\text{hp}} = \lambda_i \beta_i + \lambda_{i+1} \beta_{i+1} \tag{5}$$

To denote the approximated noise pattern within the whole admissible input range $[\alpha_0,\alpha_k]$, binary variables $z_i\in\{0,1\}$ $(i=1,\ldots,k)$ are introduced with $z_i=1$ indicating $u\in[\alpha_{i-1},\alpha_i]$. Finally, the piecewise-affine approximated HP noise pattern can be expressed as the following mixed-integer linear constraints

$$u = \sum_{i=0}^{k} \lambda_i \alpha_i, \tag{6a}$$

$$\hat{L}^{\text{hp}} = \sum_{i=0}^{k} \lambda_i \beta_i, \tag{6b}$$

$$\lambda_{i-1} + \lambda_i \le z_i, \ \forall i \in \{1, \dots, k\}$$
 (6c)

$$\lambda_i \ge 0, \forall i \in \{1, \dots, k\} \tag{6d}$$

$$\sum_{i=1}^{k} z_i = 1, \ z_i \in \{0, 1\}.$$
 (6e)

The above mixed-integer linear constraints can replace the HP noise pattern constraint in (3c), which might be nonlinear and nonconvex, and enable a universal approximation for various HP noise patterns. It should be noted that approximation accuracy is determined by the number of affine functions utilized in (6). Adopting more affine functions leads to a more accurate approximation, but will also introduce more constraints and decision variables in (6). Consequently, the number of affine functions k considered in (6) should balance the approximation accuracy of HP noise pattern and the corresponding computational overhead.

3.3. Noise cost function design

This subsection presents several possible options for defining the noise cost function J_n in (3). Recall that our control objective is to mitigate the relative acoustic nuisance in comparison to ambient noise, rather than minimizing the absolute HP noise level, so that the HP noise is hidden in the ambient noise. Accordingly, the design of the noise cost J_n should emphasize relative noise mitigation.

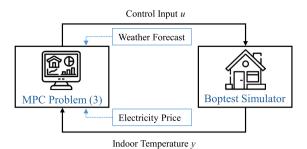


Fig. 2. Diagram of closed-loop simulation with Boptest simulator.

3.3.1. Option 1

The first option of the noise cost is defined as

$$J_n := \sum_{t=0}^{N} L_t^{\text{hp}} / L_t^{\text{amb}} \tag{7}$$

The above cost function penalizes HP noise according to the ambient noise level. Higher ambient noise imposes less penalty on HP noise. Consequently, this cost function incentivizes HP to work at a higher load when the ambient environment is noisy and at a lower load in quieter settings.

3.3.2. Option 2

While the cost function defined in (7) is straightforward and easy to implement, it fails to impose direct regulation on the mixed noise and may not prevent HP noise from dominating the ambient noise. According to the acoustic properties of combined sounds, the sound level of the mixed noise from HP and ambient sources can be calculated as

$$L^{\text{mix}} = 10 \cdot \log_{10} \left(10^{\frac{L^{\text{amb}}}{10}} + 10^{\frac{L^{\text{hp}}}{10}} \right)$$
 (8)

The above nonlinear function can be used to impose direct constraints on the mixed noise. However, it introduces nonlinear constraints, which might be computationally challenging for certain numerical solvers.

The definition of the mixed noise level in (8) suggests that when the ambient noise level exceeds the HP noise, the mixed noise level will be primarily dominated by the ambient noise, due to the power function applied to each noise level. Thus, an alternative approach is to penalize instances when the HP noise exceeds the ambient noise, resulting in the following noise cost function definition

$$J_n := \sum_{t=0}^{N} \delta_t, \quad L_t^{\text{hp}} \le L_t^{\text{amb}} + \delta_t \tag{9}$$

with $\delta_t \geq 0$. The above cost function is equivalent to the nonlinear noise cost function $J_n := \sum_{t=0}^N (L_t^{\rm hp} - L_t^{\rm amb})^+$, where x^+ is defined as $x^+ = x$ if $x \geq 0$ and otherwise $x^+ = 0$. This cost function incentivizes that HP noise does not exceed ambient noise, allowing the mixed noise to be predominantly influenced by ambient sounds, thereby masking HP noise within the background noise.

Remark 2. It is worth noting that the mixed-integer linear formulations in (6) and (9) are designed to enhance the applicability and computational feasibility of our approaches for a variety of HP noise patterns and for compatibility with most numerical solvers. However, if the available solvers are capable of handling the specific, possibly nonlinear and nonconvex, HP noise pattern in (2) and the mixed noise pressure level definition in (8), this nonlinear relationship could be directly incorporated into (3), potentially improving control performance.

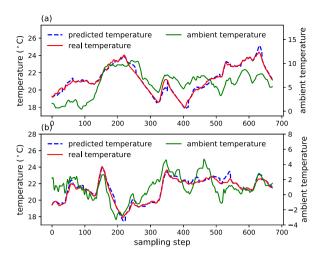


Fig. 3. Open-loop prediction performance of ARX model: (a) training set (MAE = 0.16 °C), (b) test set (MAE = 0.19 °C).

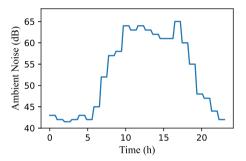


Fig. 4. Ambient noise profile used in simulation.

4. Simulation results

This section presents numerical simulation results to demonstrate the viability and effectiveness of our proposed design framework. The building model bestest_hydronic_heat_pump in the building control test platform boptest (Blum et al., 2021) is utilized as a highfidelity simulator to test our design. The considered building model is a residential building with a rectangular floor plan 12m×16m, a height of 2.7 m, and an air-to-water HP of 15 kW nominal heating capacity for floor heating. See Blum et al. (2021) for more details about this building control test platform. The diagram of our simulation is shown in Fig. 2. At each sampling instant, the HP control input signal u_t is computed by solving (3). With the computed HP control input, the building simulator updates its internal states and returns the updated indoor temperature y_{t+1} . All simulations are performed on an Intel Xeon W-2223 CPU at 3.60 GHz with 16G RAM. MPC problems are modeled via the Python package gurobipy and solved using Gurobi 11.0 (Gurobi Optimization, LLC, 2024).

4.1. Prediction model of building thermal dynamics

In our simulation, the sampling period is selected as 15 minutes for both prediction model development and MPC design. An ARX model is identified using randomly generated open-loop control signals to approximate the thermal dynamics of the building. Notably, the control signals are forced to be off (on) when the building is overheated (overcooled). The boptest simulator utilized in our simulation also involves the internal thermal gains from 5 occupants, but they are not forecast and therefore neglected in our ARX model. The ARX model has

Y. Li et al.

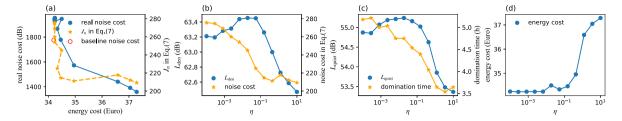


Fig. 5. Simulation results for noise cost in (7): (a) Pareto curves of energy cost and noise cost, (b) L_{den} , (c) L_{quiet} and domination time, (d) energy cost.

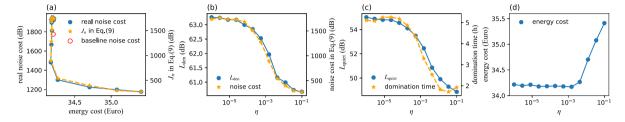


Fig. 6. Simulation results for noise cost in (9): (a) Pareto curves of energy cost and noise cost, (b) $L_{\rm den}$, (c) $L_{\rm quiet}$ and domination time, (d) energy cost.

the following structure

$$y_{t} = \sum_{k=1}^{n_{a}} a_{k} y_{t-k} + \sum_{k=1}^{n_{b}} b_{k} u_{t-k} + \sum_{k=1}^{n_{c}} c_{k} T_{t-k} + \sum_{k=1}^{n_{d}} d_{k} S_{t-k}$$

where y_t is the indoor temperature at time instant t, T_t denotes the ambient temperature, S_t denotes the solar irradiation. The prediction horizon is set as 8 hours. In our model the parameters (n_a, n_b, n_c, n_d) are set as (4, 1, 2, 2). The parameters (a_k, b_k, c_k, d_k) are identified by minimizing the sum of the squares of the indoor temperature prediction error via scipy.optimize.least_squares (Jones et al., 2001). For training and testing the ARX model, two independent 7-day of datasets (16th Jan-22nd Jan, 24th Jan-30th Jan) are utilized, i.e., 7*24*4 = 672 data points, in both training and test datasets.

Fig. 3 depicts the real indoor temperature profiles and their open-loop predicted values using the ARX model for both the training and test datasets. The mean absolute errors (MAEs) for both training and test sets are 0.16 $^{\circ}\text{C}$ and 0.19 $^{\circ}\text{C}$, respectively, which implies that the ARX model provides satisfactory prediction performance for subsequent MPC design.

4.2. MPC for noise mitigation

For design simplicity, the admissible range of HP power input is scaled to such that $u_t \in [0,1]$. The indoor comfort constraint is set as $19^{\circ}\text{C} \leq y_t \leq 24^{\circ}\text{C}$. For the HP noise pattern, its real value is assumed to be identical with the piece-wise affine approximated value, that are defined with the vectors α and β used in (6) as $\alpha = [0,0.2,0.7,1]$ and $\beta = [0,40,60,60]$.

The operational cost function, also referred as energy cost, in the MPC design (3) is defined as the electricity cost within the prediction horizon, i.e., $J_o := P_{\text{max}} \cdot \sum e_t u_t$, where P_{max} is the maximal HP power input, e_t is the day-ahead electricity price. The prediction horizon N=32, i.e., 8 hours. The ambient noise pattern used in our simulation is shown in Fig. 4, which is generated based on the results in Thomas et al. (2018), Zhang et al. (2020). It can be seen that the environment is quiet during the early morning, evening and night hours, and is noisy at noon and afternoon, which is consistent with our everyday experience.

In our case studies, the proposed two options of noise $\cos J_n$ defined in (7) and (9) are tested for the MPC design, respectively.

The explicit MILP formulations for (3) with HP noise pattern approximation (6), and the noise cost functions (7) and (9) are formulated as follows:

$$\min_{\substack{u_t, \lambda_{i,t}, z_{i,t} \\ \delta_t, \hat{L}_t^{hp}}} P_{\max} \cdot \sum_{t=0}^{N} e_t u_t + \eta \cdot \sum_{t=0}^{N} \delta_t$$
(11a)

s.t.
$$y_{t+1} = A\mathbf{y}_{t,k_v} + B\mathbf{u}_{t,k_u} + E\mathbf{v}_{t,k_v},$$
 (11b)

$$u_t = \sum_{i=0}^k \lambda_{i,t} \alpha_i, \ \hat{L}_t^{\text{hp}} = \sum_{i=0}^k \lambda_{i,t} \beta_i, \tag{11c}$$

$$\lambda_{i-1,t} + \lambda_{i,t} \le z_{i,t}, \quad \forall i \in \{1, \dots, k\},\tag{11d}$$

$$\lambda_{i,t} \ge 0, \quad \forall i \in \{0, \dots, k\},\tag{11e}$$

$$\sum_{i=1}^{k} z_{i,t} = 1, \quad z_{i,t} \in \{0, 1\},$$
(11f)

$$19 \le y_t \le 24, \quad 0 \le u_t \le 1,$$
 (11g)

$$\hat{L}_{t}^{\text{hp}} \le L_{t}^{\text{amb}} + \delta_{t}, \quad \delta_{t} \ge 0, \tag{11h}$$

$$\forall t \in \{0, \dots, N\},\tag{11i}$$

where the operation cost J_o is defined as the HP electricity cost $P_{\max} \sum_{t=0}^N e_t u_t$. In case of the noise cost function defined in (7), the term $\sum_{t=0}^N \delta_t$ in the above cost function is replaced by $\sum_{t=0}^N \hat{L}_t^{\rm hp}/L_t^{\rm amb}$, and constraint (11h) is removed.

In the simulation, different values of η in (3a) are tested. For each value of η , seven days of closed-loop simulation are performed. Based on the simulation results, the total noise cost that is defined in (7) and (9), and energy cost (defined as the electricity cost J_o) during the simulation period are computed. Besides, since the noise costs defined in (7) and (9) are the convex approximations of the desired noise penalty, which is to ensure that the mixed noise is primarily dominated by ambient noise, we introduce a common metric:

real noise cost :=
$$\sum_{t} L_{t}^{\text{mix}} - L_{t}^{\text{amb}}$$
 (12)

to evaluate different approaches. In addition, the daily-averaged values of the following metrics are also evaluated:

• $L_{
m den}$ of mixed noise: the day-evening-night noise level. $L_{
m den}$ is used to measure the overall sound exposure over 24 h. It is

 Table 1

 Performance summary with different noise cost functions.

	Noise cost in (7)	Noise cost in (9)
Noise cost J_n reduction percentage (%)	24.09	84.48
Real noise cost reduction percentage (%)	30.43	39.38
Energy cost increase percentage (%)	8.89	3.50
$L_{\rm den}$ reduction (dB)	0.74	2.60
L_{quiet} reduction (dB)	1.51	6.15
Domination time reduction (h)	1.54	3.39
Average MPC computation time (s)	2.17	0.87

defined as the equivalent sound level with different penalties over different time periods in day, evening and night (European Environment Agency, 2001).

- $L_{\rm quiet}$ of mixed noise: $L_{\rm quiet}$ is defined as the equivalent sound level during quiet time (10:00 pm–7:00 am).
- *domination time*: the total time over 24 h that the mixed-noise level is dominated by the HP noise.

Furthermore, the *baseline* approach, in which the HP is operated to minimize the energy cost while complying with Switzerland's daynight noise regulations (60 dB limit during daytime and 50 dB limit at night European Heat Pump Association (EHPA), 2020), is also considered in our case study.

Simulation results are plotted in Figs. 5 and 6. Table 1 summarizes the results in terms of the maximal noise cost reduction percentage and the corresponding *real noise cost* reduction percentage, energy cost increase percentage, $L_{\rm den}$ reduction, $L_{\rm quiet}$ and domination time reduction, and energy cost increase for all considered values of η with both noise cost definitions in (7) and (9), respectively.

Fig. 5 presents the simulation results using the noise cost function J_n defined in (7). The Pareto curves of the *real noise cost* in (12) and the noise cost J_n in (7) w.r.t. energy cost in Fig. 5(a), along with Table 1, indicates that noise cost J_n can be reduced by 24.09% with an 8.89% increase in energy cost. In the meanwhile, the *real noise cost* is reduced by 30.47%. Fig. 5(b) illustrates the variations in L_{den} and noise cost as η in (3a) increases. It is observed that while both L_{den} and noise cost L_{den} and noise cost L_{den} and noise cost L_{den} are not entirely consistent, implying that a reduction in noise cost does not necessarily correlate with decreased noise nuisance in L_{den} , as also discussed in Section 3.3.2. Similarly, the inconsistency for L_{quiet} and domination time is also visible in Fig. 5(c). Fig. 5(d) shows that the total energy cost increase is within L_{den} is within L_{den} and L_{den} and domination time is also visible in Fig. 5(c). Fig. 5(d) shows that the total energy cost increase is within L_{den} and L_{den} and L_{den} and domination time is also visible in Fig. 5(c).

In Fig. 6(a), the Pareto curves illustrate the trade-off between noise and energy costs for the noise cost function in (9). Together with Table 1, it can be observed that the noise cost J_n and the real noise cost are reduced by 84.48% and 39.38%, respectively, with only a 3.50% increase in energy cost. Fig. 6(b) presents the values of $L_{\rm den}$ and noise cost J_n across various values of η . Similarly, as depicted in Fig. 6(c), both L_{quiet} and domination time decreases as η increases, achieving a notable 6 dB reduction in $L_{\rm quiet}$ and 3.39 h reduction in domination time, which are much larger than the case with J_n defined in (7), where a reduction of 1.51 dB in L_{quiet} and 1.54 h in domination time are achieved. Notably, Fig. 6 shows a much more consistent pattern among the noise cost J_n in (9), real noise cost, $L_{\rm den}$, $L_{\rm quiet}$ and domination time than in Fig. 5 where the noise cost (7) is considered. In addition, the energy cost increase shown in Fig. 6(d) is also less than the case of Fig. 5(d). These results imply that the noise cost in (9) is more effective in penalizing the mixed noise level and ensuring the mixed noise is dominated by the ambient noise.

In addition, as shown in Figs. 5(a) and 6(a), the *baseline* approach mainly aims at reducing the energy cost and cannot consider the ambient noise profile, which leads to large noise costs. Besides, one might notice that in Figs. 5(a) and 6(a) the energy cost does not always increase as the noise cost decreases, which is possibly due to modeling errors causing the HP to deviate from the predicted optimal

value for maintaining indoor comfort. This issue could be mitigated by using stochastic or robust optimization-based approaches to enhance the robustness of the MPC solution.

5. Conclusions

This paper presents the first investigation into HP noise mitigation within the context of building climate control. The proposed approach extends the standard economic MPC design for building climate control to incorporate HP noise reduction. By adopting a piecewise linear approximation, the proposed approach can accommodate diverse HP noise patterns while maintaining computational efficiency by solving MILP problems. The proposed noise cost functions ensure that the HP noise does not dominate the ambient noise, thereby reducing its acoustic impact on surrounding environments. Simulation results using a high-fidelity building simulator show that, with the proposed MPC design, HP noise can be mitigated with only a minor increase in energy costs.

CRediT authorship contribution statement

Yun Li: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review & editing. Jicheng Shi: Conceptualization, Formal analysis, Investigation, Methodology, Validation, Writing – original draft, Writing – review & editing. Colin N. Jones: Conceptualization, Funding acquisition, Methodology, Project administration, Supervision, Writing – review & editing. Neil Yorke-Smith: Funding acquisition, Project administration, Supervision, Writing – review & editing. Tamas Keviczky: Conceptualization, Funding acquisition, Methodology, Project administration, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The work was supported by the Brains4Buildings project under the Dutch grant programme for Mission-Driven Research, Development and Innovation (MOOI), and the Swiss National Science Foundation (SNSF) under the NCCR Automation project, grant agreement 51NF40 180545.

References

Ambrose, J. (2024). Will my heat pump be a noise nuisance to my neighbours? The Guardian, URL: https://www.theguardian.com/business/article/2024/jul/09/will-my-heat-pump-be-a-noise-nuisance-to-my-neighbours.

Bacher, P., & Madsen, H. (2011). Identifying suitable models for the heat dynamics of buildings. Energy and Buildings, 43(7), 1511–1522.

Blum, D., Arroyo, J., Huang, S., Drgoňa, J., Jorissen, F., Walnum, H. T., Chen, Y., Benne, K., Vrabie, D., Wetter, M., et al. (2021). Building optimization testing framework (BOPTEST) for simulation-based benchmarking of control strategies in buildings. *Journal of Building Performance Simulation*, 14(5), 586–610.

Drgoňa, J., Arroyo, J., Figueroa, I. C., Blum, D., Arendt, K., Kim, D., Ollé, E. P., Oravec, J., Wetter, M., Vrabie, D. L., et al. (2020). All you need to know about model predictive control for buildings. *Annual Reviews in Control*, 50, 190–232.

European Commission (2023). Heat pumps. URL: https://energy.ec.europa.eu/topics/energy-efficiency/heat-pumps_en.

European Environment Agency (2001). Lden. URL: https://www.eea.europa.eu/help/glossary/eea-glossary/lden.

European Heat Pump Association (EHPA) (2020). Heat pumps and sound. URL: https://www.ehpa.org/wp-content/uploads/2023/07/HEAT_PUMPS_AND_SOUND_-WHITE PAPER-compressed.pdf.

European Heat Pump Association (EHPA) (2024). European heat pump market and statistics report 2024. URL: https://www.ehpa.org/market-data/.

- Gurobi Optimization, LLC (2024). Gurobi Optimizer Reference Manual. URL: https://www.gurobi.com.
- Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy: Open source scientific tools for Python. URL: http://www.scipy.org/.
- Langerova, E., Kralicek, J., & Kucera, M. (2025). Air-to-water heat pump noise in residential settings: A comprehensive review. Renewable and Sustainable Energy Reviews, 207, Article 114968.
- Oldewurtel, F., Parisio, A., Jones, C. N., Gyalistras, D., Gwerder, M., Stauch, V., Lehmann, B., & Morari, M. (2012). Use of model predictive control and weather forecasts for energy efficient building climate control. *Energy and Buildings*, 45, 15–27.
- Reichl, C. (2022). Annex 51: Acoustic signatures of heat pumps. URL: https://heatpumpingtechnologies.org/annex51/.
- Reichl, C. (2023). Annex 63: Placement impact on heat pump acoustics. URL: https://heatpumpingtechnologies.org/annex63/.
- Renaud, J., Karam, R., Salomon, M., & Couturier, R. (2023). Deep learning and gradient boosting for urban environmental noise monitoring in smart cities. *Expert Systems with Applications*, 218, Article 119568.
- Shi, J., Lian, Y., Salzmann, C., & Jones, C. N. (2025). Adaptive data-driven prediction in a building control hierarchy: A case study of demand response in Switzerland. *Energy and Buildings*, 333, Article 115498.
- Stignor, H. C., Gustafsson, O., & Hellgren, H. (2024). Heat pump noise operational dependence and seasonal averaging. URL: https://heatpumpingtechnologies.org/annex51/wp-content/uploads/sites/59/2019/09/heat-pump-noise-operation-dependence-and-seasonal-averaging.pdf.
- Tang, W., Li, Y., Walker, S., & Keviczky, T. (2024). Model predictive control design for unlocking the energy flexibility of heat pump and thermal energy storage systems. In 2024 IEEE conference on control technology and applications (pp. 433–439). IEEE.

- Thielecke, A., Brovia, S. P., Hübel, J., Gänzle, D., Herbst, J., & Becker, S. (2023).
 Active electric machine control to reduce compressor noise in heat pumps. Applied Acoustics, 213, Article 109601.
- Thomas, P., Aletta, F., Vander Mynsbrugge, T., Filipan, K., Dijckmans, A., De Geetere, L., Botteldooren, D., Petrovic, M., De Vriendt, P., Van De Velde, D., et al. (2018). Evaluation and improvement of the acoustic comfort in nursing homes: a case study in Flanders, Belgium. In 11th European congress and exposition on noise control engineering (pp. 405–412).
- Torjussen, M. (2020). Sound from domestic air source heat pumps: a case study. Proceedings of the Institute of Acoustics, URL: https://www.ioa.org.uk/system/files/proceedings/5_torjussen_m.pdf.
- Torjussen, M., Harvie-Clark, J., Lamacraft, A., & Rogers, P. (2019). Noise from ASHPS - what we know? Proceedings of the Institute of Acoustics, URL: https://www.apexacoustics.co.uk/wp-content/uploads/2023/10/NOISE-FROM-ASHPS-WHAT-WE-KNOW.pdf.
- Wagner, S., Carniel, X., Rohlfing, J., Bay, K., & Hellgren, H. (2020). Overview on heat pump component noise and noise control techniques. URL: https://heatpumpingtechnologies.org/annex51/wp-content/uploads/sites/59/2021/10/iea-hpt-annex-51-d3.pdf.
- Wang, Z., & Chen, Y. (2019). Data-driven modeling of building thermal dynamics: Methodology and state of the art. Energy and Buildings, 203, Article 109405.
- Zhang, X., Zhao, M., & Dong, R. (2020). Time-series prediction of environmental noise for urban IoT based on long short-term memory recurrent neural network. Applied Sciences, 10(3), 1144.