
Tight and Tractable Reformulations for Uncertain CSPs

Neil Yorke-Smith? and Carmen Gervet

IC–Parc, Imperial College London, SW7 2AZ, U.K.
{nys,cg6 }@icparc.ic.ac.uk

Abstract Various extensions of the CSP framework exist to address ill-defined,
real-world optimisation problems. One extension, theuncertain CSP(UCSP)
tackles the aspect of data errors and incompleteness by ensuring that the problem
is faithfully represented with what is known for sure about the data, and by seek-
ing reliable solutions that do not approximate such uncertainties. The extended
model has a great impact on the solving complexity. For instance, by introducing
bounded interval coefficients, the default representation of an arithmetic linear
constraint is of degree 2. A challenge lies in determining constraint classes that
allow one to reformulate the UCSP model such that polynomial algorithms ex-
ist. In this paper we present two novel sufficient conditions, built on algebraic
properties of constraints, that ensure a tractable reformulation exists. We give an
algorithm to test for the conditions for binary constraints, and demonstrate as
instances some previously identified practical UCSP reformulations.

1 Introduction

Constraint Programming (CP) has proved an effective paradigm to model and solve
large scale combinatorial optimisation (LSCO) problems from disparate domains. To
date, however, there has been little work on accommodating data uncertainty within
CP, apart from seeking a solution that holds in the greatest number of circumstances.

We address the task of modelling and solving uncertain problems where data uncer-
tainty arises due to incomplete or erroneous measurements. It raises the issue of faith-
fully representing the problem and deriving reliable results that do not approximate the
data measurements, but rather take them into account during computation. This form
of data uncertainty is ubiquitous in many application domains (e.g. camera control [5],
engineering design [3], network inference [20], robot motion [9]). A common CP ap-
proach consists of approximating such uncertainties to reach a satisfiable deterministic
model, by selecting representative values for the data (e.g. mean values) or using some
preliminary error-correction methods. However, the derived model would not ensure a
faithful representation of the problem and thus not guarantee reliable solutions.

In this paper we build on the Uncertain Constraint Satisfaction Problem (UCSP)
model, introduced in [20], which aims at providing reliable information by enclosing
the data uncertainty with what is known for sure about it, thus guaranteeing a faith-
ful representation of the user’s problem. The data enclosure is commonly specified by
bounded uncertain coefficients in the problem constraints.

? Present address: SRI International, Menlo Park, CA, USA,nysmith@ai.sri.com

Proceedings of CP’04 Workshop on Modelling and Reformulating Constraint Satisfaction
Problems, Toronto, Canada, Sept. 2004. Some minor oversights are corrected in this version.

The outcome derived is such that it infers as much information as can be inferred
about the problem, given the present knowledge of the uncertain data. We call itsolu-
tion enclosure, since it can be interpreted as a safe enclosure of the actual but unknown
solution; it corresponds in practice to the space of all potential solutions to the UCSP.
Given that the data uncertainty can come from erroneous measurements, a central ad-
vantage of deriving the solution enclosure is that no optimisation criterion is necessarily
required: we do not need to attempt to pick out one ‘best’ (e.g. most robust) solution.
Moreover, in applications such as design, configuration, and diagnosis, it is important to
be able to explore the space of solutions systematically whether there is data uncertainty
or not (e.g. see [14]) and whether the data is discrete or continuous.

A representative diagnosis LSCO problem, previously modelled as a UCSP, arises in
network inference [20]. The traffic volume measurements are uncertain data modelled
by closed interval coefficients, known asparameters, in the constraints. The uncertain
constraints, which model conservation of traffic flow and capacity restrictions, are of
linear form, e.g.[10.0, 15.5]Xi +[5.2,12.0]Xj +[1.0,7.5]Xk≤ 100.0. An efficient means
to derive the solution enclosure consists of reformulating the UCSP into a standard
linear program (LP), and solving the latter using 2n optimisation runs of the Simplex
algorithm [19]. This reformulation allowed us to solve a non-linear model (UCSP with
parameters multiplied by real variables) in polynomial time. This was possible because
the enclosure of the solution to the UCSP at hand describes a convex space that can
be mapped to the solution space of a standard LP model. The challenge was thus to
reformulate the UCSP into the equivalent LP model, equivalent in terms of the solution
space they describe. The UCSP approach allowed us to diagnose the reliability of the
previously-used error correction methods.

While we approach these problems from a CP perspective, such issues have been
the primary motivation of the field ofreliable computing(see an overview in [11]).
Clearly, such reformulations do not exist for all uncertain constraints. For example,
uncertain linear constraints that do not describe a convex solution space can not be
reformulated in a manner that preserves the initial solution space (tightness property),
and simultaneously be tackled in polynomial time (tractability property) [1].

This paper addresses whether other UCSP models (besides interval LPs) can be re-
formulated as classical CSPs, in order to guarantee the tightness and tractability proper-
ties of respectively the solution enclosure and its derivation. We answer by investigating
properties of the constraints as opposed to properties of the solution space described.
After providing background (Sections 2 and 3), we present two novel sufficient condi-
tions (Sections 4 and 5), based on the algebraic properties of uncertain constraints, and
show how they can be checked in polynomial time for a fixed number of discrete pa-
rameters (Section 6). These conditions extend the monotone and row convex properties
of classical constraints. With these results, we extend the class of uncertain UCSPs that
can be tackled in polynomial time and classify as instances some previously identified
constraint classes (Section 7).

2 Background

This section presents the necessary background for the task we address. We introduce
the uncertain CSP, which includes parameters to model bounded uncertain data; the

solution enclosure; and the transformation resolution form that reformulates a UCSP
into an equivalent CSP, with respect to the solution it describes [20].

2.1 Preliminaries

A classical CSP is a tuple
〈
V ,D,C

〉
, whereV is a finite set of variables,D is the set

of corresponding domains, andC = {c1, . . . ,cm} is a finite set of constraints. A solution
is a complete consistent value assignment. We describe a CSP by a conjunction of its
constraints

∧
i ci (as opposed to the set of its allowed tuples). Similarly, we represent a

solution or set of solutions to a CSP by a conjunction of constraints.
A constraint is a relation between constants, variables and function symbols. The

constants we refer to ascoefficients. A coefficient may becertain (its value is known)
or uncertain(value not known). In a classical CSP, all the coefficients are certain. We
call an uncertain coefficient aparameter. The set of possible values of a parameterλi

is its uncertainty set, denotedUi . We say anuncertain constraintis one in which some
coefficients are uncertain. Observe that the coefficients in an uncertain constraint are
still constants; merely as parameters their exact values are unknown. For example, if
the parameterλ1 has uncertainty setU1 = {0,1,2}, the constraintX < λ1 is uncertain.
We assume independence of the parameters.

A realisationof the data is a fixing of the parameters to values from their uncertainty
sets. We say that any certain constraint corresponding to a realisation is arealisedcon-
straint, denoted ˆc∈ c. An uncertain constraint can have many realisations, as many as
the size of the Cartesian product of the uncertainty sets involved. We writeC for the
set of all (uncertain) constraints in a constraint domain, andĈ ⊂ C for the set of all
(certain) realised constraints.

2.2 Uncertain CSP and Solution Enclosures

Theuncertain CSPextends a classical CSP with an explicit description of the data that
allows us to reason with the uncertainty to derive reliable solution enclosures.

Definition 1 (UCSP).An uncertain constraint satisfaction problem
〈
V ,D,Λ,U,C

〉
is

a classical CSP
〈
V ,D,C

〉
in which some of the constraints may be uncertain. The finite

set of parameters is denoted byΛ, and the set of corresponding uncertainty sets byU.

Example 1.Let X1 andX2 both have domainsD1 = D2 = [1,3] ⊆ Z. Let λ1 andλ2 be
parameters with uncertainty setsU1 = {0,1,2} andU2 = {1,3,4} respectively. Consider
two constraints, both uncertain:c1 : X1 ≤ λ1λ2, andc2 :

(
X1 < X2 + λ1

)
∧
(
λ1 = 2⇒

X1 = X2
)
. Writing V = {X1,X2}, D = {D1,D2}, Λ = {λ1,λ2}, U = {U1,U2}, and

C = {c1,c2}, then
〈
V ,D,Λ,U,C

〉
is a UCSP. ut

The resolution to a UCSP modelP is a closure: a set of potential solutions. In
this paper we derive thecomplete solution enclosureCl(P). This corresponds to all
the solutions such that each is supported byat least onerealisation; each element of
Cl(P) is apotential solutionand thus should not be excluded. For brevity we call Cl(P)
just thesolution enclosure. The solution enclosure is not necessarily the outcome to
derive when the problem requires an objective function relating to the data (e.g. most

robust solution, covering set closure [8, 20]). For this case, which is beyond the scope
of this paper, alternative closures have been defined [18]. Note, however, that when
optimisation does not relate to the data uncertainty, deriving the solution enclosure is
meaningful, and can be combined with a reformulation approach.

Example 2.Let P be the UCSP of Example 1. The solution enclosure ofP in tuple
notation is(X1,X2) ∈ {(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}. ut

By reliable, informally, we mean faithful relative to our knowledge of the state of the
real world. The solution enclosure ensures reliability, given present knowledge of the
uncertain data, because it is the tightest description of the actual but unknown solution.

2.3 Deriving the Solution Enclosure

One means to derive the solution enclosure of a discrete UCSP (i.e. with discrete un-
certainty sets) is to enumerate the realisations. Under each realisation, the UCSP is a
classical CSP. By finding all solutions to each suchrealised CSP, and combining them,
the solution enclosure of the UCSP is obtained. As observed in [20], naive enumeration
can be improved, for example by exploiting algorithms for constructive disjunction [17].

Enumeration of realisations corresponds to enumeration of the values of the param-
eters. It is worth noting the comparison between enumeration andhidden variables.
Hidden variables are sometimes used when modelling a LSCO with a classical CSP;
these auxiliary variables help state the problem as a CSP but do not appear in the so-
lution [2]. While enumeration of parameter values is operationally similar to labelling
of hidden variables, parameters are semantically distinct, because their values cannot
be chosen by the user. They are an intrinsic part of the uncertainty captured with a
UCSP model, not an auxiliary aid to modelling; indeed, a UCSP may feature hidden
variables. The difference in semantics leads to a difference in outcome sought: with pa-
rameters, the solution enclosure (all potential solutions), whereas with hidden variables,
a complete consistent variable assignment projected onto the non-hidden variables (one
solution).

Since the complexity of enumeration can grow rapidly with the size of the uncer-
tainty sets, we seek to reformulate the UCSP into a tractable classical CSP such that
the problems are equivalent. Anequivalent CSP, denotedτ(P) with respect to a UCSP
P, is such that its complete solution set coincides with the solution enclosure ofP. A
reformulation approach is expected to have much lower complexity than enumeration.

To make precise equivalence of solution sets, we define the partial order� such
that:c1� c2 iff Cl (c1)⊆ Cl(c2). The equivalent CSP should satisfyP = τ(P) under�.
Formally, the equivalent CSP is found using acertain equivalence transform(CET):

Definition 2 (Certain Equivalence Transform). A mapτ : C→ Ĉ is a certain equiv-
alence transformif it (1) preserves certainty, i.e.τ(ĉ) = ĉ ∀ĉ∈ Ĉ; and (2) is a closure
operator, i.e. is increasing, monotone and idempotent. Increasing means c� τ(c); if
further τ(c)� c, we sayτ is a tight CET. ut

Thus a CET is tight if the complete solution set of the transformed problem coin-
cides with the solution enclosure of the UCSP; and is non-tight if the former (only)

encloses the latter. Non-tight CETscorrectlyapproximate the solution enclosure. They
are useful as an approximation when a tight CET is too expensive to compute or the
equivalent problem is too expensive to solve exactly.

In this paper we study when we can reformulate a UCSP, either discrete or con-
tinuous, into an equivalent, tractable CSP. We seek properties of a constraint class that
ensure a tight CET exists and that the equivalent CSP is tractable. For the CET, we want
to identify properties that imply Definition 2 and that are easy to check. If the CET or
equivalent CSP derived are too costly, then as a secondary aim we seek a non-tight CET.

To achieve both aims, we study the properties of classical constraints to see whether
any can be generalised. The intuition is a class of tractable CSP constraints may suggest
an analogous class of UCSP constraints where a tight and tractable reformulation exists.
We examine the discrete case before generalising to include the continuous case also.

3 Constraint Matrix Representation

Besides the monotone, functional and anti-functional classes ofbasicconstraints [16],
the tractable classes of classical constraints identified in the literature includerow con-
vex[15], max closed[10], andconnected row convex(CRC) [6]. Tractable means that
there exist polynomial time algorithms for a CSP with constraints of the given class. To
identify properties that can be extended for UCSPs, we first extend the constraint matrix
representation of a finite domain constraint to constraints with discrete parameters.

3.1 Matrix Representation of a Certain Constraint

Recall that a discrete, binary relation can be represented extensionally with aconstraint
matrix. This representation is useful to characterise properties of a constraint, because
algebraic properties of a constraint can be shown equivalent to geometric properties of
its constraint matrix representation [6,15].

Definition 3 (Constraint matrix). Let R be a binary relation between variables Xi and
Xj with domains Di and Dj respectively. Let M be a(0,1)-matrix representing R w.r.t.
total orders of Di and Dj . An element Mpq of the matrix is0 iff the tuple of(Di)p, the
pth element of Di , and (D j)q, the qth element of Dj , are prohibited by R; otherwise1
denotes a consistent tuple. We say M is aconstraint matrix representationof R. ut

Example 3.Let X1 andX2 both have domains[1,3]⊆ Z. Let Rbe the relationX1 < X2.
For the natural ordering ofZ, R is represented by the matrixM:0 1 1

0 0 1
0 0 0

 (1)

Recall now the concept of monotonicity. We writec(x,y) to denote that a certain
constraintc is satisfied by the tuple(x,y). A binary constraint ismonotoneiff there
exists a total ordering of the domains such that, for allx,y, c(x,y)⇒ c(x′,y′) ∀x′ < x
andy′ > y [16]; here⇒ denotes logical implication as usual. [15] show a constraint is
monotone iffMpq = 1⇒Mp′q = 1∀p′ ≤ p andMpq = 1⇒Mpq′ = 1∀q′ ≥ q. Observe
the constraintX1<X2 is monotone and its constraint matrix (1) obeys this property.ut

3.2 Matrix Representation of an Uncertain Constraint

We now define the matrix representation of an uncertain constraint. We use it to help
prove sufficient conditions for a CET in the discrete case. We can, optionally, also use
it to identify constraints which satisfy these conditions.

Definition 4 (Parameter constraint matrix). Let c∈ C be an uncertain constraint
with two discrete variables and one discrete parameter. For a given ordering of the
domains Di and Dj of the variables and the uncertainty set U of the parameterλ, a
constraint matrixfor c is a(0,1)-matrix M on three dimensions, where Mpqr = 1 ⇐⇒
Xi = (Di)p∧Xj = (D j)q is a consistent tuple for c under the realisationλ = (U)r . ut

Thus a matrix representation of an uncertain constraint has one classical constraint
matrix for each realised constraint. It is important to note a constraint matrix depends
on the orderings forD andΛ. Thus, as in the classical case, there may be many matrices
representing a constraint. We say a ‘column’Mpqr asr varies is afile of M.

Example 4.Let X1 andX2 both have domains[1,3]⊆ Z, and letλ1 be a parameter with
uncertainty set{0,1,2}. Let c be the uncertain constraintX1 < X2 + λ1. For the natural
ordering ofZ, c is represented by the matrixM:∣∣∣∣∣∣

0 1 1
0 0 1
0 0 0

∣∣∣∣∣∣
∣∣∣∣∣∣
1 1 1
0 1 1
0 0 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1 1 1
1 1 1
0 1 1

∣∣∣∣∣∣
 (2)

where we have written eachsheetof the third dimension of the matrix in order from left
to right. In the first sheetλ1 = 0, in the secondλ1 = 1, and in the last,λ1 = 2. ut

4 Two Sufficient Conditions

Recall the properties we seek must imply Definition 2, to give a sufficient condition
that a CET exists for the corresponding constraint classes. Moreover, we want to iden-
tify properties that are useful in practice: leading to a simple reformulation (i.e. both a
simple transformation and a tractable equivalent problem), easy to check, and holding
for a broad range of classes. We begin with binary constraints and a single parameter.

To specify a CET, we must specifyτ(c) ∀c. Consider a constraint matrixMc of an
uncertain constraintc∈ C. Observe that a tuple for the variables is a potential solution
iff there exists a 1 in the corresponding file ofMc. Thus a CET can be specified by:
(Mτ(c))pq = 1 if ∃r s.t. (Mc)pqr = 1. If further the converse holds, i.e. the last condi-
tion is ‘iff’, then the CET is tight. Without additional knowledge, however, to compute
this CET we must search forr s.t. (Mc)pqr = 1, which is essentially enumerating the
realisations. By restricting the constraint class, we seek properties that produce a more
practical CET. We want a simple means of knowing whether there is a 1 in each file.

We show that a distinguishing feature of monotonicity and row convexity, when
translated into parameters, is that they ensure contiguous bands of 1s in the files of the
constraint matrix. Forparameter monotone, we will show we can obtain a tight CET by
looking at the last sheet. This means we can derive the CET without enumeration, and
moreover without needing a matrix representation of the constraint. In contrast, when

we consider other properties of certain constraints, such as functional, max closed, and
CRC, we observe that non-contiguous 1s may arise in a file. This means we cannot
easily say where to look, to see whether there is a 1 in a file or not. We must search
through the elements of a file, which returns us to enumeration of realisations. Thus
there is no easy way to detect and derive a CET.

4.1 Parameter Monotone

We now give a first property, the analogue of monotone, that produces a CET that is
simple and easy to check. Forc ∈ C, we write ĉ(x,y; λ) to denote thatc under the
realisationλ1 = λ, written ĉλ, is satisfied by the tuple(x,y).

Definition 5 (Parameter monotone).Let c∈ C be an uncertain constraint with two
discrete variables and one discrete parameter. We say that c isparameter monotoneif
there exists a total ordering of the uncertainty set of the parameter such that:

∀λ ∈U1, ĉ(x,y; λ)⇒ ĉ(x,y; λ′) ∀λ′ > λ (3)

For example, the constraintX1 < X2 + λ1 is parameter monotone, but the constraint
X1 + X2 6= λ1 is not. Note that whether the realisations of an uncertain constraint are
monotone is unrelated to whether the constraint is parameter monotone: the former
concerns the variables (one sheet of the constraint matrix), while the latter concerns the
parameters (one file through all sheets).

The idea of the CET is: use the last sheet of a constraint matrix of each constraint.
For any uncertain constraint, this is a single, certain constraint that is easy to derive.
Moreover, given the ordering of the uncertainty set, this CET can be derived without
knowing the constraint matrix: we simply take the realised constraint corresponding
to the greatestλ value, as we will explain. In order to prove this CET for parameter
monotone constraints exists and is correct and tight, we link the algebraic definition of
parameter monotone with a geometric property of constraint matrices:

Proposition 6 (Parameter monotone constraint matrix).Let c∈C have a constraint
matrix M. There exists an ordering of the domains and uncertainty sets of c such that:

∀p,q, Mpqr = 1⇒Mpqr′ = 1∀r ′ ≥ r (4)

iff c is parameter monotone.

Proof. Suppose first that the property (4) holds for a constraint matrix ofc. Consider
any file Mpq. The elements in this file are a vector of form(0, . . . ,0,1, . . . ,1), i.e. a
sequence of 0s followed by a sequence of 1s (either but not both sequences may be
empty). Thus for any two realisationsλ1< λ2 of λ, we have ˆcλ1

⇒ ĉλ2
(since 0⇒ 1 and

1⇒ 1). But this is exactly the definition of parameter monotone in Definition 5. The
converse is argued similarly. ut

For example, the constraintX1 < X2 + λ1 from Example 4 is parameter monotone
and its constraint matrix (2) obeys the above property.

Proposition 6 is the basis of the proof that parameter monotonicity does lead to the
CET claimed above. Observe first the link between implication of uncertain constraints
and their ordering by�. Logical implication of uncertain constraints is defined by [20]:
if every assignment that satisfies some realisation ofc1 also satisfies some (not nec-
essarily the same) realisation ofc2, thenc1 implies c2. Observe that forc1,c2 ∈ C, if
c1⇒ c2 thenc1� c2. This meansc⇒ τ(c) is a sufficient condition thatc� τ(c), which
is a key step in the proof that the CET is correct.

Before giving the proof formally, we need a lemma describing when multiple con-
straints are parameter monotone. It may be that two constraints are both parameter
monotone, but only under incompatible orderings. Therefore we say two constraints
aresimultaneousparameter monotone if there exists an ordering of the uncertainty sets
involved such that both constraints are parameter monotone.

Lemma 7 (Simultaneous parameter monotone closed under conjunction).A con-
junction of simultaneous parameter monotone constraints is parameter monotone.

Proof. By induction, it suffices to look at the conjunction of two constraints,c1 and
c2. By hypothesis, both are parameter monotone under the same ordering. This means
there exists an ordering onU such that, for any values of the variables in the scope
of the constraints, the files in the constraint matricesMc1 andMc2 are vectors of the
form (0, . . . ,0,1, . . . ,1). If we take the conjunction of two such vectors, the result is a
vector of the same form, since a 1 can occur iff there is a 1 in both vectors, but then all
subsequent elements in both must be 1. This shows that the constraint matrix ofc1∧c2

obeys (4), and so by Proposition 6,c1∧c2 is parameter monotone. ut

For uncertainty sets drawn from domains such asZ, where there is a natural to-
tal order, simultaneous parameter monotonicity will frequently hold. Indeed, for such
sets, all constraints that are parameter monotone with respect to the natural order are
simultaneous parameter monotone. We are now able to prove the main result:

Proposition 8 (CET for parameter monotone constraints).If C consists of simulta-
neous parameter monotone constraints, then there exists a tight CET for P.

Proof. Supposec ∈ C is parameter monotone. There exists an ordering of the uncer-
tainty set ofλ such that the constraint matrixMc of c satisfies (4). Letλ be the greatest
value ofλ under this ordering, and defineτ(c) to bec under the realisationλ, which we
denote ˆcλ. By Definition 5 and Proposition 6, we have ˆc⇒ τ(c)∀ĉ∈ c, and soc� τ(c).
Thus the mapτc defined forc is increasing, and it is straight-forward to verify the other
properties of Definition 2 to confirm it is a CET. Moreover,τ(c) is a tight CET, since
τ(c)⇒ ĉ for some ˆc∈ c, which means thatτ(c)� c.

Now suppose we thus defineτc for eachc∈ C . We must show we can extend theτc

defined for the individual constraints to a CET for the combined constraintC =
∧

i ci .
SinceC consists of simultaneous parameter monotone constraints by hypothesis,C is
parameter monotone by Lemma 7. Thus there exists aτ for C and, by the proof of
Lemma 7, it isτ(C) =

∧
i τci (ci). Further, for the same reason as above,τ is tight. ut

Example 5(Example 4 continued).The parameter monotone constraintX1 < X2 + λ1

has CETX1 < X2 + λ1, i.e.X1 < X2 +2. Observe that the sheet of the constraint matrix
(2) corresponding toλ1 = 2 is the constraint matrix ofτ(c). ut

In Section 5 we extend parameter monotonicity to many variables and parameters.
However even for binary constraints and one parameter, it is a useful concept in practice:

Example 6.In a Simple Temporal Problem with Uncertainty (STPU) [13], the con-
straints have the form|Y−X| ≤ λ, whereλ has uncertainty set given by an interval. A
system of STPU constraints can be viewed as a UCSP. Its minimal network, which can
be obtained in polynomial time, is equivalent to the complete solution enclosure. The
tractable derivation of the solution enclosure is explained because STPU constraints are
parameter monotone. ut

Example 7.Consider a setC of binary monotone constraints. WhenC is simultane-
ous parameter monotone, a CET is obtained simply by taking the relevant bounds of
uncertainty sets, by Proposition 8. Eachc∈ C is transformed into a binary monotone
constraint. The complete solution set of the latter can be found in linear time (in the
number of variables) with a 2D integer hull algorithm [7]. For example,{−3,0,3}X ≤
2Z +{2,3,5} is transformed to−3X ≤ 2Z + 5, for X ≥ 0. Even for binary constraints,
note the parameter monotone property is required for this CET. A monotone basic con-
straint in general need not be parameter monotone; consider the constraint given by:(∣∣∣∣1 1

0 0

∣∣∣∣ ∣∣∣∣0 1
0 1

∣∣∣∣ ∣∣∣∣1 1
1 1

∣∣∣∣) (5)

4.2 Parameter Row Convex

We now identify a second property for the existence of a CET. This property, the ana-
logue of row convex, is a generalisation of parameter monotone. It applies to more
classes of constraints but produces a more complicated CET. Recall from [15] that a
relation isrow convexif in every row of its constraint matrix, all the 1s are consecutive.

Definition 9 (Parameter row convex).Let c∈ C be an uncertain constraint with two
discrete variables and one discrete parameter. We say that c isparameter row convexif
there exists a total ordering of the uncertainty set of the parameter such that in every
file of a constraint matrix of c, all the1s are consecutive. Geometrically:

∀p,q, ∃r1≤ r2 s.t. r1≤ r ≤ r2 ⇐⇒ Mpqr = 1 (6)

Parameter row convexity generalises parameter monotonicity, just as row convexity
generalises monotonicity. Intuitively, an uncertain constraintc is parameter row convex
if there is a contiguous band of 1s in every file of its constraint matrix; if, in every file,
this band extends to the greatestλ value, thenc is parameter monotone.

Example 8.Let X1 andX2 both have domains[1,3]⊆ Z, and letλ1 be a parameter with
uncertainty set{0,1,2}. Let c be the uncertain constraint

(
X1 < X2 + λ1

)
∧
(
λ1 = 2⇒

X1 = X2
)
. For the natural ordering ofZ, c is represented by the matrixM:∣∣∣∣∣∣

0 1 1
0 0 1
0 0 0

∣∣∣∣∣∣
∣∣∣∣∣∣
1 1 1
0 1 1
0 0 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
 (7)

where we have written the matrix as before.c is not parameter monotone, because
M132 = 1 butM133 = 0, but it is parameter row convex. ut

The CET for parameter row convex constraints extends the idea used for parameter
monotone constraints. For the latter we used ˆc under the realisationλ; the CET was
independent of the value of the variables. Since now we may have ˆcλ 6⇒ ĉλ for some
realisationλ (if there arep,q such thatMpqλ = 1 butMpqλ = 0), we cannot simply use

the last sheetλ of the constraint matrix. Instead, we define the CET depending on the
value of the variables. For each tuple, we use the maximalλpq such thatMpqλpq = 1;
such aλpq uniquely exists for each file by the parameter row convex property.

We say two constraints aresimultaneousparameter row convex if there exists an
ordering of the uncertainty sets involved such that both constraints are parameter row
convex, and for each(p,q), (λ1)pq = (λ2)pq. The second part of the condition means
the maximalλpq is the same for both constraints, for any tuple of the variables.1 This
means, according to the proof of the next theorem (omitted for lack of space, but along
the lines of Proposition 8), that we can defineτ(c) to be the conjunction:∧

p,q

(
X1 = p∧X2 = q⇒ ĉλpq↓pq

)
(8)

wherec↓pq is the projection of a certain constraintc∈ Ĉ onto the tupleX1 = p∧X2 = q.

Proposition 10 (CET for parameter row convex constraints).If C consists of simul-
taneous parameter row convex constraints, then there exists a tight CET for P.ut

Example 9(Example 8 continued).The parameter row convex constraint
(
X1 < X2 +

λ1
)
∧
(
λ1 = 2⇒ X1 = X2

)
is transformed by the CET (8) into the conjunction of:

X1 = 1∧X2 = 1 =⇒ X1 < X2 +2

X1 = 2∧X2 = 1 =⇒ ⊥
X1 = 3∧X2 = 1 =⇒ ⊥
X1 = 1∧X2 = 2 =⇒ X1 < X2 +1

X1 = 2∧X2 = 2 =⇒ X1 < X2 +2

X1 = 3∧X2 = 2 =⇒ ⊥
X1 = 1∧X2 = 3 =⇒ X1 < X2 +1

X1 = 2∧X2 = 3 =⇒ X1 < X2 +1

X1 = 3∧X2 = 3 =⇒ X1 < X2 +2

(9)

which reduces to the more compact:(
X1 = X2⇒ X1 < X2 +2

)
∧
(
X1 6= X2⇒ X1 < X2 +1

)
(10)

While parameter row convexity is defined in terms of a constraint matrix represen-
tation, the CET (8) is independent of it. However, to produce the CET we need to know

1 In contrast to classical row convexity, for parameter row convex constraints it is not true that a
local intersection point implies a global intersection point. That is, w.r.t. a given ordering, any
pair of parameter row convex vectors will have a 1 in their conjunction, but this 1 need not be
in the same place between different pairs. Hence the second part of the condition is required.

the λpq and, without additional knowledge about the constraints, a matrix representa-
tion may be necessary to find theλpq. This is in contrast to parameter monotone, where
to produce the CET we need only know the ordering of the uncertainty set.

Moreover, the CET for a general parameter row convex constraint is a conjunction,
with as many terms as the size of the Cartesian product of the variable domains. This
is too unwieldy to be useful unless we can combine some of the conjuncts, as in Ex-
ample 9. When we can combineall conjuncts, so the head of the clause in (8) is the
universal constraint, then we have a parameter monotone constraint.

5 Multiple Parameters

The above results were stated for discrete binary constraints with a single parameter.
It is not difficult to see they hold also for unary constraints; the question is how to
generalise to non-binary constraints and to multiple parameters.

We generalise to non-binary uncertain constraints readily, because neither the defi-
nition of parameter monotone (Definition 5) nor of parameter row convex (Definition 9)
depends on the number of variables. Each sheet of a constraint matrix is now itself an
n-dimensional matrix, wheren is the number of variables. Although this hampers one’s
intuition, the algebraic results are unaffected.

We generalise to multiple parameters as follows. [15] generalise a property to classi-
cal non-binary constraints by stating: a property holds for a non-binary constraintc∈ Ĉ
if, for every pair of variables, the corresponding property holds for the binary constraint
obtained by projecting onto that pair, i.e. ifc↓pq obeys the property∀p,q.

To make a similar generalisation we must define the projection, orrestriction, of
an uncertain constraint to one parameter. Forc∈ C, let c↓λ be a restriction ofc to the
parameterλ: a one-parameter constraint obtained by considering all other parameters
to be constants, for some tuple of values from their uncertainty sets. Note only the
mutually consistent values for the other parameters (those that obey all data constraints)
need be considered. Then we can say a property holds for an uncertain constraintc with
` ≥ 1 parameters if, for every parameterλ, the corresponding simultaneous property
holds forall restrictionsc↓λ. If u is the maximum size of an uncertainty set, then the
number of restricted constraints ofc is at mostO(`u`−1).

Informally, a property holds for aǹ-parameter uncertain constraint if, in its multi-
dimensional constraint matrix, each slice parallel to one parameter axis and to all of the
variable axes obeys the property, and the orderings of the uncertainty sets are compat-
ible. This is a strong extension in that it requires the constraint to be simultaneously
parameter monotone (resp. parameter row convex) for all restrictions to one parameter.

Example 10.Consider the constraintc: X ≤ λ1λ2, whereλ1 andλ2 have uncertainty
sets{0,1,2} and{1,3,4} respectively. A restriction ofc to λ1 is X ≤ 3λ1; there are
three such restrictionsc↓λ1

, one for each value ofλ2 in U2. Now if either parameter is
assumed to be a constant (any value from its uncertainty set) then the resulting restricted
constraint is parameter monotone; every restriction ofc is thus parameter monotone.
Moreover, since all the restrictionsc↓λ1

use the same total order ofU1, they are simul-
taneous parameter monotone; likewise for thec↓λ2

. Hencec is parameter monotone.

X1 1 32

λ

X2

−→ X1



X2 = 1

X2 = 2

X2 = 3



Figure 1.Slicing the matrix of a binary uncertain constraint. The left-hand cube is the parameter
constraint matrix; the files are depicted on the z-axis. The matrix is sliced vertically along the
values ofX2, and rearranged to form the right-hand matrix

The consequence of this strong extension is that the CET sufficiency results extend
simply, provided the parameters are independent. For a parameter monotone constraint
c, we haveτ(c) = ĉ whereĉ corresponds toc under the realisation(λ1, . . . ,λ`), i.e. the
greatest value of each of the parameters independently.

For a parameter row convex constraint, letv be a tuple of values for the variables.
In the binary case,v = (p,q) as before. We haveτ(c) = ĉ whereĉ corresponds to the
realisation((λ1)v, . . . ,(λ`)v). Here,(λi)v is the greatest value ofλi such thatMvλi

= 1.
In general, however, multiple parameters will not be independent. Lack of space

forces us to sketch the consequences. For parameter monotonicity (but not parameter
row convexity), it can be shown that the above CET is still correct, but is no longer tight.
This means that a non-tight CET is found by assuming the parameters are independent.
For instance, consider Example 10 with the additional constraintλ1 + λ2≤ 4.

6 Checking the Sufficient Conditions

We have stated and proved two sufficient conditions for the existence of a CET: param-
eter monotone and parameter row convex. We have shown how they apply to discrete
uncertain constraints with arbitrary numbers of variables and parameters. We now give
a method to test whether these properties hold for a binary uncertain constraint.2

One way to determine whether the parameter monotone property holds for a con-
straint is to use its characterisation in terms of the constraint matrix, Proposition 6. To
check this condition forc∈ C, we need to find a simultaneous ordering of the uncer-
tainty sets such that each file of the constraint matrixMc is a sequence of zeros followed
by a sequence of ones. An elegant result from computational graph theory states that for
a m×n (0,1)-matrix with k non-zero entries, we can test in linear time (O(m+ n+ k))
for the existence of a permutation of the columns such that the matrix is row convex [4].
Granted the constraint matrix, we can use this result to test for both parameter mono-
tonicity and row convexity, for each parameter in turn.

Suppose first there is one parameter. We take the matrixMc and cut it into parallel
slices along the parameter dimension, as Fig. 1 illustrates. This gives us|D2| slices
of size |D1| × |U1| each. Arrange the slices in a column, to give a|D1| × |D2| × |U1|
2 An open issue is whether the method can be extended forn-ary uncertain constraints.

matrix, and test for row convexity. By permuting the columns of the assembled matrix,
we test for a permutation of the uncertainty set of the parameter. If a permutation is
found that makes the assembled matrix row convex, this corresponds to an ordering on
the uncertainty set such that each file of the original constraint matrixMc is row convex.
This meansc is parameter row convex. Of course,c may be parameter monotone but not
parameter row convex. We can test directly for monotonicity by adapting the algorithm
of [4] to require the consecutive ones to finish at the end of each row, and not before.

Suppose now there are multiple parameters. We perform the above procedure for
each restricted constraint. If all pass, we cannot yet concludec is parameter row convex,
because the restricted constraints must be simultaneous row convex. Thus we must
additionally test that the same permutation is used for each restricted constraint. This
suffices to prove parameter monotonicity. For parameter row convexity, the definition of
simultaneous further requires that theλpq agree for each file. We can check this at cost
O(d2), whered is the maximum domain size, for each pair of restricted constraints.
Both these additional tests may be performed incrementally between each restricted
constraint and the last. In total, the test takes linear time in the size of the product of
the variable domains and the uncertainty set (O(d2 + u+ ud2) = O(ud2)) for a one-
parameter constraint. Thus with` parameters, the total time complexity isO(`u`d2).

7 Reformulation for Continuous UCSPs

Parameter monotonicity and row convexity can both produce a tight CET. For both,
the CET is defined independently of any constraint matrix representation. The matrix
representation is a tool useful in identifying the conditions in the discrete case. Because
it is not necessary for their definition, in principle both conditions apply to continuous
constraints, i.e. to a UCSP with continuous uncertainty sets.

For parameter monotone, the CET simply takes the constraints under their maximal
realisations. This is done for continuous parameters as easily for discrete parameters.
For parameter row convex, the CET depends on the value of the variables and thus may
be more complicated: both derivation of the CET itself and the form of the equivalent
problem it yields. We have seen that this CET may simplify, but also that we may need
to know a matrix representation to derive it.

Tractability of Polynomial Inequality Constraints Motivated by a real-world UCSP,
we now exhibit a class of constraints where we can prove a priori that parameter row
convexity holds. The class we consider is polynomial inequality constraints, such as
λ1X +λ2Y≤ µ, whereλi andµ are parameters. This is an instance where the CET does
indeed simplify enough to become practical.

Proposition 11 (Parameter row convex CET for polynomial inequality constraints).
LetC consist of polynomial inequality constraints overZ, where the coefficients of each
term are single parameters and each constraint features at least one variable. If the un-
certainty sets can be simultaneously totally ordered, then there exists a tight CET.ut

For lack of space the proof is omitted. It constructs explicitly the CET. Taking a
generalc∈ C , for each tuple of values for the variables, we can partition the parameters

0

1

2

3

4

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��

��

−4

−3

−2

−1

21.510.5−0.5−1 0

3−4*x
−3+4*x

Figure 2. Polynomial inequality CET described by two constraints, shown by the upper and
lower shaded areas; the solution to every realised constraint lies in one of them

into two sets. The ‘left-hand’ parametersλ we minimise to their lower boundsλ; the
‘right-hand’ parametersµ we maximise to their upper boundsµ.

Example 11.Consider the UCSP with variablesX,Y ∈ Z and the single constraint:

λ1X + λ2Y ≤ µ (11)

where the uncertainty sets for the parameters are integer intervals:Uλ1
= [4,5], Uλ2

=
[−1,0,1], Uµ = [2,3]. The CET of Proposition 11 transforms (11) into a classical con-
straint according to: {

Y ≥−3+4X if Y ≥ 0

Y < 3−4X if Y < 0
(12)

Thus we transform a parameter row convex uncertain constraint into a piecewise
monotone constraint, which is depicted in Fig. 2. Across all the assignments for the
variables, only two partitions of the parameters arise for (11). These are the two cases
of (12). In both cases, the transformed constraintτ(c) involves only extremal values of
the parameters. In fact,λ1 is always a ‘left-hand’ parameter andµ always a ‘right-hand’
parameter.λ2 is on the left- or right-hand side depending on the sign ofY. ut

It can be shown that Proposition 11 holds also for similar constraints overR [18].
In particular, linear constraints over the reals with non-negative variables are a special
case of Proposition 11. The domain constraintsX ≥ 0 restrict the solution space to the
positive orthant. The CET is given by a single case, which depends only on the sign of
the coefficients [19]. We can see this situation in Fig. 2 restricted to the positive orthant:
when X,Y ≥ 0, the solution enclosure of the UCSP is given byY ≥ −3+ 4X. The
network inference LSCO problem introduced earlier features constraints of this class.

The CET (8) for parameter row convex constraints involves one term for each tuple
of variable values. As we remarked earlier, in general it is not practical to form a CET by
considering each such element ofD. Often, however, the CET turns out to be described
by a small number of cases given by ranges of values, as Example 11 illustrates. The
next example shows another instance of Proposition 11 where the CET involves many
fewer terms than the general case.

Example 12.Let Xj be variables overZ or R. Consider a polynomial arithmetic con-
straint with a single parameter as follows:∑i ai ∏ j X

ei j
j ≤ µ, whereai ,ei j ∈ N are con-

stant coefficients. Proposition 11 tells us this constraint is parameter row convex. More-
over, in fact it is parameter monotone, with CET∑i ai ∏ j X

ei j
j ≤µ, whereµ is the greatest

value inUµ under the natural order. ut

8 Conclusion and Future Work

In this paper we have addressed the challenge of tractably solving an uncertain CSP for
its solution enclosure, by reformulating the problem into an equivalent CSP. We have
identified two sufficient conditions on the constraint class, parameter monotone and
parameter row convex, which ensure a reformulation into a tractable CSP. The transfor-
mation is achieved by a CET, whose existence and practicality is guaranteed by these
properties. It transforms the UCSP into an equivalent classical CSP, whose complete so-
lution set is the solution enclosure sought. Thus solving the UCSP is tractable provided
deriving this latter solution set is.

Parameter monotonicity is useful because it tells us a CET exists when we take
the extremal values of the uncertainty sets, usually under the natural order or its re-
verse. Parameter row convexity is more general, but its use depends on how many of
the conjuncts in its CET combine; it is practical if only a few terms remain, such as in
Example 11. It is important to note, however, that both conditions we proved are suffi-
cient but not necessary. For example, while constraint (5) is not parameter row convex,
a CET is given by its realisation underλ.

The two conditions suggest situations when reformulation of an uncertain CSP is
more effective than direct solving based on enumerating the realisations. The solution
enclosure can be derived without considering all realisations, and hence the complexity
is much less. Although the algorithm we gave to check the conditions works with a
constraint matrix representation (which is a form of enumeration), the CETs described
in this paper do not depend on any matrix representation. Nonetheless, unless we have
specific knowledge about the constraints (e.g. in Example 11, on the sign of the vari-
ables), to derive the CET for a parameter row convex constraint may require some
search through its matrix representation.

Since a UCSP is a restricted form of a quantified CSP (QCSP), our contribution
can be seen as an efficient solving method for a subclass of QCSPs with practical ap-
plications. We would like to investigate whether generic QCSP solvers (e.g. [12]) can
be adapted to exploit the restricted quantification found in a UCSP. In future work we
also plan to examine other properties of the constraints in a UCSP that make it con-
ducive to reformulation. For example, we wish to explore the structure of the constraint
graph, to see whether analogous results be drawn for UCSPs as for CSPs, for instance
on bounded tree width.

Acknowledgements. The authors thank W. Harvey, A. Sadler, and T. Winterer for
discussions, and the reviewers for their suggestions. This work was partially supported
by the EPSRC under grant GR/N64373/01.

References

[1] G. Alefeld, V. Kreinovich, and G. Mayer. On the solution sets of particular classes of linear
systems.J. Computational and Applied Mathematics, 152:1–15, 2003.

[2] F. Bacchus, X. Chen, P. van Beek, and T. Walsh. Binary vs. non-binary constraints.Artifi-
cial Intelligence, 140(1–2):1–37, 2002.

[3] Y. Ben-Haim. Set-models of information-gap uncertainty: Axioms and an inference
scheme.J. Franklin Institute, 336:1093–1117, 1999.

[4] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs,
and graph planarity using P-Q tree algorithms.J. Computational and Systems Science,
13:335–379, 1976.

[5] M. Christie, E. Langúenou, and L. Granvilliers. Modeling camera control with constrained
hypertubes. InProc. of CP’02, LNCS 2470, pages 618–632, Ithaca, NY, Sept. 2002.

[6] Y. Deville, O. Barette, and P. Van Hentenryck. Constraint satisfaction over connected row
convex constraints.Artificial Intelligence, 109(1-2):243–271, 1999.

[7] W. Harvey. Computing two-dimensional integer hulls.SIAM J. Computing, 28(6):2285–
2299, Aug. 1999.

[8] E. Hebrard, B. Hnich, and T. Walsh. Super solutions in constraint programming. InProc.
of CP-AI-OR’04, pages 157–172, Nice, France, Apr. 2004.

[9] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter.Applied Interval Analysis. Springer, 2001.
[10] P. Jeavons and M. Cooper. Tractable constraints on ordered domains.Artificial Intelligence,

79(2):327–339, 1995.
[11] R. B. Kearfott. Interval computations: Introduction, uses, and resources.Euromath Bulletin,

2(1), 1996.
[12] N. Mamoulis and K. Stergiou. Algorithms for quantified constraint satisfaction problems.

In Proc. of CP’04, Toronto, Canada, Sept. 2004.
[13] P. Morris, N. Muscettola, and T. Vidal. Dynamic control of plans with temporal uncertainty.

In Proc. of IJCAI’01, pages 494–502, Seattle, WA, Aug. 2001.
[14] D. Sam-Haroud and B. Faltings. Consistency techniques for continuous constraints.Con-

straints, 1(1/2):85–118, 1996.
[15] P. van Beek and R. Dechter. On the minimality and global consistency of row-convex

constraint networks.J. ACM, 42:543–561, 1995.
[16] P. Van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc-consistency algorithm and

its specializations.Artificial Intelligence, 57(2–3):291–321, 1992.
[17] P. Van Hentenryck, V. A. Saraswat, and Y. Deville. Design, implementation, and evaluation

of the constraint language cc(FD).J. Logic Programming, 37(1–3):139–164, 1998.
[18] N. Yorke-Smith.Reliable Constraint Reasoning with Uncertain Data. PhD thesis, IC-Parc,

Imperial College London, June 2004.
[19] N. Yorke-Smith and C. Gervet. Data uncertainty in constraint programming: A non-

probabilistic approach. InProc. of AAAI 2001 Fall Symposium on Using Uncertainty within
Computation, Nov. 2001. Available at:www-users.cs.york.ac.uk/˜tw/fall/ .

[20] N. Yorke-Smith and C. Gervet. Certainty closure: A framework for reliable constraint
reasoning with uncertainty. InProc. of CP’03, LNCS 2833, pages 769–783, Sept. 2003.

