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Abstract 

In the last decade various research efforts and commercial 
offerings have sought to provide levels of automated 
assistance with time management. Besides basic 
calendaring, collaboration, and communication, many of 
these efforts concern event negotiation or scheduling, while 
others concern task management and monitoring. When 
automated scheduling is employed, most often events and 
tasks are treated separately, with the latter being kept out of 
the user’s calendar. One consequence can be missing 
deadlines or even not accomplishing some tasks. Based on 
experience in developing and deploying an automated task 
management system and an event scheduling system, this 
paper sets the requirements for an intelligent calendar 
assistant that treats tasks and events in a unified way, 
schedules all of them within the user’s calendar, and 
reschedules them whenever needed. We outline a set of 
attributes used to represent the overall combined scheduling 
problem, together with a set of criteria used to represent 
users' preferences and evaluate alternative schedules. 

Introduction 

Electronic calendar applications are these days ubiquitous. 
Common commercial applications, such as Apple iCal, 
Google Calendar, and Microsoft Outlook, embed some 
artificial intelligence techniques, such as natural language 
parsing, but are primitive in comparison with the state of 
the art in scheduling algorithms. Among these applications, 
some provide assistance with the related aspect of task (or 
to-do) management, as do dedicated offerings, such as 
Chandler, OmniFocus and rememberthemilk.com.
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Time and task management are co-dependent. Indeed, 
some applications, such as Chandler, deliberately blur any 
distinction between email message, event, and task. The 
distinction between events and tasks is rather conceptual. 
People tend to consider as event whatever has a specific 
time window and location, probably engaging other people 
too (e.g., a doctor’s appointment at 14:00 on Tuesday); on 
the other hand, tasks usually are characterized by a 
deadline (e.g., write a paper). Events are usually placed 
directly into the user’s calendar, whereas tasks are usually 
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kept in to-do lists. This distinction is clear in many 
commercial applications, like Microsoft Outlook or Google 
Calendar, with the former giving the option to transform a 
task to an event by dropping it in the calendar. 

Research in event scheduling has mainly concentrated 
on coordinating information and arranging meetings 
between groups of people. In the research community, 
several approaches have developed to schedule individual 
or group events, potentially taking into account user 
preferences, in order to develop intelligent calendaring 
assistants (e.g., Mitchell et al. 1994; Sen and Durfee 1994; 
Jennings and Jackson 1995; Modi et al. 2004; Berry et al. 
2006, 2009). On the other hand, task management research 
efforts have concentrated on facilitating task assignment, 
execution monitoring, and raising reminders (e.g., Bellotti 
et al. 2004; Conley and Carpenter 2007) or, in case of 
scheduling tasks into a user’s calendar, completely ignore 
meeting scheduling (Refanidis and Alexiadis 2008). 
However, since both events and tasks require the same 
resource—the user’s time—treating them separately may 
result in poor overall utilization and unnecessary user 
effort in overall time management. 

In this paper we propose to treat events and tasks in a 
unified way. Our proposal is based on our experience from 
working on systems like SELFPLANNER (Refanidis and 
Alexiadis 2008) and Emma (Berry et al. 2008). We outline 
a rich set of attributes shared by events and tasks, giving 
motivational examples. This set of attributes results from 
thorough study of the common situations that arise in 
practice. We also sketch a hierarchical preference model 
that could be used (in entirety or in parts) to evaluate 
alternative schedules. Finally, we discuss some engineering 
issues that concern the development of an intelligent 
calendar assistant based on (aspects of) the proposed 
model. The goal of this paper is not to present a rigorous 
theoretical model; it is rather to emphasize the multiple 
aspects and inherent complexities of the problem of 
organizing a user’s time and, thus, provide with ideas for 
subsequent formulations and implementations. 
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Our Previous Work 

We outline two deployed systems, Emma and 
SELFPLANNER, focusing on their complementary 
differences. The features of an envisioned new scheduling 
system, inspired by the best features of the existing 
systems, are presented more formally in the subsequent 
sections. 

SELFPLANNER aims at helping the user to schedule her 
own individual tasks. Each task is characterized by its 
duration and temporal domain (among several other 
attributes). SELFPLANNER tries to accommodate the tasks 
within the user’s calendar, taking into account a variety of 
constraints. SELFPLANNER emphasizes the use of 
automated scheduling algorithms (Refanidis 2007). Figure 
1 displays a screenshot of the system. 

Emma aims at helping the user to schedule events (e.g., 

group meetings), while taking into account learnt user 

preferences. Upon a meeting request that involves other 

participants, Emma reads the calendars of all participants 

and generates a set of potential schedules for the meeting. 

It ranks each schedule option by taking into account the 

participants' preferences (learnt or elicited) and their 

relative importance for the organizer. Emma thus adopts a 

mixed-initiative paradigm. Having scheduled an event, 

Emma generally attempts to not reschedule it. Figure 2 

gives a screenshot of the system. 
Since the two approaches are complementary in several 

ways, combining their best features in a single intelligent 
calendar assistant would be worthy.  In the next paragraphs 
we comparatively present the two systems, focusing on 
their complementarities. 

Overlapping events and tasks: Emma allows 
overlapping events. In particular, it is up to the user to 
decide whether she wants overlapping events or not. 
Having overlapping events may have one of the following 
meanings for the user: 

 The user will attend all events concurrently (for 
example attending a physical meeting while 
participating in a videoconference). 

 The user will decide at a later time which event(s) to 
attend. 

 The user has initially blocked a time period for a 
specific event (e.g., attending a conference) and then 
she added new events describing detailed activities 
within the main event (e.g., conference sections, 
banquet etc). 

 Similar to the previous case, the user has initially 
reserved a block of time for just in case (e.g., it might 
be the case that this day something is going to happen). 
At a later time, more specific events are added into the 
calendar, overlapping with the initial event. 

 The user has blocked some period of time, just to 

 
 

Figure 1. Screenshot of SELFPLANNER (http://selfplanner.uom.gr) 
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prevent other people (including himself) from putting 
events over this period (of course this presupposes that 
she gave the right to other people to insert or at least 
view events on her calendar).  Later the user added new 
events overlapping the blocked out period.  

 Somebody else has added an event to the user’s 
calendar (e.g., a meeting request that has been 
automatically inserted into the user’s calendar), that 
overlaps with existing events. 

 The events might have duration less than the system’s 
quantum of time. For example, in case the system’s 
quantum of time is 30’, one could schedule two events 
of 15’ duration each in the same time slice, and both of 
them will be attended by the user (of course the two 
events should have compatible locations). 

Note that Emma does not automatically schedule the 
events but proposes rated alternative schedules to the user 
who eventually decides when (and where) to schedule each 
event. Thus, the user decides whether to have parallel 
events or not. 

SELFPLANNER does not support overlapping events. 
This is a consequence of the fact that SELFPLANNER solves 
a different scheduling problem where all tasks need a 
single resource, i.e., the user. 

Locations: SELFPLANNER supports locations attached to 
the tasks. The system employs Google Maps service to 
compute temporal distances between the locations, so as to 
leave the necessary temporal distance between adjacent 
tasks scheduled at different locations. Furthermore, 

SELFPLANNER supports location classes denoting sets of 
locations. A location class can be attached to a task; in that 
case the scheduling problem involves the selection of a 
member of that class in order to schedule there the task. 
Note that locations in SELFPLANNER are not considered as 
resources, i.e., several tasks (of different users) can be 
scheduled at the same location concurrently. 

Emma supports locations according to the iCal 
specification, i.e., the user can give value to a “where” 
field; however, no special spatial reasoning is undertaken. 

Resources: Emma supports resource management w.r.t. 
a database of specific locations. That is, Emma considers 
various locations (i.e., meeting rooms and offices at a 
company) as being resources that are assigned to specific 
events.  Each location is treated as a virtual user having its 
own calendar.  However, no overlapping events are 
allowed to these special calendars, ensuring that a location 
cannot be reserved for two concurrent events.  

Interruptible tasks: SELFPLANNER supports 
interruptible tasks. The user can define whether a task is 
interruptible or not and, in case it is, she can post 
additional constraints on the durations of the parts of the 
interruptible task or their temporal distances. Note that 
parts of interruptible events may be scheduled in different 
locations, provided that a class of locations has been 
assigned to the task.  

Binary constraints: SELFPLANNER supports ordering 
constraints over pairs of tasks. An ordering constraint of 
the form A<B, where A and B are two tasks, means that B 

 
 

Figure 2. Screenshot of Emma 
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cannot start its execution before A has finished. In case of 
A or/and B are interruptible, no part of B can start its 
execution before all parts of A have finished. 

Preferences: SELFPLANNER supports a limited form of 
preferences. In particular, for each task the user can specify 
whether she wants the task to be scheduled as early/late as 
possible, or before/after a time point or finally whether she 
is indifferent of when to schedule the task. 

Preferences in Emma are given or learnt. The user 
initially defines which hours within a week he mostly 
likes/dislikes to schedule events in her calendar. He also 
may define whether she dislikes events during lunch and 
what kind of reminders she prefers. Finally, she may 
relatively rate eight different factors that may affect her 
preference over an event: her general day/time preferences 
stated earlier, rescheduling, event start time, duration, 
overlaps, participants, location and others’ preferences. 
Having created an initial profile, the system then monitors 
the user activities, which alternative schedule she selects 
when organizing an event, how she responds in event 
requests etc, in order to continuously refine a model that 
has an aspect for each one of the eight criteria. 

Periodicity: SELFPLANNER supports periodic tasks, in 
particular daily, weekly, and monthly. A periodic task is 
considered as a collection of simple, non-periodic tasks. 
However, defining a task as periodic has several benefits 
for the user, since she specifies the parameters of the task 
(e.g., temporal domain, preferences) once only. Note that 
the various instances of the periodic task do not have to be 
scheduled in a uniform way. 

Emma supports periodic events of five periods: hourly, 
daily, weekly, monthly and yearly. After the organizer of 
an event schedules the first instance of it, the rest of the 
instances are scheduled automatically in the same way as 
the first. However, it is always possible for a user to ask for 
rescheduling of any instance of the periodic event. 

Distributed scheduling: Neither SELFPLANNER nor 
Emma support distributed scheduling. In case of 
SELFPLANNER this is expected, since this system does not 
support meeting scheduling. In case of Emma, scheduling 
is performed by the organizer, who chooses a scheduling 
option taking into account the various preferences, one of 
them being “other’s preferences”. The organizer has also 
the possibility to present to the participants a subset of the 
available options and ask for their specific opinions; 
however she makes the final decision. In any case the other 
participants may reject the event that has been tentatively 
scheduled.  

User status: An interesting feature supported by few 
systems is to monitor the user’s status, either explicitly or 
implicitly. Currently, SELFPLANNER implicitly infers the 
current location of the user from the location of the last 
accomplished event, and this is taken into account when 
scheduling the next one. Other attributes of the user could 
be whether she is on her car or not, whether she carries her 
laptop or not, what type of clothes she is wearing, etc. 
Having access to this type of information transforms the 
scheduling problem into a planning problem, where actions 

have preconditions and effects. In that case, the system 
should reason on what actions should be inserted into the 
user’s plan in order to satisfy open goals. Planning 
algorithms like POP (Weld 1994) or mixed-initiative 
versions of them, would be best candidates to solve the 
resulting problem.  

Multiple calendars: Both systems support multiple 
calendars. This means that each user can declare all 
calendars she utilizes, and the system collects information 
from all of them when scheduling a new event.  

Partial Scheduling: SELFPLANNER supports partial 
scheduling: if no schedule can be found that accommodates 
all tasks, the best incomplete schedule is adopted and 
presented to the user. Furthermore, the user is informed of 
which tasks or parts of tasks were unable to schedule. 

Emma does not support partial scheduling, but it 
always accommodates all events, since overlapping events 
are allowed whereas no explicit temporal domains or other 
hard constraints are defined. However, alternative 
schedules with many overlapping events or with events 
scheduled at abnormal times receive lower scores in the list 
of options presented to the user. 

Problem Formulation 

Before delving into the details of an event’s description, 
we would like to discuss our view of hard and soft 
constraints. Organizing a user’s calendar is a very 
ambitious task to be accepted by the user, so we expect 
from the system to be as flexible as possible by presenting 
to the user several alternative schedules and let him decide 
the best. Flexibility is greatly favored by soft constraints 
instead of hard ones. So, it is expected that the user will 
use as far as possible soft constraints (i.e., preferences) to 
describe events and tasks. However, there are cases where 
several value assignments to the decision variables are 
strongly prohibited. Here are some examples: 

 The user wants to attend a lecture. This event has a 
very specific time and location. There is little value in 
scheduling this event in another time or location. 

 The user is attempting to organize a meeting with 
another participant (a two-person meeting). In that case, 
the constraint that both participants are necessary for 
the meeting is hard; there is no point in having a 
meeting without one of the participants! 

 A location with specific features is required for a 
meeting. In that case, there is no point in selecting a 
location with, e.g., lower capacity or without a 
teleconference facility. 

 Physical constraints such as that the duration of an 
event cannot be a negative value or that the end time is 
equal to the sum of the start time and the duration. 

In all the above examples there are some decision 
variables, such as the start time or the location, that have 
very specific acceptable values or ranges of values. There 
is no point in assigning to these variables out-of-the-
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domain values; in such cases it is preferable not to 
schedule the event at all! However, even in such cases, 
whether an event can be omitted or not is something that 
the user decides. If an event is necessary (another type of 
hard constraint), the system should include it if possible. 
So, provided that a problem has been formulated with hard 
and soft constraints, we always prefer a schedule where all 
hard constraints are satisfied. If there is no such schedule, 
the system clearly notifies the user and asks for her 
intervention (i.e., changing the problem definition), 
probably by suggesting a minimum set of constraints that 
should be relaxed in order for the problem to become 
solvable. However, even for unsolvable problems the 
system might rank the alternative partial schedules based 
on several criteria, such as the sum of the utilities (or 
importance) of the accommodated tasks as well as the 
degree to which soft constraints were satisfied, and present 
them to the user in some decreasing order of preference. 
 
Decision Variables and Hard Constraints 

In the following we use the term 'event' to refer to an event 
or a task interchangeably. Towards a unified calendaring 
assistant that exploits AI scheduling, we propose attributes 
to include: 

Duration range. The possible durations of an event, 
given as a lower and an upper bound. For example, an 
event of the form “Lunch” might have a duration between 
30 and 60 minutes. It is expected that the utility function (if 
defined) over the possible durations will be a 
monotonically increasing function.  

Temporal domain. The set of possible time periods 
when the event can be scheduled. Commonly, the temporal 
domain is represented as a disjunction of intervals. For 
example, the temporal domain of an event “Shopping” 
would not include late night or Sundays in central Europe. 

Locations. A list of alternative locations where the user 
should be for the event. For example, the set of locations 
for the event “Shopping” might consist of the malls in the 
area. Each location is characterized from its geographic 
coordinates. Travelling times between locations should be 
taken into account by an intelligent calendar assistant when 
scheduling events in space and time. An “anywhere” 
location is also foreseen. 

Reserve Location. A Boolean flag indicating whether 
the selected location for the event, e.g., a meeting room, 
should be reserved. Reservation supposes a Location 
Manager that answers availability queries and performs 
reservations. Reserving locations may impose extra 
temporal constraints, since the scheduled location must be 
available during the schedule time. 

Utility. Each event is characterized by its utility. The 
simplest model assumes a single, constant and known 
positive utility value. More complex models would have 
the utility depending on, for instance, the duration of the 
event, its location, the number of participants, and so on. 
Utilities of events are particularly important in the case of 
overconstrained problems. 

Utilization. A number between 0% and 100% defining 

whether an event requires all user’s attention/effort (100%) 
or part of it (less than 100%). Several events of the latter 
type could be scheduled in parallel, provided that they are 
scheduled in compatible locations.  

One further possibility is to suppose utilization and 
duration as inverse linear dependant. For example, an 
event’s duration might be 2 hours with 100% utilization, 4 
hours with 50% utilization, etc. This gives alternative 
scheduling options. 

Optional. A Boolean flag indicating that the user is not 
obliged or has not yet decided to attend the event. The last 
two attributes, Optional and Utilization, give rise for 
overlapping events. Indeed, having overlapping events in a 
user’s calendar is a common situation in practice, for 
various reasons described in the previous section. 

Category. A category characterizes a class of events, 
e.g., Meetings, Teaching, Housekeeping, etc. An event 
may belong to several categories. We assume that an 
ontology of categories is provided. Pairs of categories of 
the ontology might be compatible or not: only events of 
compatible categories, provided they are optional or have 
proper utilization values, may overlap. Compatibility is not 
a reflexive relation.  

The Category attribute can be combined with the 
Utilization and Optional attributes in interesting ways. For 
example, suppose the user wants to attend ICAPS’09 in 
Thessaloniki. She creates an “abstract” event with zero 
utilization, non-optional, with category icaps09, spanning 
the days of the conference; category icaps09 is compatible 
only with itself.  Next, the user might add several optional, 
full utilization events for various sessions of the 
conference, all sharing the same category. Suppose now 
that CP’09 runs over the same days in Lisbon, and the user 
has not yet decided which of the two conferences to attend; 
however, she will attend one for sure. This can be 
modelled by defining a second conference event for CP 
with zero utilization, optional, and category cp09 that 
overlaps with the ICAPS event; category cp09 is 
compatible only with itself too. Again, CP optional events 
may be added. As soon as the user decides which 
conference to attend, she only needs to define the 
corresponding abstract event as non-optional—constraint 
propagation can arrange everything else. 

A subtlety with the above formulation concerns what 
happens as long as the two abstract events are still 
optional: the system may schedule any other optional event 
during the same period. Thus, the user needs a way to state 
that at least one of the two conference events should be 
scheduled. This can be done in two ways: 

 Defining a new category, icaps/cp09, that is  
compatible only with icaps09 and cp09 and creating a 
new non-optional abstract event of zero utilization 
spanning over the same days. This new category should 
not be an ancestor of icaps09 and cp09 in the ontology. 

 Using a binary constraint stating that at least one of the 
two main conference events should be scheduled.  

Participants. A list of people who are invited to attend 
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the event. In a decentralized system’s architecture, one 
participant is considered the organizer of the event, i.e., is 
the person who will decide the final schedule. For each 
participant, the following information may be defined: 

 Optional. A Boolean flag indicating whether the 
participant is necessary for the event to occur or not. 

 Availability. For each participant, the organizer would 
like to know when (and perhaps where) she is 
available. At its simplest, this can be done by giving the 
organizer access to the participant’s calendar. More 
sophisticated negotiation and privacy protocols have 
been studied in Maheswaran et al. (2005). 

 MinParticipants. The minimum number of participants 
that are needed in order for the event to take place (e.g., 
more than half of them). 

Periodic. A Boolean flag denoting a repeating event. 
Additional attributes are needed to specify the length of the 
period, e.g., a week, and the number of occurrences. Each 
occurrence should be scheduled separately. 

Interruptible. A Boolean flag denoting an event that 
can be scheduled in parts, e.g., writing a paper. Additional 
attributes are needed to specify the minimum/maximum 
duration of each part and the minimum/maximum temporal 
distance between pairs of parts. For example, the user 
might want at least four hours break between any two 
“writing the paper” sessions, but wants to finish within two 
months from starting working on this event.  

Constraints. Binary and higher-order constraints over 
events should be allowed. Some obvious candidates are: 

 Temporal ordering. Event s before r is interpreted as “r 
cannot start its execution before all parts of s have 
finished”. 

 Temporal proximity. A minimum/maximum interval 
between two events. 

 Physical proximity constraints. A minimum/maximum 
distance between the locations assigned to two events. 

 M out of N. At least M out of a set of N optional events 
should be included without overlaps. 

Special interpretation is needed when applying 
constraints on interruptible and periodic events. For 
example, stating that the maximum temporal distance 
between two interruptible events s and r is t could be 
interpreted as that there is at least one pair of their parts si 
and rj that have distance less than or equal to t. Another, 
perhaps less intuitive, interpretation is that any part si 
should have distance at most t from some part sj and vice 
versa. By contrast, in case of a minimum distance 
constraint between events s and r, the only reasonable 
interpretation is that t is the minimum distance for any pair 
of parts si and rj. 

Similar issues arise when s and/or r are periodic. For 
any binary constraint over them, it has to be decided 
whether it concerns pairs of instances of the events (which 
presupposes that they have the same period), or the entire 
sequences of instances.  

Evaluation Model 

We now turn to how a system that schedules events with 
attributes such as those presented in the previous section, 
may compare candidate (partial) schedules, in order to 
select the best alternative or propose to the user alternative 
schedules in decreasing order of preference. We propose a 
hierarchical model consisting of five top-level criteria. 

C1. Overall utility of a schedule, computed as the sum of 
the utilities of the events it involves. In case of overlapping 
optional events, an interesting computational problem is to 
select this subset of non-overlapping events that maximizes 
the overall utility. The problem becomes more complicated 
since additional preferences over the events might have 
been expressed, using the subsequently described criteria. 

C2. Unary preferences for an event, aggregated over all 
scheduled events. This criterion concerns the utility the 
user perceives from the way each event s has been 
scheduled, not taking into account other events. Criterion 
C2 may be composed of metrics such as the following: 

p21: Temporal preference. Suppose an event’s si 

temporal domain has the form Domain = 

[L1..R1][L2..R2]…[Lk..Rk], where the [Lj..Rj] comprise 

a set of non-overlapping intervals. Each time slot 

[t..t+1]Domain, denoted also simply with t, might get a 

utility value )(TIME tui . Suppose now that Schedulei is the 

collection of those time slots that si occupies according to 

the current overall schedule, with |Schedulei| being the 

decided duration of si. In that case, we define the temporal 

preference of si as:  
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p22: Duration preference. Preference over the selected 

duration. For example, let Dur=[minDur,maxDur] is the 

interval of possible durations, then for each dDur, a 

utility p22= )(DUR dui  has to be provided for si.  

p23: Location preference. For each event si, a set of 

locations Loci has been assigned to it. Each location l 

Loci has an assigned utility )(LOC lui . Suppose now that si 

has an overall scheduled duration dDur, and has been 

scheduled in N parts with durations d1, d2, …, dN and in 

locations l1, l2, …, lN respectively, where dd
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p24: Participants. In case participants are involved, each 
one of them perceives a utility from the way the current 
event is scheduled. Metric p24 considers how the organizer 
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of the event appreciates these utilities. The following 
attributes might be related to each participant: 
 Host. This is a Boolean value indicating that this 

participant is the host of the event. Usually the host is 
also the organizer, but this might not be the case. 
Furthermore, however multiple hosts are allowed. 
Being a participant the host may affect the organizer’s 
scheduling decisions.  

 Utility. The value the organizer assigns to having each 
(optional) invited participant in the event.  

 Importance of opinion. The weight the organizer gives 
to the participant’s general preferences and their 
specific feedback on the alternative scheduling options. 

p25: Parts. In the case event si is interruptible, there 
might exist several ways to divide it into parts. The user 
might have preference over the way si has been divided, 
i.e., in how many parts it has been divided, what is their 
temporal distribution etc. So, there are several sub-metrics, 
over which p25 might be defined. The most obvious of 
them are the following: 

 p251: Number of parts. The user has to define her 

preference PARTS

iu  over the number of parts of si. 

 p252: Parts durations. The user might have a preference 

over the possible durations d of the various parts of 

event si. Let )(PARTDUR dui  denote this preference 

function. Supposing the current event has been divided 

into N parts with durations d1, d2, …, dN, the overall 

preference for this distribution could be defined as: 
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An instance of p252 could be the following: 
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where d* is a preferred duration and a is a parameter 

taking non-negative real numbers. The preferred 

duration d* is provided by the user (e.g., the user 

prefers to work on writing a paper in parts of d*=4 

hours). Parameter a determines how deviations from 

this preferred duration are penalized. 

Note that expressing preferences over the duration 

of a part is not independent from expressing 

preferences over the number of parts of the event. For 

example, it is contradicting to prefer few parts and 

short durations simultaneously. However, for the same 

number of parts, there are several ways to distribute the 

overall event's duration over them, so both metrics are 

needed. 

 p253: Average distances. The user might have a 

preference over the temporal distances of the various 

parts, e.g., she does not prefer the parts to be too close 

to each other. So, suppose the current event has been 

split into N parts, let's denote with dj,j+1 the temporal 

distance between the j
th

 and the j+1
th

 part of event si, 

supposing that always the (j+1)
th

 part is scheduled just 

after the j
th

 part, for any j[1..N-1].  

Suppose now that for any temporal distance d 

between parts of event si, the user has a preference 

)(DIST dui  on it. Then, we could define p253 as: 
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 p254: Makespan. For an interruptible event si, the 

makespan is defined as the temporal distance between 

the start time of the temporally first part of the event 

and the end time of the temporally last part of the 

event. The user might have a preference over the 

makespan of the event, i.e., prefer shorter makespan 

than longer (e.g., an interruptible event concerning 

writing a journal paper—without a deadline—should 

not have a makespan of 1 year, even if the temporal 

domain of this event is wider than a year; the user does 

not want to split this event in many parts that are 

temporally away from each other).  

C3. Higher order preferences over sets of events. This 
criterion aggregates expressed preferences over sets of 
scheduled events, such as: 

p31. Ordering/proximity preference. For two events si 

and sj, we might have a preference of how si is scheduled 

w.r.t. sj. This preference might concern either the order in 

which the two events have been scheduled, or how close to 

each other they have been scheduled. Obviously, there are 

many ways to define p31, depending on whether the two 

events are interruptible or not and on what type of 

preference we are interesting in. We will opt for a general 

schema that can be used both for interruptible and non-

interruptible events, as well as both for ordering and 

proximity constraints. According to this schema, p31 over si 

and sj could be defined as follows: 

  

i js s

ijijji
ji

ji dtdtttu
DD

ssp )(
1

),( ORDERING

,31  

In this way, p31(si,sj) is computed as a double integral 

over all the various delta parts of si and sj, i.e., dti and dtj 

denote very small intervals within si and sj, with ti and tj 

being their start times. Di and Dj denote the total durations 

of the two events. The utility function 
ORDERING

, jiu  might be 

defined in several ways, e.g., a linear or a step function for 

an ordering preference, a triangle or an inverse triangle 

function for a proximity preference. In any case (i.e. even 

if 
ORDERING

, jiu  is a step function) the resulting function 

p31(si,sj) is a continuous function. 

p32. M out of N preference. From a set S of N optional 

events s1, s2, …, sN, we have preference over how many of 

them have been included in the schedule in a non-
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conflicting way. For this purpose, an event is considered as 

included in the schedule if it is not overlapping with other 

events in a way that the user has to choose which one to 

attend, whereas no other constraint is violated. The user 

may express her preference for the various discrete values 

of M[0..N], )(MofN MuS . 

C4. Overall preference of a schedule. This criterion 
concerns attributes of the schedule as a whole, as opposed 
to the specific events it contains. For example: 

p41: Free time. The user might be concerned about her 
free time. As free we consider any time slot that has no 
event (optional or not) scheduled in it (including implicit 
traveling events). Perhaps the user might use additional 
criteria as to what is considered a free time, such as: 

 A minimum concrete amount of free time. 

 Classes of locations where the user should be in order 
for that time to be considered as free. 

 Types of events that are compatible with the notion of 
free time (e.g., going to the theater is an event that 
could be considered free time). 

Another important dimension while measuring the 
amount of free time concerns the horizon over which it is 
computed. It is expected that if we measure the amount of 
free time over a year, most of the time will be free since 
the events that will occupy this time have not yet been 
inserted into the user’s calendar. So, more realistic 
horizons of, e.g., one week or a month should be 
considered. Perhaps, the user could measure the free time 
for each one of the next, e.g., four weeks and aggregate the 
results using higher weights for the earlier periods. 

Supposing FREEd  is the amount of free time for some 
period, p41 can be defined as: 

p41= )( FREEFREE du  

where FREEu  is expected to monotonically increase. 
p42: Travelling. Since most events are expected to have 

locations attached to them, the user’s schedule will 
implicitly involve traveling. We expect that users would 
prefer as less traveling as possible. So, p42 is expected to be 
a monotonically decreasing function of the total time of 
travelling, the total distance of travelling and the total cost 
of travelling (reasoning over alternative ways of travelling 
would be helpful). 

p43: Fragmentation. The user might prefer her free time 
(equivalently her busy time) to be as compact as possible. 
For example, she might prefer a single block of 6 hours of 
free time than two 3-hour blocks. One way to measure how 
the free time is distributed is to divide the total free time by 
the number of compact pieces in which it has been 
distributed. For example, if the total free time is 12 hours 
and free time has been distributed into three parts of four 
hours each, then 1/3 might be a measure of the 
fragmentation (higher values denote less fragmentation). 

However, taking into account only the number of 
intervals loses information about the sizes of these 
intervals. For example, splitting a 12 hour free time block 

in 4-4-4 is not the same as splitting it in 5-5-2. In that case 
it is difficult to judge which option is better; it depends on 
the user. So, to discriminate between these options too, an 
evaluation function over the compact free time intervals, 

EECOMPACT_FRu , has to be defined. Then, for any specific 
fragmentation of the free time, the sum of the utilities of 
the distinct compact free time periods could be used to 
define p43. A good candidate to define EECOMPACT_FRu  could 
be a sigmoid function. Furthermore, to make p43 
independent on the actual amount of free time, we could 
divide p43 with the total duration of free time: 

FREE

FREEEECOMPACT_FR )(
43

D

du
p i i

  

where FREED  is the total free time and FREE

id  denotes the i
th

 

compact period of free time.  
p44: Balance. This metric is similar to the fragmentation 

one. However, instead of measuring the distribution of the 
free time, Balance measures the distribution of the busy 
time. In order to evaluate p44, we have to define two 
intervals; a period over which balance is measured and a 
time horizon. For example, we might be interested in 
balanced day schedules over the next five days. Suppose 
that wi is the amount of work in the i

th
 period of interest. In 

that case, p44 could be defined as: 

i

i

w

w
p

)var(
144   

That is, p44 could be defined as the variance over the wi 
values, divided by their average value. In this way, p44 is 
independent of the actual workload; it just evaluates how 
uniformly the workload has been distributed over the 
schedule. So, two schedules with different workloads but 
with similar distributions would have the same value on 
p44. However, again, they would have different values in 
p41 (free time metric). 

Similar to p41, balance should also be measured w.r.t. 
specific categories of events. For example, non-business 
activities occupy some time slots into a user’s calendar, 
however they should not contribute to a user’s workload. 

p45: Number of events. This metric measures the 
number of the events included in the schedule. Contrary to 
p11, p45 does not take into account the overall utility of the 
included events but just their number. The rationale behind 
this criterion is that in case two alternative schedules have 
the same overall utility of included events, the user might 
prefer the schedule with the most events, i.e., she prefers to 
work first on less significant but easy to accomplish events 
than on more significant but difficult to accomplish events. 
More details concerning issues such as priority and 
urgency of events can be found in Berry et al. (2007). 

p46: Overlaps. This metric assess the percentage of 

overlapping events a schedule has. A straightforward way 

to measure overlaps is: 




i

id

D
p

BUSY

46  

where BUSYD  is the total amount of busy periods of the 
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schedule, i.e., periods where at least one event is scheduled 
and di is the duration of the i

th
 scheduled event (optional or 

not), i ranging over all scheduled events si. Again, specific 
classes of events could be ignored when computing p46. 

p47: Sensitivity/brittleness. This metric measures to 

what extent a schedule remains valid if some events finish 

after their initially scheduled end-time. For each event si in 

a schedule, we can compute what delay we might afford 

without a need to reschedule the remaining events, apart 

from performing equivalent shifts to them. Let’s denote 

this margin with mi. Given a minimum desirable margin for 

each event, mmin, we could define p47 as: 











 1,min

min

47
m

m
p i

i
 

i.e., it is the delay (w.r.t. the min desirable delay) of the 
most critical path of the schedule (Hiatt et al. 2009). 

C5. One schedule compared to other schedules. This 
criterion compares a schedule w.r.t. a set of reference 
schedules, such as the user’s existing schedule or an 
optimized template schedule. Reference schedules can be 
described at any level of abstraction: they might include 
either very specific events or abstract ones. Reference 
schedules form an alternative way for the user to express 
preferences. Criterion C5 may be composed of metrics such 
as the following: 

p51. Stability/perturbation. Given a reference schedule 

or template, this metric assess how much the each 

alternative schedule differs from the reference one. There 

are several ways to measure stability, depending (among 

others) on how the reference schedule looks like. The 

simplest approach is to consider the reference schedule as 

one containing some of the events of the current one. This 

situation is frequent in incremental scheduling, when a new 

event arrives and must be accommodated within the 

existing schedule, so the user might want as less 

perturbation to the existing schedule as possible. 

Measuring the perturbation between an existing schedule 

and a new one is however difficult to define. For example, 

moving an event in time or changing its location or 

changing the relative order or two events is usually 

undesirable. So, p51 can be analyzed in sub-metrics such as: 
 p511: Average shift in time. For all events common in 

both schedules, this metric assesses the average shift in 
time, where the average is performed over the absolute 
values of these shifts. A specialized approach is needed 
to measure average shift for interruptible events. 

 p512: Average shift in space. For all events common in 
both schedules, this metric assess the average distance 
between their new and old location. Again, a 
specialized approach is needed to measure average shift 
in space for interruptible events. 

 p513: Average utility of events changed. For all events 
moved compared to S’ (including especially those 
omitted), their average utility. 

 p514: Order changes. For all events common in both 
schedules, this metric measures the number of pairs of 

events that have changed their order. Again, a 
specialized approach is needed to measure the number 
of order changes for interruptible events. 

Note that the user might provide more than one 

reference schedule: p51 has to be computed for each one of 

them. Another dimension to be considered concerns the 

timing of changes: it is expected that changes in the near 

term schedule would be more obtrusive than changes in the 

long term. Metrics p511 through p514 should weigh the 

various changes with a function of their scheduling times, 

giving higher importance to near-term changes. 

 

Aggregating the Criteria 

These five criteria engender a multi-criteria evaluation of 
candidate schedules. We can follow prior work (Berry et 
al. 2006) in combining them with aggregation methods 
(instead of dominance relations), to result in total ordering 
(Keeney and Raiffa 1976). Aggregation functions can also 
be exploited in search as a heuristic guidance. Finally, they 
can be used in order to produce structurally different 
locally-optimal alternatives, by penalizing schedules that 
are similar to those already found (using, e.g., criterion C5). 

As for the specific aggregation functions, we propose 
two of them: a weighted sum when aggregating values 
resulted from applying the model or parts of it to different 
events or to different reference schedules (these values 
could be considered independent), and a Choquet integral 
(Labreuche and Grabisch 2003) when aggregating different 
criteria or sub-criteria for the same event or for the 
schedule as a whole (Table 1). Intelligent user interfaces 
and learning methods should be exploited to assess the 
aggregation coefficients. 

 
Criterion Sub-criteria Aggregation 

method 

Weights 

Root C1 through C5 Choquet integral 
Elicited or 

learnt 

C1 Over all events Sum (no weights) - 

C2 Over all events Weighted sum 
Event’s 

importance 
(given or learnt) 

C2(s) p21 through p25 Choquet integral 
Elicited or 

learnt 

p24 
Over all 

participants 
Weighted sum 

Importance of 
opinion  

(given or learnt) 

p25 p251 through p254 Choquet integral 
Elicited or 

learnt 

C3 
over all higher 

order constraints 
Weighted sum 

Given or 
engineered 

C4 p41 through p47 Choquet integral 
Elicited or 

learnt 

C5 
over all reference 

schedules 
Weighted sum Given 

p51 p511 through p514 Choquet integral Given or learnt 

Table 1. Suggested methods to aggregate criteria 
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Conclusions and Future Work 

This paper argues that organizing a user’s time in an 
automated way is a compelling opportunity and a 
challenging problem. Based on our experience in the field, 
we presented a rich set of attributes and constraints that can 
be used to model this problem. We also proposed a set of 
criteria that could be used to evaluate alternative schedules. 

Towards the implementation of an intelligent calendar 
assistant, we identify several engineering requirements: 

 Problem solving. A fast, although incomplete, search 
algorithm could be used to produce the alternative 
schedules. In Refanidis (2007), Squeaky Wheel 
Optimization (SWO) has been used to solve the 
scheduling problem, using a subset of the problem 
formulation presented in the current paper, and 
employing only criterion p21 to evaluate the alternative 
schedules. Experimental results have shown that SWO 
is more efficient and effective (under time limits) than 
complete scheduling algorithms. We expect that this 
behaviour will persist even for larger problems as the 
one described in this paper. 

 An event ontology would greatly facilitate entering the 
details of an event, since they could be retrieved from 
the predefined values of the event’s class. 

 Overconstrained problems. The system should always 
present a schedule to the user, even if it is not possible 
to satisfy all hard constraints. Suggestions to relax 
constraints should be provided. 

 Global scheduling. The system should be able to 
change any past decision, in order to accommodate new 
events. For example, in order to schedule a new 
meeting, the system should be able to present options 
that include rescheduling existing events 

 Incremental scheduling. Contrary to the previous 
requirement, the system should give the user the option 
to keep parts of its current schedule as fixed as 
possible. For this, criterion C5 is relevant. 

 Adaptivity. The system should provide the expert user 
with a mean to define new constraints and preferences, 
over the decision variables. This can be achieved 
through a constraint programming language. 

Thus, our next step is to develop a rigorous model and 
scheduling algorithms for the problem formulation 
described in this paper and to evaluate the alternative 
schedules using a subset of the suggested evaluation 
model. This constitutes our future work. 
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