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 A B S T R A C T

Noise pollution from heat pumps (HPs) has been an emerging concern to their broader adoption, especially in 
densely populated areas. This paper explores a model predictive control (MPC) approach for climate control 
of buildings, aimed at minimizing the noise nuisance generated by HPs. By exploiting a piecewise linear 
approximation of HP noise patterns and assuming linear building thermal dynamics, the proposed design 
can be generalized to handle various HP acoustic patterns with mixed-integer linear programming (MILP). 
Additionally, two computationally efficient options for defining the noise cost function in the proposed MPC 
design are discussed. Numerical experiments on a high-fidelity building simulator are performed to demonstrate 
the viability and effectiveness of the proposed design. Simulation results show that minimizing the excess of 
HP noise over ambient noise is effective in mitigating the HP noise nuisance. Further, compared with the 
conventional MPC-based building climate control scheme, the proposed approach can effectively reduce the 
HP noise pollution with only a minor energy cost increase.
1. Introduction

As an energy-efficient heating/cooling device, heat pumps (HPs) 
have gained widespread adoption across Europe, driven by the goal 
of reducing fossil fuel usage and carbon emissions. Currently, approx-
imately 24 million HPs are installed in European buildings, and this 
number is expected to reach 60 million by 2030 (European Heat Pump 
Association (EHPA), 2024). This growing adoption of HPs to move 
away from fossil fuels could reduce Europe’s gas demand for heating 
by at least 21 billion cubic meters in 2030, and potentially cut CO2 
emissions by 46% (Ambrose, 2024; European Commission, 2023). How-
ever, despite the benefits of flexible and efficient renewable heating and 
carbon reduction, a new concern about HPs has been raised: noise.

Noise can induce stress and impact both psychological and physio-
logical well-being. Noise generated by HPs, particularly air source heat 
pumps (ASHPs) commonly installed in residential areas, has emerged 
as a primary concern hindering their broader acceptance in these 
settings (Langerova et al., 2025; Torjussen, 2020). Consequently, HP 
installation and operation must account for acoustic impacts on the 
surrounding environment, especially in residential zones where noise 
levels are subject to legislative noise directives. For example, in the UK, 
the noise pressure level must be below 42 dB at a distance of one meter 
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from a neighbor’s door or window (Ambrose, 2024; Torjussen, 2020). 
Similar regulations also apply in other countries as outlined in Eu-
ropean Heat Pump Association (EHPA) (2020). Addressing HP noise 
pollution is thus essential for maintaining acoustic health and fostering 
the acceptance of HPs, which can further support carbon emissions 
reduction. Recent initiatives, such as IEA HPT Annex 51 and Annex 63 
underscore the growing attention on HP noise concerns (Reichl, 2022, 
2023).

Various solutions for reducing HP noise have been explored, includ-
ing adding sound-absorbing materials or insulation enclosures, using 
flexible mountings to dampen vibrations, and implementing active 
noise cancellation techniques (Langerova et al., 2025; Thielecke et al., 
2023; Wagner et al., 2020). While these measures can reduce HP noise, 
they often require intrusive modifications, making it costly or even 
impractical to retrofit existing HPs for improved acoustic performance.

With advancements in smart metering, computing technology, and 
building management systems, an alternative approach to reducing HP 
noise without invasive modifications is to design optimal HP control 
strategies. The primary noise sources of air source heat pumps are 
the compressors and, especially, the fans in the outside units of HPs, 
which significantly contribute to ambient noise (Langerova et al., 2025; 
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Torjussen et al., 2019). Modern inverter HPs allow for modulation of 
compressor and fan speeds, enabling noise level adjustments based on 
thermal output requirements. Thus, it is possible to adjust the HP power 
inputs to mitigate noise while maintaining comfortable indoor thermal 
climate.

Model predictive control (MPC) has shown promise as an advanced 
control strategy for HP and building climate control, owing to its 
flexibility in handling system constraints, economic considerations, and 
predicted weather conditions (Drgoňa et al., 2020; Oldewurtel et al., 
2012). The effectiveness of the MPC-based heat pump and building 
climate control in improving system performance, such as reducing 
economic cost, increasing indoor comfort, and engaging demand-side 
management, has been experimentally demonstrated in existing works, 
see Shi et al. (2025), Tang et al. (2024) and references therein.

Motivated by the above discussion, this paper investigates an MPC 
design to mitigate HP noise within the context of building climate 
control. To the best of our knowledge, this is the first study to address 
the noise nuisance from HP operation in building sectors by designing 
optimal building climate control schemes. The main contributions of 
this paper are summarized as:

• The reduction of HP noise pollution is investigated for the first 
time in optimal building climate control. A general MPC formula-
tion that considers both HP noise pollution reduction and energy 
cost savings is proposed.

• Leveraging piecewise linear approximation, the proposed design 
is adaptable to various HP noise patterns through a mixed-integer 
linear programming (MILP) formulation. Two options for the 
noise cost function in the MPC design are discussed.

• Numerical experiments using a high-fidelity building simulator 
are performed to demonstrate the viability and effectiveness of 
the proposed approach.

The remaining parts of this paper are organized as follows. Section 2 
presents the problem setting about building thermal dynamics, HP 
noise patterns, and our design objective. Section 3 delves into the 
details of the proposed MPC design. The viability and effectiveness 
of the proposed approach are numerically tested in Section 4. Finally, 
Section 5 concludes this paper.

2. Problem setting

This work aims to mitigate the noise pollution caused by the oper-
ation of HPs while maintaining indoor thermal comfort by redesigning 
indoor climate control strategies. In the following, we will illustrate our 
problem setting about indoor thermal dynamics, heat pump noise and 
ambient noise, as well as the control design objective.

2.1. Building thermal dynamics

Without loss of generality, the indoor thermal dynamics are as-
sumed to be approximately modeled as the following linear system 

𝑦𝑡+1 = 𝐴𝐲𝑡,𝑘𝑦 + 𝐵𝐮𝑡,𝑘𝑢 + 𝐸𝐯𝑡,𝑘𝑣 (1)

where 𝑦𝑡+1 ∈ R𝑛 is the predicted indoor temperature vector at time 
instant 𝑡 + 1, 𝐲𝑡,𝑘𝑦 ∈ R𝑛𝑘𝑦  is the stacked historical indoor temperature 
measurements during time period [𝑡 − 𝑘𝑦 + 1, 𝑡], which is defined as 
𝐲𝑡,𝑘𝑦 ∶= [𝑦T𝑡 , 𝑦

T
𝑡−1,… , 𝑦T𝑡−𝑘𝑦+1]

T; similarly, 𝐮𝑡,𝑘𝑢 ∈ R𝑚𝑘𝑢  and 𝐯𝑡,𝑘𝑣 ∈ R𝑝𝑘𝑣  are 
the stacked HP power input and ambient climate conditions during time 
intervals [𝑡−𝑘𝑢+1, 𝑡] and [𝑡−𝑘𝑣+1, 𝑡], respectively; 𝐴,𝐵 and 𝐸 are system 
matrices describing the evolution of indoor temperature at time instant 
𝑡+ 1 driven by past indoor temperature, HP control input and ambient 
climate conditions. The above linear model encompasses a wide range 
of the prediction models for indoor thermal dynamics developed by 
black-box approaches, e.g., Auto Regressive with eXogeneous inputs 
(ARX), and gray-box approaches, e.g., RC-network (Bacher & Madsen, 
2011; Drgoňa et al., 2020; Wang & Chen, 2019).
2 
2.2. Heat pump and ambient noises

For HP noise concerns, our primary focus is on the noise generated 
by the fan in the outside unit. In residential settings, HP fan noise 
generally ranges from 40–60 decibels, and is typically the main source 
of HP noise disturbance for nearby residents. As shown in Langerova 
et al. (2025) and Stignor et al. (2024), the noise generated by HPs 
is a nonlinear and nonconvex function of the HP power, and roughly 
follows a logarithm-like or sigmoid-like function. However, due to the 
lack of definitive studies showing that all ASHPs adhere to such a 
noise pattern, we impose no explicit assumption about the relationship 
between the HP noise level and power consumption.

In our control scheme design, we only assume the existence of a 
general noise pattern as defined in (2), which can be derived through 
theoretical analysis or experimental data: 
𝐿hp = 𝑓 (𝑢) (2)

where 𝐿hp is the HP noise level in decibels, 𝑢 is the HP power input, 
and 𝑓 (⋅) is a function representing the HP noise pattern. The implicit 
assumption behind the above analysis is that the noise generated by 
HPs varies with their electrical power consumption, i.e., thermal out-
put, and follows a certain predictable pattern. This assumption requires 
that the considered HPs should be inverter HPs, whose fan speed can 
be modulated and power input is adjustable, since the fan speed and 
power input for ON/OFF controlled HPs are generally fixed to certain 
nominal values and cannot be modulated to adjust the corresponding 
noise level.

When defining the acoustic nuisance caused by a HP, another factor 
that should be considered is ambient noise (background noise), which 
might be caused by traffic noise, alarms, extraneous speech, animal 
noise, and more. In this work, we impose no specific pattern for 
ambient noise, assuming only that the predicted ambient noise levels 
are accessible. This is a practical assumption, and there are many works 
available that focus on developing ambient noise prediction algorithms, 
see Renaud et al. (2023), Zhang et al. (2020) and references therein. 
Thus, without loss of generality, in our upcoming MPC design, we 
assume that the predicted ambient noise level 𝐿amb within the MPC 
prediction horizon is available.

2.3. Control design objective

The main control objective is to mitigate the acoustic nuisance 
caused by HP operation in the surrounding environment. It should be 
noted that reducing the acoustic nuisance of HPs does not equate to 
minimizing absolute HP noise, which would typically mean shutting 
down HPs. Instead, it involves reducing the relative impact of HP noise 
compared to ambient noise levels. Through appropriate HP control, the 
combined noise from the HP and its surroundings should be dominated 
by the ambient noise, effectively concealing HP noise within it and 
thereby mitigating acoustic pollution. In addition to reducing noise 
pollution, the control objective should also consider indoor comfort and 
energy costs.

For simplicity in MPC design, our approach does not account for 
the spectral characteristics of noise signals. Future studies incorporat-
ing human factors determining the human-perceived noise nuisance 
associated with different noise frequencies are warranted.

3. Model predictive control design

This section develops an MPC design framework for mitigating 
HP noise nuisance within the context of building climate control. 
Specifically, it will be shown how to design computationally tractable 
formulations to cope with various HP noise patterns with MILP formu-
lations. Besides, several options for defining the noise cost function in 
MPC will be discussed.
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3.1. MPC formulation

In this subsection, a general MPC problem is formulated to adap-
tively reduce the effect of HP noise on the environment. An MPC 
problem achieving our design objective can be formulated as follows 

min
𝑢𝑡

𝑁
∑

𝑡=0
𝑙(𝑢𝑡, 𝑦𝑡)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐽𝑜

+𝜂
𝑁
∑

𝑡=0
ℎ(𝐿hp𝑡 , 𝐿amb𝑡 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽𝑛

(3a)

s.t. 𝑦𝑡+1 = 𝐴𝐲𝑡,𝑘𝑦 + 𝐵𝐮𝑡,𝑘𝑢 + 𝐸𝐯𝑡,𝑘𝑣 , (3b)

𝐿hp𝑡 = 𝑓 (𝑢𝑡), (3c)

𝑦𝑡 ∈  and 𝑢𝑡 ∈  , ∀𝑡 ∈ {0,… , 𝑁}, (3d)

where 𝑁 is the length of prediction horizon, 𝐽𝑜 is total operational cost 
with 𝑙(𝑢𝑡, 𝑦𝑡) as the stage cost at sampling instant 𝑡, 𝐽𝑛 is the total noise 
cost within the prediction horizon with ℎ(𝐿hp𝑡 , 𝐿amb𝑡 ) as the stage noise 
cost defined based on HP noise 𝐿hp𝑡  and ambient noise 𝐿amb𝑡 , 𝜂 ≥ 0
is a user-defined weighting factor for balancing the operational cost 
and noise nuisance, constraint (3b) is the building thermal dynamics 
defined in (1), constraint (3c) defines the noise pattern of the HP in 
(2),  and   in (3d) are admissible regions of indoor temperature and 
heat pump power input. This optimization problem defines a general 
control task to minimize the weighted sum of HP operational cost 
and HP noise cost while ensuring indoor comfort constraints and HP 
input constraints. Within the context of the building climate control, 
the operational cost function 𝐽𝑜 is generally defined as the energy 
cost during the prediction horizon, which is formulated as a linear 
(convex) function of HP power consumption and will not influence the 
computational tractability of the proposed scheme, see Oldewurtel et al. 
(2012). Besides, the formulation of hard constraints for indoor comfort 
requirements (3d) can be relaxed as soft constraints by introducing 
slack variables to ensure the feasibility of the MPC problem in practical 
implementation.

Remark 1. It should be highlighted that the design objective is to 
mitigate the HP noise nuisance w.r.t. the environment noise. Conse-
quently, the definition of the noise cost function 𝐽𝑛 in (3a) should 
reflect the relative noise nuisance of the HP, rather than its absolute 
value. For example, intuitively, when the ambient environment is noisy, 
the HP can operate with louder noise, possibly to achieve higher energy 
efficiency or lower energy bills, without incurring a high acoustic 
nuisance. Similarly, when the ambient environment is quiet, even a 
moderate noise level of HP can lead to more nuisance because the HP 
noise plays a dominating role in the total noise.

3.2. Piecewise affine approximation of HP noise pattern

Assuming a general HP noise pattern, this subsection presents a 
piecewise linear approximation of the HP noise pattern and develops 
a computationally tractable formulation.

As explained in Section 2.B, since the specific noise pattern might 
vary depending on the individual HP system, we make no explicit 
assumption about the HP noise pattern, and aim at developing meth-
ods that are adaptable to a broader range of HP noise patterns for 
enhancing the applicability of the proposed approach.

In this work, piecewise affine functions are utilized to approximate 
the HP noise pattern, which might be nonlinear and nonconvex. Fig.  1 
shows an example of using three pieces of affine functions to approxi-
mate a sigmoid-like noise pattern. To provide a general approximation 
scheme, we assume that affine functions comprising 𝑘 pieces are used 
in HP noise approximation. The admissible scope of HP control input 
is partitioned into 𝑘 intervals that are defined by 𝛼 = [𝛼0,… , 𝛼𝑘]T

with [𝛼𝑖, 𝛼𝑖+1] (𝑖 = 0,… , 𝑘 − 1) representing one interval, where the 
HP noise pattern is approximated via a piecewise affine function. 
3 
Fig. 1. Nonlinear heat pump noise pattern and its piecewise affine approximation.

Correspondingly, the vector 𝛽 ∶= [𝛽0,… , 𝛽𝑘] is defined with 𝛽𝑖 as the 
HP noise level when its power input 𝑢 = 𝛼𝑖. Then, for any HP power 
input 𝑢 ∈ [𝛼𝑖, 𝛼𝑖+1], there exist real-valued parameters 𝜆𝑖 and 𝜆𝑖+1 such 
that 

𝑢 = 𝜆𝑖𝛼𝑖 + 𝜆𝑖+1𝛼𝑖+1 (4)

with 0 ≤ 𝜆𝑖 ≤ 1 and 𝜆𝑖 + 𝜆𝑖+1 = 1. Correspondingly, the value of the 
approximated HP noise level 𝐿̂hp is 

𝐿̂hp = 𝜆𝑖𝛽𝑖 + 𝜆𝑖+1𝛽𝑖+1 (5)

To denote the approximated noise pattern within the whole admissible 
input range [𝛼0, 𝛼𝑘], binary variables 𝑧𝑖 ∈ {0, 1} (𝑖 = 1,… , 𝑘) are 
introduced with 𝑧𝑖 = 1 indicating 𝑢 ∈ [𝛼𝑖−1, 𝛼𝑖]. Finally, the piecewise-
affine approximated HP noise pattern can be expressed as the following 
mixed-integer linear constraints 

𝑢 =
𝑘
∑

𝑖=0
𝜆𝑖𝛼𝑖, (6a)

𝐿̂hp =
𝑘
∑

𝑖=0
𝜆𝑖𝛽𝑖, (6b)

𝜆𝑖−1 + 𝜆𝑖 ≤ 𝑧𝑖, ∀𝑖 ∈ {1,… , 𝑘} (6c)

𝜆𝑖 ≥ 0,∀𝑖 ∈ {1,… , 𝑘} (6d)
𝑘
∑

𝑖=1
𝑧𝑖 = 1, 𝑧𝑖 ∈ {0, 1}. (6e)

The above mixed-integer linear constraints can replace the HP noise 
pattern constraint in (3c), which might be nonlinear and nonconvex, 
and enable a universal approximation for various HP noise patterns. 
It should be noted that approximation accuracy is determined by 
the number of affine functions utilized in (6). Adopting more affine 
functions leads to a more accurate approximation, but will also in-
troduce more constraints and decision variables in (6). Consequently, 
the number of affine functions 𝑘 considered in (6) should balance the 
approximation accuracy of HP noise pattern and the corresponding 
computational overhead.

3.3. Noise cost function design

This subsection presents several possible options for defining the 
noise cost function 𝐽𝑛 in (3). Recall that our control objective is to 
mitigate the relative acoustic nuisance in comparison to ambient noise, 
rather than minimizing the absolute HP noise level, so that the HP noise 
is hidden in the ambient noise. Accordingly, the design of the noise cost 
𝐽  should emphasize relative noise mitigation.
𝑛
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Fig. 2. Diagram of closed-loop simulation with Boptest simulator.

3.3.1. Option 1
The first option of the noise cost is defined as 

𝐽𝑛 ∶=
𝑁
∑

𝑡=0
𝐿hp𝑡 ∕𝐿amb𝑡 (7)

The above cost function penalizes HP noise according to the ambient 
noise level. Higher ambient noise imposes less penalty on HP noise. 
Consequently, this cost function incentivizes HP to work at a higher 
load when the ambient environment is noisy and at a lower load in 
quieter settings.

3.3.2. Option 2
While the cost function defined in (7) is straightforward and easy 

to implement, it fails to impose direct regulation on the mixed noise 
and may not prevent HP noise from dominating the ambient noise. 
According to the acoustic properties of combined sounds, the sound 
level of the mixed noise from HP and ambient sources can be calculated 
as 

𝐿mix = 10 ⋅ log10

(

10
𝐿amb
10 + 10

𝐿hp
10

)

(8)

The above nonlinear function can be used to impose direct constraints 
on the mixed noise. However, it introduces nonlinear constraints, which 
might be computationally challenging for certain numerical solvers.

The definition of the mixed noise level in (8) suggests that when the 
ambient noise level exceeds the HP noise, the mixed noise level will be 
primarily dominated by the ambient noise, due to the power function 
applied to each noise level. Thus, an alternative approach is to penalize 
instances when the HP noise exceeds the ambient noise, resulting in the 
following noise cost function definition 

𝐽𝑛 ∶=
𝑁
∑

𝑡=0
𝛿𝑡, 𝐿hp𝑡 ≤ 𝐿amb𝑡 + 𝛿𝑡 (9)

with 𝛿𝑡 ≥ 0. The above cost function is equivalent to the nonlinear noise 
cost function 𝐽𝑛 ∶=

∑𝑁
𝑡=0(𝐿

hp
𝑡 − 𝐿amb𝑡 )+, where 𝑥+ is defined as 𝑥+ = 𝑥

if 𝑥 ≥ 0 and otherwise 𝑥+ = 0. This cost function incentivizes that 
HP noise does not exceed ambient noise, allowing the mixed noise to 
be predominantly influenced by ambient sounds, thereby masking HP 
noise within the background noise.

Remark 2. It is worth noting that the mixed-integer linear formulations 
in (6) and (9) are designed to enhance the applicability and computa-
tional feasibility of our approaches for a variety of HP noise patterns 
and for compatibility with most numerical solvers. However, if the 
available solvers are capable of handling the specific, possibly nonlin-
ear and nonconvex, HP noise pattern in (2) and the mixed noise pres-
sure level definition in (8), this nonlinear relationship could be directly 
incorporated into (3), potentially improving control performance.
4 
Fig. 3. Open-loop prediction performance of ARX model: (a) training set (MAE = 
0.16 ◦C), (b) test set (MAE = 0.19 ◦C).

Fig. 4. Ambient noise profile used in simulation.

4. Simulation results

This section presents numerical simulation results to demonstrate 
the viability and effectiveness of our proposed design framework. The 
building model bestest_hydronic_heat_pump in the building 
control test platform boptest (Blum et al., 2021) is utilized as a high-
fidelity simulator to test our design. The considered building model is 
a residential building with a rectangular floor plan 12m×16m, a height 
of 2.7 m, and an air-to-water HP of 15 kW nominal heating capacity 
for floor heating. See Blum et al. (2021) for more details about this 
building control test platform. The diagram of our simulation is shown 
in Fig.  2. At each sampling instant, the HP control input signal 𝑢𝑡 is 
computed by solving (3). With the computed HP control input, the 
building simulator updates its internal states and returns the updated 
indoor temperature 𝑦𝑡+1. All simulations are performed on an Intel 
Xeon W-2223 CPU at 3.60 GHz with 16G RAM. MPC problems are 
modeled via the Python package gurobipy and solved using Gurobi 
11.0 (Gurobi Optimization, LLC, 2024).

4.1. Prediction model of building thermal dynamics

In our simulation, the sampling period is selected as 15 minutes for 
both prediction model development and MPC design. An ARX model 
is identified using randomly generated open-loop control signals to 
approximate the thermal dynamics of the building. Notably, the control 
signals are forced to be off (on) when the building is overheated 
(overcooled). The boptest simulator utilized in our simulation also 
involves the internal thermal gains from 5 occupants, but they are not 
forecast and therefore neglected in our ARX model. The ARX model has 
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Fig. 5. Simulation results for noise cost in (7): (a) Pareto curves of energy cost and noise cost, (b) 𝐿den, (c) 𝐿quiet and domination time, (d) energy cost.
Fig. 6. Simulation results for noise cost in (9): (a) Pareto curves of energy cost and noise cost, (b) 𝐿den, (c) 𝐿quiet and domination time, (d) energy cost.
the following structure 

𝑦𝑡 =
𝑛𝑎
∑

𝑘=1
𝑎𝑘𝑦𝑡−𝑘 +

𝑛𝑏
∑

𝑘=1
𝑏𝑘𝑢𝑡−𝑘 +

𝑛𝑐
∑

𝑘=1
𝑐𝑘𝑇𝑡−𝑘 +

𝑛𝑑
∑

𝑘=1
𝑑𝑘𝑆𝑡−𝑘

where 𝑦𝑡 is the indoor temperature at time instant 𝑡, 𝑇𝑡 denotes the 
ambient temperature, 𝑆𝑡 denotes the solar irradiation. The prediction 
horizon is set as 8 hours. In our model the parameters (𝑛𝑎, 𝑛𝑏, 𝑛𝑐 , 𝑛𝑑 ) are 
set as (4, 1, 2, 2). The parameters (𝑎𝑘, 𝑏𝑘, 𝑐𝑘, 𝑑𝑘) are identified by minimiz-
ing the sum of the squares of the indoor temperature prediction error 
via scipy.optimize.least_squares (Jones et al., 2001). For 
training and testing the ARX model, two independent 7-day of datasets 
(16th Jan–22nd Jan, 24th Jan–30th Jan) are utilized, i.e., 7*24*4 = 
672 data points, in both training and test datasets.

Fig.  3 depicts the real indoor temperature profiles and their open-
loop predicted values using the ARX model for both the training and 
test datasets. The mean absolute errors (MAEs) for both training and 
test sets are 0.16 ◦C and 0.19 ◦C, respectively, which implies that the 
ARX model provides satisfactory prediction performance for subsequent 
MPC design.

4.2. MPC for noise mitigation

For design simplicity, the admissible range of HP power input is 
scaled to such that 𝑢𝑡 ∈ [0, 1]. The indoor comfort constraint is set as 
19◦C ≤ 𝑦𝑡 ≤ 24◦C. For the HP noise pattern, its real value is assumed 
to be identical with the piece-wise affine approximated value, that are 
defined with the vectors 𝛼 and 𝛽 used in (6) as 𝛼 = [0, 0.2, 0.7, 1] and 
𝛽 = [0, 40, 60, 60].

The operational cost function, also referred as energy cost, in the 
MPC design (3) is defined as the electricity cost within the prediction 
horizon, i.e., 𝐽𝑜 ∶= 𝑃max ⋅

∑

𝑒𝑡𝑢𝑡, where 𝑃max is the maximal HP power 
input, 𝑒𝑡 is the day-ahead electricity price. The prediction horizon 𝑁 =
32, i.e., 8 hours. The ambient noise pattern used in our simulation is 
shown in Fig.  4, which is generated based on the results in Thomas 
et al. (2018), Zhang et al. (2020). It can be seen that the environment is 
quiet during the early morning, evening and night hours, and is noisy at 
noon and afternoon, which is consistent with our everyday experience.

In our case studies, the proposed two options of noise cost 𝐽𝑛 defined 
in (7) and (9) are tested for the MPC design, respectively.
5 
The explicit MILP formulations for (3) with HP noise pattern ap-
proximation (6), and the noise cost functions (7) and (9) are formulated 
as follows: 

min
𝑢𝑡 ,𝜆𝑖,𝑡 ,𝑧𝑖,𝑡
𝛿𝑡 ,𝐿̂

ℎ𝑝
𝑡

𝑃max ⋅
𝑁
∑

𝑡=0
𝑒𝑡𝑢𝑡 + 𝜂 ⋅

𝑁
∑

𝑡=0
𝛿𝑡 (11a)

s.t. 𝑦𝑡+1 = 𝐴𝐲𝑡,𝑘𝑦 + 𝐵𝐮𝑡,𝑘𝑢 + 𝐸𝐯𝑡,𝑘𝑣 , (11b)

𝑢𝑡 =
𝑘
∑

𝑖=0
𝜆𝑖,𝑡𝛼𝑖, 𝐿̂

hp
𝑡 =

𝑘
∑

𝑖=0
𝜆𝑖,𝑡𝛽𝑖, (11c)

𝜆𝑖−1,𝑡 + 𝜆𝑖,𝑡 ≤ 𝑧𝑖,𝑡, ∀𝑖 ∈ {1,… , 𝑘}, (11d)

𝜆𝑖,𝑡 ≥ 0, ∀𝑖 ∈ {0,… , 𝑘}, (11e)
𝑘
∑

𝑖=1
𝑧𝑖,𝑡 = 1, 𝑧𝑖,𝑡 ∈ {0, 1}, (11f)

19 ≤ 𝑦𝑡 ≤ 24, 0 ≤ 𝑢𝑡 ≤ 1, (11g)

𝐿̂hp𝑡 ≤ 𝐿amb𝑡 + 𝛿𝑡, 𝛿𝑡 ≥ 0, (11h)

∀𝑡 ∈ {0,… , 𝑁}, (11i)

where the operation cost 𝐽𝑜 is defined as the HP electricity cost 
𝑃max

∑𝑁
𝑡=0 𝑒𝑡𝑢𝑡. In case of the noise cost function defined in (7), the term 

∑𝑁
𝑡=0 𝛿𝑡 in the above cost function is replaced by 

∑𝑁
𝑡=0 𝐿̂

hp
𝑡 ∕𝐿amb𝑡 , and 

constraint (11h) is removed.
In the simulation, different values of 𝜂 in (3a) are tested. For each 

value of 𝜂, seven days of closed-loop simulation are performed. Based 
on the simulation results, the total noise cost that is defined in (7) 
and (9), and energy cost (defined as the electricity cost 𝐽𝑜) during the 
simulation period are computed. Besides, since the noise costs defined 
in (7) and (9) are the convex approximations of the desired noise 
penalty, which is to ensure that the mixed noise is primarily dominated 
by ambient noise, we introduce a common metric: 
real noise cost ∶=

∑

𝑡
𝐿mix𝑡 − 𝐿amb𝑡 (12)

to evaluate different approaches. In addition, the daily-averaged values 
of the following metrics are also evaluated:

• 𝐿den of mixed noise: the day–evening–night noise level. 𝐿den is 
used to measure the overall sound exposure over 24 h. It is 



Y. Li et al. European Journal of Control xxx (xxxx) xxx 
Table 1
Performance summary with different noise cost functions.
 Noise cost in (7) Noise cost in (9) 
 Noise cost 𝐽𝑛 reduction percentage (%) 24.09 84.48  
 Real noise cost reduction percentage (%) 30.43 39.38  
 Energy cost increase percentage (%) 8.89 3.50  
 𝐿den reduction (dB) 0.74 2.60  
 𝐿quiet reduction (dB) 1.51 6.15  
 Domination time reduction (h) 1.54 3.39  
 Average MPC computation time (s) 2.17 0.87  

defined as the equivalent sound level with different penalties 
over different time periods in day, evening and night (European 
Environment Agency, 2001).

• 𝐿quiet of mixed noise: 𝐿quiet is defined as the equivalent sound 
level during quiet time (10:00 pm–7:00 am).

• domination time: the total time over 24 h that the mixed-noise 
level is dominated by the HP noise.

Furthermore, the baseline approach, in which the HP is operated to 
minimize the energy cost while complying with Switzerland’s day–
night noise regulations (60 dB limit during daytime and 50 dB limit 
at night European Heat Pump Association (EHPA), 2020), is also con-
sidered in our case study.

Simulation results are plotted in Figs.  5 and 6. Table  1 summarizes 
the results in terms of the maximal noise cost reduction percentage 
and the corresponding real noise cost reduction percentage, energy 
cost increase percentage, 𝐿den reduction, 𝐿quiet and domination time 
reduction, and energy cost increase for all considered values of 𝜂 with 
both noise cost definitions in (7) and (9), respectively.

Fig.  5 presents the simulation results using the noise cost function 
𝐽𝑛 defined in (7). The Pareto curves of the real noise cost in (12) and 
the noise cost 𝐽𝑛 in (7) w.r.t. energy cost in Fig.  5(a), along with Table 
1, indicates that noise cost 𝐽𝑛 can be reduced by 24.09% with an 8.89% 
increase in energy cost. In the meanwhile, the real noise cost is reduced 
by 30.47%. Fig.  5(b) illustrates the variations in 𝐿𝑑𝑒𝑛 and noise cost as 
𝜂 in (3a) increases. It is observed that while both 𝐿den and noise cost 
𝐽𝑛 generally follow a downward trend, their patterns are not entirely 
consistent, implying that a reduction in noise cost does not necessarily 
correlate with decreased noise nuisance in 𝐿den, as also discussed in 
Section 3.3.2. Similarly, the inconsistency for 𝐿quiet and domination 
time is also visible in Fig.  5(c). Fig.  5(d) shows that the total energy 
cost increase is within 3e.

In Fig.  6(a), the Pareto curves illustrate the trade-off between noise 
and energy costs for the noise cost function in (9). Together with Table 
1, it can be observed that the noise cost 𝐽𝑛 and the real noise cost
are reduced by 84.48% and 39.38%, respectively, with only a 3.50% 
increase in energy cost. Fig.  6(b) presents the values of 𝐿den and noise 
cost 𝐽𝑛 across various values of 𝜂. Similarly, as depicted in Fig.  6(c), 
both 𝐿quiet and domination time decreases as 𝜂 increases, achieving a 
notable 6 dB reduction in 𝐿quiet and 3.39 h reduction in domination 
time, which are much larger than the case with 𝐽𝑛 defined in (7), where 
a reduction of 1.51 dB in 𝐿quiet and 1.54 h in domination time are 
achieved. Notably, Fig.  6 shows a much more consistent pattern among 
the noise cost 𝐽𝑛 in (9), real noise cost, 𝐿den, 𝐿quiet and domination time
than in Fig.  5 where the noise cost (7) is considered. In addition, the 
energy cost increase shown in Fig.  6(d) is also less than the case of Fig. 
5(d). These results imply that the noise cost in (9) is more effective 
in penalizing the mixed noise level and ensuring the mixed noise is 
dominated by the ambient noise.

In addition, as shown in Figs.  5(a) and 6(a), the baseline approach 
mainly aims at reducing the energy cost and cannot consider the 
ambient noise profile, which leads to large noise costs. Besides, one 
might notice that in Figs.  5(a) and 6(a) the energy cost does not 
always increase as the noise cost decreases, which is possibly due to 
modeling errors causing the HP to deviate from the predicted optimal 
6 
value for maintaining indoor comfort. This issue could be mitigated by 
using stochastic or robust optimization-based approaches to enhance 
the robustness of the MPC solution.

5. Conclusions

This paper presents the first investigation into HP noise mitigation 
within the context of building climate control. The proposed approach 
extends the standard economic MPC design for building climate control 
to incorporate HP noise reduction. By adopting a piecewise linear 
approximation, the proposed approach can accommodate diverse HP 
noise patterns while maintaining computational efficiency by solving 
MILP problems. The proposed noise cost functions ensure that the 
HP noise does not dominate the ambient noise, thereby reducing its 
acoustic impact on surrounding environments. Simulation results using 
a high-fidelity building simulator show that, with the proposed MPC 
design, HP noise can be mitigated with only a minor increase in energy 
costs.
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