Tight and Tractable Reformulations for Uncertain CSPs

Neil Yorke-Smith and Carmen Gervet

IC—Parc, Imperial College London, SW7 2AZ, U.K.
{nys,cg6 }@icparc.ic.ac.uk

Abstract Various extensions of the CSP framework exist to address ill-defined,
real-world optimisation problems. One extension, theertain CSP(UCSP)
tackles the aspect of data errors and incompleteness by ensuring that the problem
is faithfully represented with what is known for sure about the data, and by seek-
ing reliable solutions that do not approximate such uncertainties. The extended
model has a great impact on the solving complexity. For instance, by introducing
bounded interval coefficients, the default representation of an arithmetic linear
constraint is of degree 2. A challenge lies in determining constraint classes that
allow one to reformulate the UCSP model such that polynomial algorithms ex-
ist. In this paper we present two novel sufficient conditions, built on algebraic
properties of constraints, that ensure a tractable reformulation exists. We give an
algorithm to test for the conditions for binary constraints, and demonstrate as
instances some previously identified practical UCSP reformulations.

1 Introduction

Constraint Programming (CP) has proved an effective paradigm to model and solve
large scale combinatorial optimisation (LSCO) problems from disparate domains. To
date, however, there has been little work on accommodating data uncertainty within
CP, apart from seeking a solution that holds in the greatest number of circumstances.

We address the task of modelling and solving uncertain problems where data uncer-
tainty arises due to incomplete or erroneous measurements. It raises the issue of faith-
fully representing the problem and deriving reliable results that do not approximate the
data measurements, but rather take them into account during computation. This form
of data uncertainty is ubiquitous in many application domains (e.g. camera control [5],
engineering design [3], network inference [20], robot motion [9]). A common CP ap-
proach consists of approximating such uncertainties to reach a satisfiable deterministic
model, by selecting representative values for the data (e.g. mean values) or using some
preliminary error-correction methods. However, the derived model would not ensure a
faithful representation of the problem and thus not guarantee reliable solutions.

In this paper we build on the Uncertain Constraint Satisfaction Problem (UCSP)
model, introduced in [20], which aims at providing reliable information by enclosing
the data uncertainty with what is known for sure about it, thus guaranteeing a faith-
ful representation of the user’s problem. The data enclosure is commonly specified by
bounded uncertain coefficients in the problem constraints.

* Present address: SRI International, Menlo Park, CA, USAmith@ai.sri.com

Proceedings of CP’04 Workshop on Modelling and Reformulating Constraint Satisfaction
Problems, Toronto, Canada, Sept. 2004. Some minor oversights are corrected in this version.

The outcome derived is such that it infers as much information as can be inferred
about the problem, given the present knowledge of the uncertain data. Wescdill-it
tion enclosuresince it can be interpreted as a safe enclosure of the actual but unknown
solution; it corresponds in practice to the space of all potential solutions to the UCSP.
Given that the data uncertainty can come from erroneous measurements, a central ad-
vantage of deriving the solution enclosure is that no optimisation criterion is necessarily
required: we do not need to attempt to pick out one ‘best’ (e.g. most robust) solution.
Moreover, in applications such as design, configuration, and diagnosis, it is important to
be able to explore the space of solutions systematically whether there is data uncertainty
or not (e.g. see [14]) and whether the data is discrete or continuous.

A representative diagnosis LSCO problem, previously modelled as a UCSP, arises in
network inference [20]. The traffic volume measurements are uncertain data modelled
by closed interval coefficients, known parametersin the constraints. The uncertain
constraints, which model conservation of traffic flow and capacity restrictions, are of
linear form, e.g[10.0, 15.5]X; +-[5.2,12.0]X; +-[1.0,7.5]X, < 100.0. An efficient means
to derive the solution enclosure consists of reformulating the UCSP into a standard
linear program (LP), and solving the latter using &timisation runs of the Simplex
algorithm [19]. This reformulation allowed us to solve a non-linear model (UCSP with
parameters multiplied by real variables) in polynomial time. This was possible because
the enclosure of the solution to the UCSP at hand describes a convex space that can
be mapped to the solution space of a standard LP model. The challenge was thus to
reformulate the UCSP into the equivalent LP model, equivalent in terms of the solution
space they describe. The UCSP approach allowed us to diagnose the reliability of the
previously-used error correction methods.

While we approach these problems from a CP perspective, such issues have been
the primary motivation of the field afeliable computing(see an overview in [11]).
Clearly, such reformulations do not exist for all uncertain constraints. For example,
uncertain linear constraints that do not describe a convex solution space can not be
reformulated in a manner that preserves the initial solution space (tightness property),
and simultaneously be tackled in polynomial time (tractability property) [1].

This paper addresses whether other UCSP models (besides interval LPs) can be re-
formulated as classical CSPs, in order to guarantee the tightness and tractability proper-
ties of respectively the solution enclosure and its derivation. We answer by investigating
properties of the constraints as opposed to properties of the solution space described.
After providing background (Sections 2 and 3), we present two novel sufficient condi-
tions (Sections 4 and 5), based on the algebraic properties of uncertain constraints, and
show how they can be checked in polynomial time for a fixed number of discrete pa-
rameters (Section 6). These conditions extend the monotone and row convex properties
of classical constraints. With these results, we extend the class of uncertain UCSPs that
can be tackled in polynomial time and classify as instances some previously identified
constraint classes (Section 7).

2 Background

This section presents the necessary background for the task we address. We introduce
the uncertain CSP, which includes parameters to model bounded uncertain data; the

solution enclosure; and the transformation resolution form that reformulates a UCSP
into an equivalent CSP, with respect to the solution it describes [20].

2.1 Preliminaries

A classical CSP is a tupléﬂ/, D, C>, where? is a finite set of variable<D is the set

of corresponding domains, aat= {ci,...,Cm} is a finite set of constraints. A solution

is a complete consistent value assignment. We describe a CSP by a conjunction of its
constraints\; ¢; (as opposed to the set of its allowed tuples). Similarly, we represent a
solution or set of solutions to a CSP by a conjunction of constraints.

A constraint is a relation between constants, variables and function symbols. The
constants we refer to amefficientsA coefficient may beertain (its value is known)
or uncertain(value not known). In a classical CSP, all the coefficients are certain. We
call an uncertain coefficient garameter The set of possible values of a parameter
is its uncertainty setdenotedJ;. We say aruncertain constraints one in which some
coefficients are uncertain. Observe that the coefficients in an uncertain constraint are
still constants; merely as parameters their exact values are unknown. For example, if
the parametek; has uncertainty séi; = {0,1,2}, the constrainX < A1 is uncertain.

We assume independence of the parameters.

A realisationof the data is a fixing of the parameters to values from their uncertainty
sets. We say that any certain constraint corresponding to a realisatiozeaitsadcon-
straint, denoted & c. An uncertain constraint can have many realisations, as many as
the size of the Cartesian product of the uncertainty sets involved. We @ifiice the
set of all (uncertain) constraints in a constraint domain, @nd C for the set of all
(certain) realised constraints.

2.2 Uncertain CSP and Solution Enclosures

Theuncertain CSRextends a classical CSP with an explicit description of the data that
allows us to reason with the uncertainty to derive reliable solution enclosures.

Definition 1 (UCSP).An uncertain constraint satisfaction problém’, DN\, U, C> is
a classical CSR V,D, C> in which some of the constraints may be uncertain. The finite
set of parameters is denoted Ayand the set of corresponding uncertainty set<by

Example 1.Let X; andX; both have domainB; = D, = [1,3] C Z. Let A1 andA; be
parameters with uncertainty séts= {0,1,2} andU, = {1, 3,4} respectively. Consider
two constraints, both uncertainj : X3 < A1Az, andcz @ (X1 < Xo+ A1) A(Ap=2=
X1 = Xz). Writing ¥ = {X1,%X2}, D ={D1,D2}, A = {A1,A2}, U ={U;1,U}, and
C = {c1,¢2}, then(V,D,A, U, C) is a UCSP. i

The resolution to a UCSP modelis aclosure a set of potential solutions. In
this paper we derive theomplete solution enclosu@l(P). This corresponds to all
the solutions such that each is supportedabjeast onerealisation; each element of
CI(P) is apotential solutiorand thus should not be excluded. For brevity we calPCI
just thesolution enclosureThe solution enclosure is not necessarily the outcome to
derive when the problem requires an objective function relating to the data (e.g. most

robust solution, covering set closure [8, 20]). For this case, which is beyond the scope
of this paper, alternative closures have been defined [18]. Note, however, that when
optimisation does not relate to the data uncertainty, deriving the solution enclosure is
meaningful, and can be combined with a reformulation approach.

Example 2.Let P be the UCSP of Example 1. The solution enclosurd af tuple
notation is(X1,Xz) € {(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}- 0

By reliable, informally, we mean faithful relative to our knowledge of the state of the
real world. The solution enclosure ensures reliability, given present knowledge of the
uncertain data, because it is the tightest description of the actual but unknown solution.

2.3 Deriving the Solution Enclosure

One means to derive the solution enclosure of a discrete UCSP (i.e. with discrete un-
certainty sets) is to enumerate the realisations. Under each realisation, the UCSP is a
classical CSP. By finding all solutions to each suedlised CSPand combining them,

the solution enclosure of the UCSP is obtained. As observed in [20], naive enumeration
can be improved, for example by exploiting algorithms for constructive disjunction [17].

Enumeration of realisations corresponds to enumeration of the values of the param-
eters. It is worth noting the comparison between enumeratiorhatkn variables
Hidden variables are sometimes used when modelling a LSCO with a classical CSP;
these auxiliary variables help state the problem as a CSP but do not appear in the so-
lution [2]. While enumeration of parameter values is operationally similar to labelling
of hidden variables, parameters are semantically distinct, because their values cannot
be chosen by the user. They are an intrinsic part of the uncertainty captured with a
UCSP model, not an auxiliary aid to modelling; indeed, a UCSP may feature hidden
variables. The difference in semantics leads to a difference in outcome sought: with pa-
rameters, the solution enclosure (all potential solutions), whereas with hidden variables,
a complete consistent variable assignment projected onto the non-hidden variables (one
solution).

Since the complexity of enumeration can grow rapidly with the size of the uncer-
tainty sets, we seek to reformulate the UCSP into a tractable classical CSP such that
the problems are equivalent. Aguivalent CSPdenoted: (P) with respect to a UCSP
P, is such that its complete solution set coincides with the solution enclosirefof
reformulation approach is expected to have much lower complexity than enumeration.

To make precise equivalence of solution sets, we define the partial grdach
that:c; < ¢ iff Cl (c1) C Cl(cp). The equivalent CSP should sati$?fy= 1(P) under=.
Formally, the equivalent CSP is found usingetain equivalence transfor(CET):

Definition 2 (Certain Equivalence Transform). A mapt : C — C is acertain equiv-
alence transfornf it (1) preserves certainty, i.&(€) = € V€ € C; and (2) is a closure
operator, i.e. is increasing, monotone and idempotent. Increasing meang©); if
furthert(c) < c, we say is atight CET. O

Thus a CET is tight if the complete solution set of the transformed problem coin-
cides with the solution enclosure of the UCSP; and is non-tight if the former (only)

encloses the latter. Non-tight CETerrectly approximate the solution enclosure. They
are useful as an approximation when a tight CET is too expensive to compute or the
equivalent problem is too expensive to solve exactly.

In this paper we study when we can reformulate a UCSP, either discrete or con-
tinuous, into an equivalent, tractable CSP. We seek properties of a constraint class that
ensure a tight CET exists and that the equivalent CSP is tractable. For the CET, we want
to identify properties that imply Definition 2 and that are easy to check. If the CET or
equivalent CSP derived are too costly, then as a secondary aim we seek a non-tight CET.

To achieve both aims, we study the properties of classical constraints to see whether
any can be generalised. The intuition is a class of tractable CSP constraints may suggest
an analogous class of UCSP constraints where a tight and tractable reformulation exists.
We examine the discrete case before generalising to include the continuous case also.

3 Constraint Matrix Representation

Besides the monotone, functional and anti-functional classkbasi€constraints [16],

the tractable classes of classical constraints identified in the literature imolwdmn-
vex[15], max closed10], andconnected row convglCRC) [6]. Tractable means that
there exist polynomial time algorithms for a CSP with constraints of the given class. To
identify properties that can be extended for UCSPs, we first extend the constraint matrix
representation of a finite domain constraint to constraints with discrete parameters.

3.1 Matrix Representation of a Certain Constraint

Recall that a discrete, binary relation can be represented extensionallycuitisizaint

matrix. This representation is useful to characterise properties of a constraint, because
algebraic properties of a constraint can be shown equivalent to geometric properties of
its constraint matrix representation [6, 15].

Definition 3 (Constraint matrix). Let R be a binary relation between variablgsaxd
X; with domains Dand D; respectively. Let M be €0, 1)-matrix representing R w.r.t.
total orders of [and Dj. An element M, of the matrix isO iff the tuple of(D;)p, the
p" element of R and (Dj)q, the d" element of [, are prohibited by R; otherwisg
denotes a consistent tuple. We say M @oastraint matrix representatiof R. ad

Example 3.Let X; andX; both have domaind, 3] C Z. Let R be the relatiorX; < Xz.
For the natural ordering &, Ris represented by the matiik:

017
001 1
000

Recall now the concept of monotonicity. We writéx,y) to denote that a certain
constraintc is satisfied by the tupléx,y). A binary constraint isnonotoneff there
exists a total ordering of the domains such that, foxall c(x,y) = c(X,y) ¥X < x
andy > y [16]; here= denotes logical implication as usual. [15] show a constraint is
monotone iffMpg = 1= Myq=1Vp' < pandMpg=1= Mpy = 1Vq > q. Observe
the constraink; < Xz is monotone and its constraint matrix (1) obeys this property.

3.2 Matrix Representation of an Uncertain Constraint

We now define the matrix representation of an uncertain constraint. We use it to help
prove sufficient conditions for a CET in the discrete case. We can, optionally, also use
it to identify constraints which satisfy these conditions.

Definition 4 (Parameter constraint matrix). Let ce C be an uncertain constraint
with two discrete variables and one discrete parameter. For a given ordering of the
domains D and Dj of the variables and the uncertainty set U of the paramatea
constraint matriXor c is a (0, 1)-matrix M on three dimensions, wherg,M=1 <~

X = (Di)p AXj = (Dj)q is a consistent tuple for c under the realisatidve= (U);. O

Thus a matrix representation of an uncertain constraint has one classical constraint
matrix for each realised constraint. It is important to note a constraint matrix depends
on the orderings fof> andA. Thus, as in the classical case, there may be many matrices
representing a constraint. We say a ‘colurivhyq asr varies is dile of M.

Example 4.Let X; andX; both have domainfd, 3] C Z, and let\; be a parameter with
uncertainty se{0,1,2}. Let ¢ be the uncertain constraiKi < Xz + A1. For the natural
ordering ofZ, cis represented by the matiii:

) (2

011
001
00

where we have written eacheebf the third dimension of the matrix in order from left
to right. In the first sheet; = 0, in the second; = 1, and in the lasf\; = 2. a

111
011
001

111
111
011

4 Two Sufficient Conditions

Recall the properties we seek must imply Definition 2, to give a sufficient condition
that a CET exists for the corresponding constraint classes. Moreover, we want to iden-
tify properties that are useful in practice: leading to a simple reformulation (i.e. both a
simple transformation and a tractable equivalent problem), easy to check, and holding
for a broad range of classes. We begin with binary constraints and a single parameter.

To specify a CET, we must specifyc) Vc. Consider a constraint matrM. of an
uncertain constraint € C. Observe that a tuple for the variables is a potential solution
iff there exists a 1 in the corresponding file M. Thus a CET can be specified by:
(My(¢))pg = 1 if 3r s.t. (Mc)pgr = 1. If further the converse holds, i.e. the last condi-
tion is ‘iff’, then the CET is tight. Without additional knowledge, however, to compute
this CET we must search faors.t. (M¢)pqr = 1, which is essentially enumerating the
realisations. By restricting the constraint class, we seek properties that produce a more
practical CET. We want a simple means of knowing whether there is a 1 in each file.

We show that a distinguishing feature of monotonicity and row convexity, when
translated into parameters, is that they ensure contiguous bands of 1s in the files of the
constraint matrix. Foparameter monotoneve will show we can obtain a tight CET by
looking at the last sheet. This means we can derive the CET without enumeration, and
moreover without needing a matrix representation of the constraint. In contrast, when

we consider other properties of certain constraints, such as functional, max closed, and
CRC, we observe that non-contiguous 1s may arise in a file. This means we cannot
easily say where to look, to see whether there is a 1 in a file or not. We must search
through the elements of a file, which returns us to enumeration of realisations. Thus
there is no easy way to detect and derive a CET.

4.1 Parameter Monotone

We now give a first property, the analogue of monotone, that produces a CET that is
simple and easy to check. Fore C, we write ¢(x,y; A) to denote that under the
realisatiom\; = A, written &, is satisfied by the tuplé,y).

Definition 5 (Parameter monotone).Let ce C be an uncertain constraint with two
discrete variables and one discrete parameter. We say thaparesmeter monotorié
there exists a total ordering of the uncertainty set of the parameter such that:

VA €U, EX,Y;A) = EX,y;) VA" > A (3)

For example, the constraii < X, 4+ A1 is parameter monotone, but the constraint
X1+ X2 # A1 is not. Note that whether the realisations of an uncertain constraint are
monotone is unrelated to whether the constraint is parameter monotone: the former
concerns the variables (one sheet of the constraint matrix), while the latter concerns the
parameters (one file through all sheets).

The idea of the CET is: use the last sheet of a constraint matrix of each constraint.
For any uncertain constraint, this is a single, certain constraint that is easy to derive.
Moreover, given the ordering of the uncertainty set, this CET can be derived without
knowing the constraint matrix: we simply take the realised constraint corresponding
to the greatesk value, as we will explain. In order to prove this CET for parameter
monotone constraints exists and is correct and tight, we link the algebraic definition of
parameter monotone with a geometric property of constraint matrices:

Proposition 6 (Parameter monotone constraint matrix).Let ce C have a constraint
matrix M. There exists an ordering of the domains and uncertainty sets of ¢ such that:

vpqu Mpqr:1:> Mpqr/:].vr/zr (4)
iff c is parameter monotone.

Proof. Suppose first that the property (4) holds for a constraint matrix Gfonsider

any file Mpq. The elements in this file are a vector of foif@...,0,1,...,1), i.e. a
sequence of Os followed by a sequence of 1s (either but not both sequences may be
empty). Thus for any two realisatiodg < A, of A, we havecy, = C,, (since 0= 1 and

1= 1). But this is exactly the definition of parameter monotone in Definition 5. The
converse is argued similarly. ad

For example, the constraidy < Xz + A1 from Example 4 is parameter monotone
and its constraint matrix (2) obeys the above property.

Proposition 6 is the basis of the proof that parameter monotonicity does lead to the
CET claimed above. Observe first the link between implication of uncertain constraints
and their ordering by. Logical implication of uncertain constraints is defined by [20]:
if every assignment that satisfies some realisation; Gdlso satisfies some (not nec-
essarily the same) realisation @f, thenc; implies c,. Observe that focs, ¢, € C, if
c1 = Cp thency < ¢p. This meang = 1(c) is a sufficient condition that < t(c), which
is a key step in the proof that the CET is correct.

Before giving the proof formally, we need a lemma describing when multiple con-
straints are parameter monotone. It may be that two constraints are both parameter
monotone, but only under incompatible orderings. Therefore we say two constraints
aresimultaneouparameter monotone if there exists an ordering of the uncertainty sets
involved such that both constraints are parameter monotone.

Lemma 7 (Simultaneous parameter monotone closed under conjunctionA con-
junction of simultaneous parameter monotone constraints is parameter monotone.

Proof. By induction, it suffices to look at the conjunction of two constraigisand

C2. By hypothesis, both are parameter monotone under the same ordering. This means
there exists an ordering ofl such that, for any values of the variables in the scope

of the constraints, the files in the constraint matribks and M, are vectors of the

form (0,...,0,1,...,1). If we take the conjunction of two such vectors, the result is a
vector of the same form, since a 1 can occur iff there is a 1 in both vectors, but then all
subsequent elements in both must be 1. This shows that the constraint matrixaaf

obeys (4), and so by Proposition®&,A ¢, is parameter monotone. O

For uncertainty sets drawn from domains suctZasvhere there is a natural to-
tal order, simultaneous parameter monotonicity will frequently hold. Indeed, for such
sets, all constraints that are parameter monotone with respect to the natural order are
simultaneous parameter monotone. We are now able to prove the main result:

Proposition 8 (CET for parameter monotone constraints).If C consists of simulta-
neous parameter monotone constraints, then there exists a tight CET for P.

Proof. Suppose € C is parameter monotone. There exists an ordering of the uncer-
tainty set ofA such that the constraint matr. of c satisfies (4). Leh be the greatest
value of\ under this ordering, and definéc) to bec under the realisatioh, which we
denotec;. By Definition 5 and Proposition 6, we hages"1(c) V€ € ¢, and sac < 1(C).
Thus the map. defined forc is increasing, and it is straight-forward to verify the other
properties of Definition 2 to confirm it is a CET. Moreove(c) is a tight CET, since
1(c) = € for somec’e ¢, which means that(c) < c.

Now suppose we thus defimgfor eachc € C. We must show we can extend the
defined for the individual constraints to a CET for the combined consteaiatA; ¢;.
SinceC consists of simultaneous parameter monotone constraints by hypotiésis,
parameter monotone by Lemma 7. Thus there existda C and, by the proof of
Lemma 7, itist(C) = A T (Gi). Further, for the same reason as abavs,tight. O

Example 5(Example 4 continued)lhe parameter monotone constraigt< Xz + Ay
has CETX; < Xo + A1, i.e. X1 < Xp + 2. Observe that the sheet of the constraint matrix
(2) corresponding td; = 2 is the constraint matrix af{c). O

In Section 5 we extend parameter monotonicity to many variables and parameters.
However even for binary constraints and one parameter, it is a useful conceptin practice:

Example 6.In a Simple Temporal Problem with Uncertainty (STPU) [13], the con-
straints have the forrfy — X| <A, whereA has uncertainty set given by an interval. A
system of STPU constraints can be viewed as a UCSP. Its minimal network, which can
be obtained in polynomial time, is equivalent to the complete solution enclosure. The
tractable derivation of the solution enclosure is explained because STPU constraints are
parameter monotone. O

Example 7.Consider a set” of binary monotone constraints. Whehis simultane-

ous parameter monotone, a CET is obtained simply by taking the relevant bounds of
uncertainty sets, by Proposition 8. Eachk C is transformed into a binary monotone
constraint. The complete solution set of the latter can be found in linear time (in the
number of variables) with a 2D integer hull algorithm [7]. For example3,0,3}X <

2Z 4+ {2,3,5} is transformed te-3X < 2Z+ 5, for X > 0. Even for binary constraints,
note the parameter monotone property is required for this CET. A monotone basic con-
straint in general need not be parameter monotone; consider the constraint given by:

11101 |11
(ool o3/]: 1) ®
4.2 Parameter Row Convex

We now identify a second property for the existence of a CET. This property, the ana-
logue of row convex, is a generalisation of parameter monotone. It applies to more
classes of constraints but produces a more complicated CET. Recall from [15] that a
relation isrow convexf in every row of its constraint matrix, all the 1s are consecutive.

Definition 9 (Parameter row convex).Let ce C be an uncertain constraint with two
discrete variables and one discrete parameter. We say thgptaremeter row convexk

there exists a total ordering of the uncertainty set of the parameter such that in every
file of a constraint matrix of c, all thés are consecutive. Geometrically:

vp,q, dri <rpsit.in <r<rp; <= Mpgr=1 (6)

Parameter row convexity generalises parameter monotonicity, just as row convexity
generalises monotonicity. Intuitively, an uncertain constraiatparameter row convex
if there is a contiguous band of 1s in every file of its constraint matrix; if, in every file,
this band extends to the greatastalue, therc is parameter monotone.

Example 8.Let X; andX; both have domainfd, 3] C Z, and let\; be a parameter with
uncertainty se{0,1,2}. Let c be the uncertain constrai(ﬂ(l <X +)\1) /\()\1 =2=
X1 = Xz). For the natural ordering &, c is represented by the matiiA:

011
001 (7)
00

where we have written the matrix as befoeceis not parameter monotone, because
Mi32 = 1 butM133 =0, but it is parameter row convex. a

111
011
001

100
010
001

The CET for parameter row convex constraints extends the idea used for parameter
monotone constraints. For the latter we usashder the realisation; the CET was
independent of the value of the variables. Since now we may taye ¢ for some
realisationh (if there arep,q such thaM,, =1 butMqu = 0), we cannot simply use

the last sheek of the constraint matrix. Instead, we define the CET depending on the
value of the variables. For each tuple, we use the maxikpabuch thatMpg, = 1;
such ahpq uniquely exists for each file by the parameter row convex property.

We say two constraints amultaneougparameter row convex if there exists an
ordering of the uncertainty sets involved such that both constraints are parameter row
convex, and for eachp,q), (A1)pg = (A2)pq. The second part of the condition means
the maximalA pq is the same for both constraints, for any tuple of the variablEisis
means, according to the proof of the next theorem (omitted for lack of space, but along
the lines of Proposition 8), that we can defirje) to be the conjunction:

A (X1 =pAXe == 6yl pa) (8)
Pa

wherec| pq is the projection of a certain constrao C onto the tupleXy = pAX2 =a.

Proposition 10 (CET for parameter row convex constraints).If ¢ consists of simul-
taneous parameter row convex constraints, then there exists a tight CET for PO

Example 9(Example 8 continued)lhe parameter row convex constra(ml < KXo+
A1) A(A1=2= X = Xp) is transformed by the CET (8) into the conjunction of:

X1=1IAXo=1 = X1 <Xp+2
X1=2" %=1 = L
X1 =3AXo=1 = 1
X1=1IAX=2 = X1 <Xo+1
X1 =2AX=2 = X1 <Xp+2 (9
X1=3AX=2 = L
X1 =1AX =3 = X;<Xp+1
X1=2AX=3 = X1 <Xo+1
X1=3AX=3 = X1 <Xp+2
which reduces to the more compact:
(X1=X2$X1<X2+2)/\(X175X2=>X1<X2+1) (10)

While parameter row convexity is defined in terms of a constraint matrix represen-
tation, the CET (8) is independent of it. However, to produce the CET we need to know

1n contrast to classical row convexity, for parameter row convex constraints it is not true that a
local intersection point implies a global intersection point. That is, w.r.t. a given ordering, any
pair of parameter row convex vectors will have a 1 in their conjunction, but this 1 need not be
in the same place between different pairs. Hence the second part of the condition is required.

the Apq and, without additional knowledge about the constraints, a matrix representa-
tion may be necessary to find thgg. This is in contrast to parameter monotone, where
to produce the CET we need only know the ordering of the uncertainty set.

Moreover, the CET for a general parameter row convex constraint is a conjunction,
with as many terms as the size of the Cartesian product of the variable domains. This
is too unwieldy to be useful unless we can combine some of the conjuncts, as in Ex-
ample 9. When we can combirdl conjuncts, so the head of the clause in (8) is the
universal constraint, then we have a parameter monotone constraint.

5 Multiple Parameters

The above results were stated for discrete binary constraints with a single parameter.
It is not difficult to see they hold also for unary constraints; the question is how to
generalise to non-binary constraints and to multiple parameters.

We generalise to non-binary uncertain constraints readily, because neither the defi-
nition of parameter monotone (Definition 5) nor of parameter row convex (Definition 9)
depends on the number of variables. Each sheet of a constraint matrix is now itself an
n-dimensional matrix, whereis the number of variables. Although this hampers one’s
intuition, the algebraic results are unaffected.

We generalise to multiple parameters as follows. [15] generalise a property to classi-
cal non-binary constraints by stating: a property holds for a non-binary constraitit
if, for every pair of variables, the corresponding property holds for the binary constraint
obtained by projecting onto that pair, i.ecifpq obeys the propertyp, q.

To make a similar generalisation we must define the projectioresiriction, of
an uncertain constraint to one parameter. ¢-arC, let c|, be a restriction ot to the
parametei: a one-parameter constraint obtained by considering all other parameters
to be constants, for some tuple of values from their uncertainty sets. Note only the
mutually consistent values for the other parameters (those that obey all data constraints)
need be considered. Then we can say a property holds for an uncertain constittint
¢ > 1 parameters if, for every parameferthe corresponding simultaneous property
holds forall restrictionsc|,. If uis the maximum size of an uncertainty set, then the
number of restricted constraints ©fs at mostO(/u‘~1).

Informally, a property holds for aftparameter uncertain constraint if, in its multi-
dimensional constraint matrix, each slice parallel to one parameter axis and to all of the
variable axes obeys the property, and the orderings of the uncertainty sets are compat-
ible. This is a strong extension in that it requires the constraint to be simultaneously
parameter monotone (resp. parameter row convex) for all restrictions to one parameter.

Example 10.Consider the constraimt X < A1\, whereA; andA; have uncertainty
sets{0,1,2} and{1,3,4} respectively. A restriction of to A; is X < 3Ay; there are

three such restrictions|,,, one for each value of; in Uz. Now if either parameter is
assumed to be a constant (any value from its uncertainty set) then the resulting restricted
constraint is parameter monotone; every restrictioc of thus parameter monotone.
Moreover, since all the restrictiors,, use the same total order 0f, they are simul-
taneous parameter monotone; likewise fordhg . Hencec is parameter monotone.

Xo=1

X1 1

Xo X2 =3

Figure 1. Slicing the matrix of a binary uncertain constraint. The left-hand cube is the parameter
constraint matrix; the files are depicted on the z-axis. The matrix is sliced vertically along the
values ofXy, and rearranged to form the right-hand matrix

The consequence of this strong extension is that the CET sufficiency results extend
simply, provided the parameters are independent. For a parameter monotone constraint
¢, we havet(c) = € wherec corresponds te under the realisatiofAs,...,A,), i.e. the
greatest value of each of the parameters independently.

For a parameter row convex constraint,udie a tuple of values for the variables.

In the binary casey = (p,q) as before. We have(c) = ¢ wherec corresponds to the
realisation((A1)v,.. ., (Ar)v). Here,(Aj)y is the greatest value &f such thaM,,, = 1.

In general, however, multiple parameters will not be independent. Lack of space
forces us to sketch the consequences. For parameter monotonicity (but not parameter
row convexity), it can be shown that the above CET is still correct, but is no longer tight.
This means that a non-tight CET is found by assuming the parameters are independent.
For instance, consider Example 10 with the additional constkaimtA, < 4.

6 Checking the Sufficient Conditions

We have stated and proved two sufficient conditions for the existence of a CET: param-
eter monotone and parameter row convex. We have shown how they apply to discrete
uncertain constraints with arbitrary numbers of variables and parameters. We now give
a method to test whether these properties hold for a binary uncertain con&traint.

One way to determine whether the parameter monotone property holds for a con-
straint is to use its characterisation in terms of the constraint matrix, Proposition 6. To
check this condition foc € C, we need to find a simultaneous ordering of the uncer-
tainty sets such that each file of the constraint matkps a sequence of zeros followed
by a sequence of ones. An elegant result from computational graph theory states that for
amx n (0,1)-matrix withk non-zero entries, we can test in linear ting¥ih+ n+ k))
for the existence of a permutation of the columns such that the matrix is row convex [4].
Granted the constraint matrix, we can use this result to test for both parameter mono-
tonicity and row convexity, for each parameter in turn.

Suppose first there is one parameter. We take the nidiyiand cut it into parallel
slices along the parameter dimension, as Fig. 1 illustrates. This givi3,slices
of size|D4| x |U1| each. Arrange the slices in a column, to givéDa| x |D2| x |U1]

2 An open issue is whether the method can be extendeutéoy uncertain constraints.

matrix, and test for row convexity. By permuting the columns of the assembled matrix,
we test for a permutation of the uncertainty set of the parameter. If a permutation is
found that makes the assembled matrix row convex, this corresponds to an ordering on
the uncertainty set such that each file of the original constraint nidtris row convex.
This meang is parameter row convex. Of courganay be parameter monotone but not
parameter row convex. We can test directly for monotonicity by adapting the algorithm
of [4] to require the consecutive ones to finish at the end of each row, and not before.
Suppose now there are multiple parameters. We perform the above procedure for
each restricted constraint. If all pass, we cannot yet condiglparameter row convex,
because the restricted constraints must be simultaneous row convex. Thus we must
additionally test that the same permutation is used for each restricted constraint. This
suffices to prove parameter monotonicity. For parameter row convexity, the definition of
simultaneous further requires that thg, agree for each file. We can check this at cost
0(d?), whered is the maximum domain size, for each pair of restricted constraints.
Both these additional tests may be performed incrementally between each restricted
constraint and the last. In total, the test takes linear time in the size of the product of
the variable domains and the uncertainty setd? 4 u+ ud?) = O(ud?)) for a one-
parameter constraint. Thus wiffparameters, the total time complexity@$/u‘d?).

7 Reformulation for Continuous UCSPs

Parameter monotonicity and row convexity can both produce a tight CET. For both,
the CET is defined independently of any constraint matrix representation. The matrix
representation is a tool useful in identifying the conditions in the discrete case. Because
it is not necessary for their definition, in principle both conditions apply to continuous
constraints, i.e. to a UCSP with continuous uncertainty sets.

For parameter monotone, the CET simply takes the constraints under their maximal
realisations. This is done for continuous parameters as easily for discrete parameters.
For parameter row convex, the CET depends on the value of the variables and thus may
be more complicated: both derivation of the CET itself and the form of the equivalent
problem it yields. We have seen that this CET may simplify, but also that we may need
to know a matrix representation to derive it.

Tractability of Polynomial Inequality Constraints Motivated by a real-world UCSP,

we now exhibit a class of constraints where we can prove a priori that parameter row
convexity holds. The class we consider is polynomial inequality constraints, such as
A X+ A2Y < |, whereh; andu are parameters. This is an instance where the CET does
indeed simplify enough to become practical.

Proposition 11 (Parameter row convex CET for polynomial inequality constraints).

Let C consist of polynomial inequality constraints o&rmwhere the coefficients of each
term are single parameters and each constraint features at least one variable. If the un-
certainty sets can be simultaneously totally ordered, then there exists a tight CET.

For lack of space the proof is omitted. It constructs explicitly the CET. Taking a
generak € C, for each tuple of values for the variables, we can partition the parameters

Figure 2. Polynomial inequality CET described by two constraints, shown by the upper and
lower shaded areas; the solution to every realised constraint lies in one of them

into two sets. The ‘left-hand’ parametexsve minimise to their lower bounds, the
‘right-hand’ parameterg we maximise to their upper boungs

Example 11.Consider the UCSP with variablésY € Z and the single constraint:
MX+AY <u (11)

where the uncertainty sets for the parameters are integer intedyals: [4,5], Uy, =
[—1,0,1], U, = [2,3]. The CET of Proposition 11 transforms (11) into a classical con-
straint according to:
Y>-3+4X ifY>
{ >-3+4X ifY>0 12)

Y <3-4X ifY<O

Thus we transform a parameter row convex uncertain constraint into a piecewise
monotone constraint, which is depicted in Fig. 2. Across all the assignments for the
variables, only two partitions of the parameters arise for (11). These are the two cases
of (12). In both cases, the transformed constra{n} involves only extremal values of
the parameters. In fact; is always a ‘left-hand’ parameter apalways a ‘right-hand’
parameterd, is on the left- or right-hand side depending on the sigh.of O

It can be shown that Proposition 11 holds also for similar constraintsRV#8].
In particular, linear constraints over the reals with non-negative variables are a special
case of Proposition 11. The domain constraits O restrict the solution space to the
positive orthant. The CET is given by a single case, which depends only on the sign of
the coefficients [19]. We can see this situation in Fig. 2 restricted to the positive orthant:
when XY > 0, the solution enclosure of the UCSP is givenYby> —3+ 4X. The
network inference LSCO problem introduced earlier features constraints of this class.

The CET (8) for parameter row convex constraints involves one term for each tuple
of variable values. As we remarked earlier, in general it is not practical to form a CET by
considering each such element®f Often, however, the CET turns out to be described
by a small number of cases given by ranges of values, as Example 11 illustrates. The
next example shows another instance of Proposition 11 where the CET involves many
fewer terms than the general case.

Example 12.Let X; be variables oveZ or R. Consider a polynomial arithmetic con-
straint with a single parameter as follows;:a; [1; XJ-aj < W whereg;,gj € N are con-

stant coefficients. Proposition 11 tells us this constraint is parameter row convex. More-
over, in factitis parameter monotone, with CEk7a; [Xje” <@, whereflis the greatest
value inUy, under the natural order. 0

8 Conclusion and Future Work

In this paper we have addressed the challenge of tractably solving an uncertain CSP for
its solution enclosure, by reformulating the problem into an equivalent CSP. We have
identified two sufficient conditions on the constraint class, parameter monotone and
parameter row convex, which ensure a reformulation into a tractable CSP. The transfor-
mation is achieved by a CET, whose existence and practicality is guaranteed by these
properties. It transforms the UCSP into an equivalent classical CSP, whose complete so-
lution set is the solution enclosure sought. Thus solving the UCSP is tractable provided
deriving this latter solution set is.

Parameter monotonicity is useful because it tells us a CET exists when we take
the extremal values of the uncertainty sets, usually under the natural order or its re-
verse. Parameter row convexity is more general, but its use depends on how many of
the conjuncts in its CET combine; it is practical if only a few terms remain, such as in
Example 11. It is important to note, however, that both conditions we proved are suffi-
cient but not necessary. For example, while constraint (5) is not parameter row convex,
a CET is given by its realisation under

The two conditions suggest situations when reformulation of an uncertain CSP is
more effective than direct solving based on enumerating the realisations. The solution
enclosure can be derived without considering all realisations, and hence the complexity
is much less. Although the algorithm we gave to check the conditions works with a
constraint matrix representation (which is a form of enumeration), the CETs described
in this paper do not depend on any matrix representation. Nonetheless, unless we have
specific knowledge about the constraints (e.g. in Example 11, on the sign of the vari-
ables), to derive the CET for a parameter row convex constraint may require some
search through its matrix representation.

Since a UCSP is a restricted form of a quantified CSP (QCSP), our contribution
can be seen as an efficient solving method for a subclass of QCSPs with practical ap-
plications. We would like to investigate whether generic QCSP solvers (e.g. [12]) can
be adapted to exploit the restricted quantification found in a UCSP. In future work we
also plan to examine other properties of the constraints in a UCSP that make it con-
ducive to reformulation. For example, we wish to explore the structure of the constraint
graph, to see whether analogous results be drawn for UCSPs as for CSPs, for instance
on bounded tree width.

Acknowledgements. The authors thank W. Harvey, A. Sadler, and T. Winterer for
discussions, and the reviewers for their suggestions. This work was partially supported
by the EPSRC under grant GR/N64373/01.

References

(1]
(2]
(3]

(4]

(5]
(6]
(7]
(8]

El
(10]

[11]
[12]
[13]
[14]
[15]
[16]
[17)
[18]

(19]

(20]

G. Alefeld, V. Kreinovich, and G. Mayer. On the solution sets of particular classes of linear
systems.J. Computational and Applied Mathematid$2:1-15, 2003.

F. Bacchus, X. Chen, P. van Beek, and T. Walsh. Binary vs. non-binary constraitifis.

cial Intelligence 140(1-2):1-37, 2002.

Y. Ben-Haim. Set-models of information-gap uncertainty: Axioms and an inference
scheme.J. Franklin Institute 336:1093-1117, 1999.

K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs,
and graph planarity using P-Q tree algorithms. Computational and Systems Scignce
13:335-379, 1976.

M. Christie, E. Langénou, and L. Granvilliers. Modeling camera control with constrained
hypertubes. IfProc. of CP’02 LNCS 2470, pages 618-632, Ithaca, NY, Sept. 2002.

Y. Deville, O. Barette, and P. Van Hentenryck. Constraint satisfaction over connected row
convex constraintsArtificial Intelligence 109(1-2):243-271, 1999.

W. Harvey. Computing two-dimensional integer hulBIAM J. Computing28(6):2285—
2299, Aug. 1999.

E. Hebrard, B. Hnich, and T. Walsh. Super solutions in constraint programmirigrom

of CP-AI-OR’'04 pages 157-172, Nice, France, Apr. 2004.

L. Jaulin, M. Kieffer, O. Didrit, and E. WalteiApplied Interval AnalysisSpringer, 2001.

P. Jeavons and M. Cooper. Tractable constraints on ordered dowifisial Intelligence
79(2):327-339, 1995.

R. B. Kearfott. Interval computations: Introduction, uses, and resoutcesmath Bulletin

2(1), 1996.

N. Mamoulis and K. Stergiou. Algorithms for quantified constraint satisfaction problems.
In Proc. of CP’04 Toronto, Canada, Sept. 2004.

P. Morris, N. Muscettola, and T. Vidal. Dynamic control of plans with temporal uncertainty.
In Proc. of IJCAI'0], pages 494-502, Seattle, WA, Aug. 2001.

D. Sam-Haroud and B. Faltings. Consistency techniques for continuous const€onts.
straints 1(1/2):85-118, 1996.

P. van Beek and R. Dechter. On the minimality and global consistency of row-convex
constraint networksJ. ACM 42:543-561, 1995.

P. Van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc-consistency algorithm and
its specializationsArtificial Intelligence 57(2-3):291-321, 1992.

P. Van Hentenryck, V. A. Saraswat, and Y. Deville. Design, implementation, and evaluation
of the constraint language cc(FD). Logic Programming37(1-3):139-164, 1998.

N. Yorke-Smith.Reliable Constraint Reasoning with Uncertain DaRhD thesis, IC-Parc,
Imperial College London, June 2004.

N. Yorke-Smith and C. Gervet. Data uncertainty in constraint programming: A non-
probabilistic approach. IRroc. of AAAI 2001 Fall Symposium on Using Uncertainty within
ComputationNov. 2001. Available atwww-users.cs.york.ac.uk/ tw/fall/

N. Yorke-Smith and C. Gervet. Certainty closure: A framework for reliable constraint
reasoning with uncertainty. IRroc. of CP’03 LNCS 2833, pages 769—783, Sept. 2003.

