

On Scheduling Events and Tasks by an Intelligent Calendar Assistant

Ioannis Refanidis
1,2

 and Neil Yorke-Smith
2

1University of Macedonia, Dept. of Applied Informatics, Egnatia str. 156, 54006, Thessaloniki, Greece

2 Artificial Intelligence Center, SRI International, Menlo Park, CA 94025, USA.

yrefanid@uom.gr, nysmith@ai.sri.com

Abstract

In the last decade various research efforts and commercial
offerings have sought to provide levels of automated
assistance with time management. Besides basic
calendaring, collaboration, and communication, many of
these efforts concern event negotiation or scheduling, while
others concern task management and monitoring. When
automated scheduling is employed, most often events and
tasks are treated separately, with the latter being kept out of
the user’s calendar. One consequence can be missing
deadlines or even not accomplishing some tasks. Based on
experience in developing and deploying an automated task
management system and an event scheduling system, this
paper sets the requirements for an intelligent calendar
assistant that treats tasks and events in a unified way,
schedules all of them within the user’s calendar, and
reschedules them whenever needed. We outline a set of
attributes used to represent the overall combined scheduling
problem, together with a set of criteria used to represent
users' preferences and evaluate alternative schedules.

Introduction

Electronic calendar applications are these days ubiquitous.
Common commercial applications, such as Apple iCal,
Google Calendar, and Microsoft Outlook, embed some
artificial intelligence techniques, such as natural language
parsing, but are primitive in comparison with the state of
the art in scheduling algorithms. Among these applications,
some provide assistance with the related aspect of task (or
to-do) management, as do dedicated offerings, such as
Chandler, OmniFocus and rememberthemilk.com.

1

Time and task management are co-dependent. Indeed,
some applications, such as Chandler, deliberately blur any
distinction between email message, event, and task. The
distinction between events and tasks is rather conceptual.
People tend to consider as event whatever has a specific
time window and location, probably engaging other people
too (e.g., a doctor’s appointment at 14:00 on Tuesday); on
the other hand, tasks usually are characterized by a
deadline (e.g., write a paper). Events are usually placed
directly into the user’s calendar, whereas tasks are usually

1
 Copyright © 2009, Association for the Advancement of

Artificial Intelligence (www.aaai.org). All rights reserved.

kept in to-do lists. This distinction is clear in many
commercial applications, like Microsoft Outlook or Google
Calendar, with the former giving the option to transform a
task to an event by dropping it in the calendar.

Research in event scheduling has mainly concentrated
on coordinating information and arranging meetings
between groups of people. In the research community,
several approaches have developed to schedule individual
or group events, potentially taking into account user
preferences, in order to develop intelligent calendaring
assistants (e.g., Mitchell et al. 1994; Sen and Durfee 1994;
Jennings and Jackson 1995; Modi et al. 2004; Berry et al.
2006, 2009). On the other hand, task management research
efforts have concentrated on facilitating task assignment,
execution monitoring, and raising reminders (e.g., Bellotti
et al. 2004; Conley and Carpenter 2007) or, in case of
scheduling tasks into a user’s calendar, completely ignore
meeting scheduling (Refanidis and Alexiadis 2008).
However, since both events and tasks require the same
resource—the user’s time—treating them separately may
result in poor overall utilization and unnecessary user
effort in overall time management.

In this paper we propose to treat events and tasks in a
unified way. Our proposal is based on our experience from
working on systems like SELFPLANNER (Refanidis and
Alexiadis 2008) and Emma (Berry et al. 2008). We outline
a rich set of attributes shared by events and tasks, giving
motivational examples. This set of attributes results from
thorough study of the common situations that arise in
practice. We also sketch a hierarchical preference model
that could be used (in entirety or in parts) to evaluate
alternative schedules. Finally, we discuss some engineering
issues that concern the development of an intelligent
calendar assistant based on (aspects of) the proposed
model. The goal of this paper is not to present a rigorous
theoretical model; it is rather to emphasize the multiple
aspects and inherent complexities of the problem of
organizing a user’s time and, thus, provide with ideas for
subsequent formulations and implementations.

43

mailto:yrefanid@uom.gr
mailto:nysmith@ai.sri.com

Our Previous Work

We outline two deployed systems, Emma and
SELFPLANNER, focusing on their complementary
differences. The features of an envisioned new scheduling
system, inspired by the best features of the existing
systems, are presented more formally in the subsequent
sections.

SELFPLANNER aims at helping the user to schedule her
own individual tasks. Each task is characterized by its
duration and temporal domain (among several other
attributes). SELFPLANNER tries to accommodate the tasks
within the user’s calendar, taking into account a variety of
constraints. SELFPLANNER emphasizes the use of
automated scheduling algorithms (Refanidis 2007). Figure
1 displays a screenshot of the system.

Emma aims at helping the user to schedule events (e.g.,

group meetings), while taking into account learnt user

preferences. Upon a meeting request that involves other

participants, Emma reads the calendars of all participants

and generates a set of potential schedules for the meeting.

It ranks each schedule option by taking into account the

participants' preferences (learnt or elicited) and their

relative importance for the organizer. Emma thus adopts a

mixed-initiative paradigm. Having scheduled an event,

Emma generally attempts to not reschedule it. Figure 2

gives a screenshot of the system.
Since the two approaches are complementary in several

ways, combining their best features in a single intelligent
calendar assistant would be worthy. In the next paragraphs
we comparatively present the two systems, focusing on
their complementarities.

Overlapping events and tasks: Emma allows
overlapping events. In particular, it is up to the user to
decide whether she wants overlapping events or not.
Having overlapping events may have one of the following
meanings for the user:

 The user will attend all events concurrently (for
example attending a physical meeting while
participating in a videoconference).

 The user will decide at a later time which event(s) to
attend.

 The user has initially blocked a time period for a
specific event (e.g., attending a conference) and then
she added new events describing detailed activities
within the main event (e.g., conference sections,
banquet etc).

 Similar to the previous case, the user has initially
reserved a block of time for just in case (e.g., it might
be the case that this day something is going to happen).
At a later time, more specific events are added into the
calendar, overlapping with the initial event.

 The user has blocked some period of time, just to

Figure 1. Screenshot of SELFPLANNER (http://selfplanner.uom.gr)

44

http://selfplanner.uom.gr/

prevent other people (including himself) from putting
events over this period (of course this presupposes that
she gave the right to other people to insert or at least
view events on her calendar). Later the user added new
events overlapping the blocked out period.

 Somebody else has added an event to the user’s
calendar (e.g., a meeting request that has been
automatically inserted into the user’s calendar), that
overlaps with existing events.

 The events might have duration less than the system’s
quantum of time. For example, in case the system’s
quantum of time is 30’, one could schedule two events
of 15’ duration each in the same time slice, and both of
them will be attended by the user (of course the two
events should have compatible locations).

Note that Emma does not automatically schedule the
events but proposes rated alternative schedules to the user
who eventually decides when (and where) to schedule each
event. Thus, the user decides whether to have parallel
events or not.

SELFPLANNER does not support overlapping events.
This is a consequence of the fact that SELFPLANNER solves
a different scheduling problem where all tasks need a
single resource, i.e., the user.

Locations: SELFPLANNER supports locations attached to
the tasks. The system employs Google Maps service to
compute temporal distances between the locations, so as to
leave the necessary temporal distance between adjacent
tasks scheduled at different locations. Furthermore,

SELFPLANNER supports location classes denoting sets of
locations. A location class can be attached to a task; in that
case the scheduling problem involves the selection of a
member of that class in order to schedule there the task.
Note that locations in SELFPLANNER are not considered as
resources, i.e., several tasks (of different users) can be
scheduled at the same location concurrently.

Emma supports locations according to the iCal
specification, i.e., the user can give value to a “where”
field; however, no special spatial reasoning is undertaken.

Resources: Emma supports resource management w.r.t.
a database of specific locations. That is, Emma considers
various locations (i.e., meeting rooms and offices at a
company) as being resources that are assigned to specific
events. Each location is treated as a virtual user having its
own calendar. However, no overlapping events are
allowed to these special calendars, ensuring that a location
cannot be reserved for two concurrent events.

Interruptible tasks: SELFPLANNER supports
interruptible tasks. The user can define whether a task is
interruptible or not and, in case it is, she can post
additional constraints on the durations of the parts of the
interruptible task or their temporal distances. Note that
parts of interruptible events may be scheduled in different
locations, provided that a class of locations has been
assigned to the task.

Binary constraints: SELFPLANNER supports ordering
constraints over pairs of tasks. An ordering constraint of
the form A<B, where A and B are two tasks, means that B

Figure 2. Screenshot of Emma

45

cannot start its execution before A has finished. In case of
A or/and B are interruptible, no part of B can start its
execution before all parts of A have finished.

Preferences: SELFPLANNER supports a limited form of
preferences. In particular, for each task the user can specify
whether she wants the task to be scheduled as early/late as
possible, or before/after a time point or finally whether she
is indifferent of when to schedule the task.

Preferences in Emma are given or learnt. The user
initially defines which hours within a week he mostly
likes/dislikes to schedule events in her calendar. He also
may define whether she dislikes events during lunch and
what kind of reminders she prefers. Finally, she may
relatively rate eight different factors that may affect her
preference over an event: her general day/time preferences
stated earlier, rescheduling, event start time, duration,
overlaps, participants, location and others’ preferences.
Having created an initial profile, the system then monitors
the user activities, which alternative schedule she selects
when organizing an event, how she responds in event
requests etc, in order to continuously refine a model that
has an aspect for each one of the eight criteria.

Periodicity: SELFPLANNER supports periodic tasks, in
particular daily, weekly, and monthly. A periodic task is
considered as a collection of simple, non-periodic tasks.
However, defining a task as periodic has several benefits
for the user, since she specifies the parameters of the task
(e.g., temporal domain, preferences) once only. Note that
the various instances of the periodic task do not have to be
scheduled in a uniform way.

Emma supports periodic events of five periods: hourly,
daily, weekly, monthly and yearly. After the organizer of
an event schedules the first instance of it, the rest of the
instances are scheduled automatically in the same way as
the first. However, it is always possible for a user to ask for
rescheduling of any instance of the periodic event.

Distributed scheduling: Neither SELFPLANNER nor
Emma support distributed scheduling. In case of
SELFPLANNER this is expected, since this system does not
support meeting scheduling. In case of Emma, scheduling
is performed by the organizer, who chooses a scheduling
option taking into account the various preferences, one of
them being “other’s preferences”. The organizer has also
the possibility to present to the participants a subset of the
available options and ask for their specific opinions;
however she makes the final decision. In any case the other
participants may reject the event that has been tentatively
scheduled.

User status: An interesting feature supported by few
systems is to monitor the user’s status, either explicitly or
implicitly. Currently, SELFPLANNER implicitly infers the
current location of the user from the location of the last
accomplished event, and this is taken into account when
scheduling the next one. Other attributes of the user could
be whether she is on her car or not, whether she carries her
laptop or not, what type of clothes she is wearing, etc.
Having access to this type of information transforms the
scheduling problem into a planning problem, where actions

have preconditions and effects. In that case, the system
should reason on what actions should be inserted into the
user’s plan in order to satisfy open goals. Planning
algorithms like POP (Weld 1994) or mixed-initiative
versions of them, would be best candidates to solve the
resulting problem.

Multiple calendars: Both systems support multiple
calendars. This means that each user can declare all
calendars she utilizes, and the system collects information
from all of them when scheduling a new event.

Partial Scheduling: SELFPLANNER supports partial
scheduling: if no schedule can be found that accommodates
all tasks, the best incomplete schedule is adopted and
presented to the user. Furthermore, the user is informed of
which tasks or parts of tasks were unable to schedule.

Emma does not support partial scheduling, but it
always accommodates all events, since overlapping events
are allowed whereas no explicit temporal domains or other
hard constraints are defined. However, alternative
schedules with many overlapping events or with events
scheduled at abnormal times receive lower scores in the list
of options presented to the user.

Problem Formulation

Before delving into the details of an event’s description,
we would like to discuss our view of hard and soft
constraints. Organizing a user’s calendar is a very
ambitious task to be accepted by the user, so we expect
from the system to be as flexible as possible by presenting
to the user several alternative schedules and let him decide
the best. Flexibility is greatly favored by soft constraints
instead of hard ones. So, it is expected that the user will
use as far as possible soft constraints (i.e., preferences) to
describe events and tasks. However, there are cases where
several value assignments to the decision variables are
strongly prohibited. Here are some examples:

 The user wants to attend a lecture. This event has a
very specific time and location. There is little value in
scheduling this event in another time or location.

 The user is attempting to organize a meeting with
another participant (a two-person meeting). In that case,
the constraint that both participants are necessary for
the meeting is hard; there is no point in having a
meeting without one of the participants!

 A location with specific features is required for a
meeting. In that case, there is no point in selecting a
location with, e.g., lower capacity or without a
teleconference facility.

 Physical constraints such as that the duration of an
event cannot be a negative value or that the end time is
equal to the sum of the start time and the duration.

In all the above examples there are some decision
variables, such as the start time or the location, that have
very specific acceptable values or ranges of values. There
is no point in assigning to these variables out-of-the-

46

domain values; in such cases it is preferable not to
schedule the event at all! However, even in such cases,
whether an event can be omitted or not is something that
the user decides. If an event is necessary (another type of
hard constraint), the system should include it if possible.
So, provided that a problem has been formulated with hard
and soft constraints, we always prefer a schedule where all
hard constraints are satisfied. If there is no such schedule,
the system clearly notifies the user and asks for her
intervention (i.e., changing the problem definition),
probably by suggesting a minimum set of constraints that
should be relaxed in order for the problem to become
solvable. However, even for unsolvable problems the
system might rank the alternative partial schedules based
on several criteria, such as the sum of the utilities (or
importance) of the accommodated tasks as well as the
degree to which soft constraints were satisfied, and present
them to the user in some decreasing order of preference.

Decision Variables and Hard Constraints

In the following we use the term 'event' to refer to an event
or a task interchangeably. Towards a unified calendaring
assistant that exploits AI scheduling, we propose attributes
to include:

Duration range. The possible durations of an event,
given as a lower and an upper bound. For example, an
event of the form “Lunch” might have a duration between
30 and 60 minutes. It is expected that the utility function (if
defined) over the possible durations will be a
monotonically increasing function.

Temporal domain. The set of possible time periods
when the event can be scheduled. Commonly, the temporal
domain is represented as a disjunction of intervals. For
example, the temporal domain of an event “Shopping”
would not include late night or Sundays in central Europe.

Locations. A list of alternative locations where the user
should be for the event. For example, the set of locations
for the event “Shopping” might consist of the malls in the
area. Each location is characterized from its geographic
coordinates. Travelling times between locations should be
taken into account by an intelligent calendar assistant when
scheduling events in space and time. An “anywhere”
location is also foreseen.

Reserve Location. A Boolean flag indicating whether
the selected location for the event, e.g., a meeting room,
should be reserved. Reservation supposes a Location
Manager that answers availability queries and performs
reservations. Reserving locations may impose extra
temporal constraints, since the scheduled location must be
available during the schedule time.

Utility. Each event is characterized by its utility. The
simplest model assumes a single, constant and known
positive utility value. More complex models would have
the utility depending on, for instance, the duration of the
event, its location, the number of participants, and so on.
Utilities of events are particularly important in the case of
overconstrained problems.

Utilization. A number between 0% and 100% defining

whether an event requires all user’s attention/effort (100%)
or part of it (less than 100%). Several events of the latter
type could be scheduled in parallel, provided that they are
scheduled in compatible locations.

One further possibility is to suppose utilization and
duration as inverse linear dependant. For example, an
event’s duration might be 2 hours with 100% utilization, 4
hours with 50% utilization, etc. This gives alternative
scheduling options.

Optional. A Boolean flag indicating that the user is not
obliged or has not yet decided to attend the event. The last
two attributes, Optional and Utilization, give rise for
overlapping events. Indeed, having overlapping events in a
user’s calendar is a common situation in practice, for
various reasons described in the previous section.

Category. A category characterizes a class of events,
e.g., Meetings, Teaching, Housekeeping, etc. An event
may belong to several categories. We assume that an
ontology of categories is provided. Pairs of categories of
the ontology might be compatible or not: only events of
compatible categories, provided they are optional or have
proper utilization values, may overlap. Compatibility is not
a reflexive relation.

The Category attribute can be combined with the
Utilization and Optional attributes in interesting ways. For
example, suppose the user wants to attend ICAPS’09 in
Thessaloniki. She creates an “abstract” event with zero
utilization, non-optional, with category icaps09, spanning
the days of the conference; category icaps09 is compatible
only with itself. Next, the user might add several optional,
full utilization events for various sessions of the
conference, all sharing the same category. Suppose now
that CP’09 runs over the same days in Lisbon, and the user
has not yet decided which of the two conferences to attend;
however, she will attend one for sure. This can be
modelled by defining a second conference event for CP
with zero utilization, optional, and category cp09 that
overlaps with the ICAPS event; category cp09 is
compatible only with itself too. Again, CP optional events
may be added. As soon as the user decides which
conference to attend, she only needs to define the
corresponding abstract event as non-optional—constraint
propagation can arrange everything else.

A subtlety with the above formulation concerns what
happens as long as the two abstract events are still
optional: the system may schedule any other optional event
during the same period. Thus, the user needs a way to state
that at least one of the two conference events should be
scheduled. This can be done in two ways:

 Defining a new category, icaps/cp09, that is
compatible only with icaps09 and cp09 and creating a
new non-optional abstract event of zero utilization
spanning over the same days. This new category should
not be an ancestor of icaps09 and cp09 in the ontology.

 Using a binary constraint stating that at least one of the
two main conference events should be scheduled.

Participants. A list of people who are invited to attend

47

the event. In a decentralized system’s architecture, one
participant is considered the organizer of the event, i.e., is
the person who will decide the final schedule. For each
participant, the following information may be defined:

 Optional. A Boolean flag indicating whether the
participant is necessary for the event to occur or not.

 Availability. For each participant, the organizer would
like to know when (and perhaps where) she is
available. At its simplest, this can be done by giving the
organizer access to the participant’s calendar. More
sophisticated negotiation and privacy protocols have
been studied in Maheswaran et al. (2005).

 MinParticipants. The minimum number of participants
that are needed in order for the event to take place (e.g.,
more than half of them).

Periodic. A Boolean flag denoting a repeating event.
Additional attributes are needed to specify the length of the
period, e.g., a week, and the number of occurrences. Each
occurrence should be scheduled separately.

Interruptible. A Boolean flag denoting an event that
can be scheduled in parts, e.g., writing a paper. Additional
attributes are needed to specify the minimum/maximum
duration of each part and the minimum/maximum temporal
distance between pairs of parts. For example, the user
might want at least four hours break between any two
“writing the paper” sessions, but wants to finish within two
months from starting working on this event.

Constraints. Binary and higher-order constraints over
events should be allowed. Some obvious candidates are:

 Temporal ordering. Event s before r is interpreted as “r
cannot start its execution before all parts of s have
finished”.

 Temporal proximity. A minimum/maximum interval
between two events.

 Physical proximity constraints. A minimum/maximum
distance between the locations assigned to two events.

 M out of N. At least M out of a set of N optional events
should be included without overlaps.

Special interpretation is needed when applying
constraints on interruptible and periodic events. For
example, stating that the maximum temporal distance
between two interruptible events s and r is t could be
interpreted as that there is at least one pair of their parts si
and rj that have distance less than or equal to t. Another,
perhaps less intuitive, interpretation is that any part si
should have distance at most t from some part sj and vice
versa. By contrast, in case of a minimum distance
constraint between events s and r, the only reasonable
interpretation is that t is the minimum distance for any pair
of parts si and rj.

Similar issues arise when s and/or r are periodic. For
any binary constraint over them, it has to be decided
whether it concerns pairs of instances of the events (which
presupposes that they have the same period), or the entire
sequences of instances.

Evaluation Model

We now turn to how a system that schedules events with
attributes such as those presented in the previous section,
may compare candidate (partial) schedules, in order to
select the best alternative or propose to the user alternative
schedules in decreasing order of preference. We propose a
hierarchical model consisting of five top-level criteria.

C1. Overall utility of a schedule, computed as the sum of
the utilities of the events it involves. In case of overlapping
optional events, an interesting computational problem is to
select this subset of non-overlapping events that maximizes
the overall utility. The problem becomes more complicated
since additional preferences over the events might have
been expressed, using the subsequently described criteria.

C2. Unary preferences for an event, aggregated over all
scheduled events. This criterion concerns the utility the
user perceives from the way each event s has been
scheduled, not taking into account other events. Criterion
C2 may be composed of metrics such as the following:

p21: Temporal preference. Suppose an event’s si

temporal domain has the form Domain =

[L1..R1][L2..R2]…[Lk..Rk], where the [Lj..Rj] comprise

a set of non-overlapping intervals. Each time slot

[t..t+1]Domain, denoted also simply with t, might get a

utility value)(TIME tui . Suppose now that Schedulei is the

collection of those time slots that si occupies according to

the current overall schedule, with |Schedulei| being the

decided duration of si. In that case, we define the temporal

preference of si as:

||

)(

)(

TIME

21
i

Schedulet

i

i
Schedule

tu

sp i






p22: Duration preference. Preference over the selected

duration. For example, let Dur=[minDur,maxDur] is the

interval of possible durations, then for each dDur, a

utility p22=)(DUR dui has to be provided for si.

p23: Location preference. For each event si, a set of

locations Loci has been assigned to it. Each location l

Loci has an assigned utility)(LOC lui . Suppose now that si

has an overall scheduled duration dDur, and has been

scheduled in N parts with durations d1, d2, …, dN and in

locations l1, l2, …, lN respectively, where dd
N

j

j 
1

. Then,

the utility received by the current schedule of si concerning

its location can be defined as:

d

lud

sp

N

j

jij

i





1

23

)(

)(

LOC

p24: Participants. In case participants are involved, each
one of them perceives a utility from the way the current
event is scheduled. Metric p24 considers how the organizer

48

of the event appreciates these utilities. The following
attributes might be related to each participant:
 Host. This is a Boolean value indicating that this

participant is the host of the event. Usually the host is
also the organizer, but this might not be the case.
Furthermore, however multiple hosts are allowed.
Being a participant the host may affect the organizer’s
scheduling decisions.

 Utility. The value the organizer assigns to having each
(optional) invited participant in the event.

 Importance of opinion. The weight the organizer gives
to the participant’s general preferences and their
specific feedback on the alternative scheduling options.

p25: Parts. In the case event si is interruptible, there
might exist several ways to divide it into parts. The user
might have preference over the way si has been divided,
i.e., in how many parts it has been divided, what is their
temporal distribution etc. So, there are several sub-metrics,
over which p25 might be defined. The most obvious of
them are the following:

 p251: Number of parts. The user has to define her

preference PARTS

iu over the number of parts of si.

 p252: Parts durations. The user might have a preference

over the possible durations d of the various parts of

event si. Let)(PARTDUR dui denote this preference

function. Supposing the current event has been divided

into N parts with durations d1, d2, …, dN, the overall

preference for this distribution could be defined as:

N

du

sp

N

j

ji

i





1

252

)(

)(

PARTDUR

An instance of p252 could be the following:

N

dda
sp

N

j j
i


 


1

2*

252

)(1

1

)(

where d* is a preferred duration and a is a parameter

taking non-negative real numbers. The preferred

duration d* is provided by the user (e.g., the user

prefers to work on writing a paper in parts of d*=4

hours). Parameter a determines how deviations from

this preferred duration are penalized.

Note that expressing preferences over the duration

of a part is not independent from expressing

preferences over the number of parts of the event. For

example, it is contradicting to prefer few parts and

short durations simultaneously. However, for the same

number of parts, there are several ways to distribute the

overall event's duration over them, so both metrics are

needed.

 p253: Average distances. The user might have a

preference over the temporal distances of the various

parts, e.g., she does not prefer the parts to be too close

to each other. So, suppose the current event has been

split into N parts, let's denote with dj,j+1 the temporal

distance between the j
th

 and the j+1
th

 part of event si,

supposing that always the (j+1)
th

 part is scheduled just

after the j
th

 part, for any j[1..N-1].

Suppose now that for any temporal distance d

between parts of event si, the user has a preference

)(DIST dui on it. Then, we could define p253 as:

N

du

sp

N

j

jji

i










1

1

1,

253

)(

)(

DIST

 p254: Makespan. For an interruptible event si, the

makespan is defined as the temporal distance between

the start time of the temporally first part of the event

and the end time of the temporally last part of the

event. The user might have a preference over the

makespan of the event, i.e., prefer shorter makespan

than longer (e.g., an interruptible event concerning

writing a journal paper—without a deadline—should

not have a makespan of 1 year, even if the temporal

domain of this event is wider than a year; the user does

not want to split this event in many parts that are

temporally away from each other).

C3. Higher order preferences over sets of events. This
criterion aggregates expressed preferences over sets of
scheduled events, such as:

p31. Ordering/proximity preference. For two events si

and sj, we might have a preference of how si is scheduled

w.r.t. sj. This preference might concern either the order in

which the two events have been scheduled, or how close to

each other they have been scheduled. Obviously, there are

many ways to define p31, depending on whether the two

events are interruptible or not and on what type of

preference we are interesting in. We will opt for a general

schema that can be used both for interruptible and non-

interruptible events, as well as both for ordering and

proximity constraints. According to this schema, p31 over si

and sj could be defined as follows:

  

i js s

ijijji
ji

ji dtdtttu
DD

ssp)(
1

),(ORDERING

,31

In this way, p31(si,sj) is computed as a double integral

over all the various delta parts of si and sj, i.e., dti and dtj

denote very small intervals within si and sj, with ti and tj

being their start times. Di and Dj denote the total durations

of the two events. The utility function
ORDERING

, jiu might be

defined in several ways, e.g., a linear or a step function for

an ordering preference, a triangle or an inverse triangle

function for a proximity preference. In any case (i.e. even

if
ORDERING

, jiu is a step function) the resulting function

p31(si,sj) is a continuous function.

p32. M out of N preference. From a set S of N optional

events s1, s2, …, sN, we have preference over how many of

them have been included in the schedule in a non-

49

conflicting way. For this purpose, an event is considered as

included in the schedule if it is not overlapping with other

events in a way that the user has to choose which one to

attend, whereas no other constraint is violated. The user

may express her preference for the various discrete values

of M[0..N],)(MofN MuS .

C4. Overall preference of a schedule. This criterion
concerns attributes of the schedule as a whole, as opposed
to the specific events it contains. For example:

p41: Free time. The user might be concerned about her
free time. As free we consider any time slot that has no
event (optional or not) scheduled in it (including implicit
traveling events). Perhaps the user might use additional
criteria as to what is considered a free time, such as:

 A minimum concrete amount of free time.

 Classes of locations where the user should be in order
for that time to be considered as free.

 Types of events that are compatible with the notion of
free time (e.g., going to the theater is an event that
could be considered free time).

Another important dimension while measuring the
amount of free time concerns the horizon over which it is
computed. It is expected that if we measure the amount of
free time over a year, most of the time will be free since
the events that will occupy this time have not yet been
inserted into the user’s calendar. So, more realistic
horizons of, e.g., one week or a month should be
considered. Perhaps, the user could measure the free time
for each one of the next, e.g., four weeks and aggregate the
results using higher weights for the earlier periods.

Supposing FREEd is the amount of free time for some
period, p41 can be defined as:

p41=)(FREEFREE du

where FREEu is expected to monotonically increase.
p42: Travelling. Since most events are expected to have

locations attached to them, the user’s schedule will
implicitly involve traveling. We expect that users would
prefer as less traveling as possible. So, p42 is expected to be
a monotonically decreasing function of the total time of
travelling, the total distance of travelling and the total cost
of travelling (reasoning over alternative ways of travelling
would be helpful).

p43: Fragmentation. The user might prefer her free time
(equivalently her busy time) to be as compact as possible.
For example, she might prefer a single block of 6 hours of
free time than two 3-hour blocks. One way to measure how
the free time is distributed is to divide the total free time by
the number of compact pieces in which it has been
distributed. For example, if the total free time is 12 hours
and free time has been distributed into three parts of four
hours each, then 1/3 might be a measure of the
fragmentation (higher values denote less fragmentation).

However, taking into account only the number of
intervals loses information about the sizes of these
intervals. For example, splitting a 12 hour free time block

in 4-4-4 is not the same as splitting it in 5-5-2. In that case
it is difficult to judge which option is better; it depends on
the user. So, to discriminate between these options too, an
evaluation function over the compact free time intervals,

EECOMPACT_FRu , has to be defined. Then, for any specific
fragmentation of the free time, the sum of the utilities of
the distinct compact free time periods could be used to
define p43. A good candidate to define EECOMPACT_FRu could
be a sigmoid function. Furthermore, to make p43
independent on the actual amount of free time, we could
divide p43 with the total duration of free time:

FREE

FREEEECOMPACT_FR)(
43

D

du
p i i



where FREED is the total free time and FREE

id denotes the i
th

compact period of free time.
p44: Balance. This metric is similar to the fragmentation

one. However, instead of measuring the distribution of the
free time, Balance measures the distribution of the busy
time. In order to evaluate p44, we have to define two
intervals; a period over which balance is measured and a
time horizon. For example, we might be interested in
balanced day schedules over the next five days. Suppose
that wi is the amount of work in the i

th
 period of interest. In

that case, p44 could be defined as:

i

i

w

w
p

)var(
144 

That is, p44 could be defined as the variance over the wi
values, divided by their average value. In this way, p44 is
independent of the actual workload; it just evaluates how
uniformly the workload has been distributed over the
schedule. So, two schedules with different workloads but
with similar distributions would have the same value on
p44. However, again, they would have different values in
p41 (free time metric).

Similar to p41, balance should also be measured w.r.t.
specific categories of events. For example, non-business
activities occupy some time slots into a user’s calendar,
however they should not contribute to a user’s workload.

p45: Number of events. This metric measures the
number of the events included in the schedule. Contrary to
p11, p45 does not take into account the overall utility of the
included events but just their number. The rationale behind
this criterion is that in case two alternative schedules have
the same overall utility of included events, the user might
prefer the schedule with the most events, i.e., she prefers to
work first on less significant but easy to accomplish events
than on more significant but difficult to accomplish events.
More details concerning issues such as priority and
urgency of events can be found in Berry et al. (2007).

p46: Overlaps. This metric assess the percentage of

overlapping events a schedule has. A straightforward way

to measure overlaps is:




i

id

D
p

BUSY

46

where BUSYD is the total amount of busy periods of the

50

schedule, i.e., periods where at least one event is scheduled
and di is the duration of the i

th
 scheduled event (optional or

not), i ranging over all scheduled events si. Again, specific
classes of events could be ignored when computing p46.

p47: Sensitivity/brittleness. This metric measures to

what extent a schedule remains valid if some events finish

after their initially scheduled end-time. For each event si in

a schedule, we can compute what delay we might afford

without a need to reschedule the remaining events, apart

from performing equivalent shifts to them. Let’s denote

this margin with mi. Given a minimum desirable margin for

each event, mmin, we could define p47 as:











 1,min

min

47
m

m
p i

i

i.e., it is the delay (w.r.t. the min desirable delay) of the
most critical path of the schedule (Hiatt et al. 2009).

C5. One schedule compared to other schedules. This
criterion compares a schedule w.r.t. a set of reference
schedules, such as the user’s existing schedule or an
optimized template schedule. Reference schedules can be
described at any level of abstraction: they might include
either very specific events or abstract ones. Reference
schedules form an alternative way for the user to express
preferences. Criterion C5 may be composed of metrics such
as the following:

p51. Stability/perturbation. Given a reference schedule

or template, this metric assess how much the each

alternative schedule differs from the reference one. There

are several ways to measure stability, depending (among

others) on how the reference schedule looks like. The

simplest approach is to consider the reference schedule as

one containing some of the events of the current one. This

situation is frequent in incremental scheduling, when a new

event arrives and must be accommodated within the

existing schedule, so the user might want as less

perturbation to the existing schedule as possible.

Measuring the perturbation between an existing schedule

and a new one is however difficult to define. For example,

moving an event in time or changing its location or

changing the relative order or two events is usually

undesirable. So, p51 can be analyzed in sub-metrics such as:
 p511: Average shift in time. For all events common in

both schedules, this metric assesses the average shift in
time, where the average is performed over the absolute
values of these shifts. A specialized approach is needed
to measure average shift for interruptible events.

 p512: Average shift in space. For all events common in
both schedules, this metric assess the average distance
between their new and old location. Again, a
specialized approach is needed to measure average shift
in space for interruptible events.

 p513: Average utility of events changed. For all events
moved compared to S’ (including especially those
omitted), their average utility.

 p514: Order changes. For all events common in both
schedules, this metric measures the number of pairs of

events that have changed their order. Again, a
specialized approach is needed to measure the number
of order changes for interruptible events.

Note that the user might provide more than one

reference schedule: p51 has to be computed for each one of

them. Another dimension to be considered concerns the

timing of changes: it is expected that changes in the near

term schedule would be more obtrusive than changes in the

long term. Metrics p511 through p514 should weigh the

various changes with a function of their scheduling times,

giving higher importance to near-term changes.

Aggregating the Criteria

These five criteria engender a multi-criteria evaluation of
candidate schedules. We can follow prior work (Berry et
al. 2006) in combining them with aggregation methods
(instead of dominance relations), to result in total ordering
(Keeney and Raiffa 1976). Aggregation functions can also
be exploited in search as a heuristic guidance. Finally, they
can be used in order to produce structurally different
locally-optimal alternatives, by penalizing schedules that
are similar to those already found (using, e.g., criterion C5).

As for the specific aggregation functions, we propose
two of them: a weighted sum when aggregating values
resulted from applying the model or parts of it to different
events or to different reference schedules (these values
could be considered independent), and a Choquet integral
(Labreuche and Grabisch 2003) when aggregating different
criteria or sub-criteria for the same event or for the
schedule as a whole (Table 1). Intelligent user interfaces
and learning methods should be exploited to assess the
aggregation coefficients.

Criterion Sub-criteria Aggregation

method

Weights

Root C1 through C5 Choquet integral
Elicited or

learnt

C1 Over all events Sum (no weights) -

C2 Over all events Weighted sum
Event’s

importance
(given or learnt)

C2(s) p21 through p25 Choquet integral
Elicited or

learnt

p24
Over all

participants
Weighted sum

Importance of
opinion

(given or learnt)

p25 p251 through p254 Choquet integral
Elicited or

learnt

C3
over all higher

order constraints
Weighted sum

Given or
engineered

C4 p41 through p47 Choquet integral
Elicited or

learnt

C5
over all reference

schedules
Weighted sum Given

p51 p511 through p514 Choquet integral Given or learnt

Table 1. Suggested methods to aggregate criteria

51

Conclusions and Future Work

This paper argues that organizing a user’s time in an
automated way is a compelling opportunity and a
challenging problem. Based on our experience in the field,
we presented a rich set of attributes and constraints that can
be used to model this problem. We also proposed a set of
criteria that could be used to evaluate alternative schedules.

Towards the implementation of an intelligent calendar
assistant, we identify several engineering requirements:

 Problem solving. A fast, although incomplete, search
algorithm could be used to produce the alternative
schedules. In Refanidis (2007), Squeaky Wheel
Optimization (SWO) has been used to solve the
scheduling problem, using a subset of the problem
formulation presented in the current paper, and
employing only criterion p21 to evaluate the alternative
schedules. Experimental results have shown that SWO
is more efficient and effective (under time limits) than
complete scheduling algorithms. We expect that this
behaviour will persist even for larger problems as the
one described in this paper.

 An event ontology would greatly facilitate entering the
details of an event, since they could be retrieved from
the predefined values of the event’s class.

 Overconstrained problems. The system should always
present a schedule to the user, even if it is not possible
to satisfy all hard constraints. Suggestions to relax
constraints should be provided.

 Global scheduling. The system should be able to
change any past decision, in order to accommodate new
events. For example, in order to schedule a new
meeting, the system should be able to present options
that include rescheduling existing events

 Incremental scheduling. Contrary to the previous
requirement, the system should give the user the option
to keep parts of its current schedule as fixed as
possible. For this, criterion C5 is relevant.

 Adaptivity. The system should provide the expert user
with a mean to define new constraints and preferences,
over the decision variables. This can be achieved
through a constraint programming language.

Thus, our next step is to develop a rigorous model and
scheduling algorithms for the problem formulation
described in this paper and to evaluate the alternative
schedules using a subset of the suggested evaluation
model. This constitutes our future work.

Acknowledgements

Thanks to Pauline Berry and Bart Peintner for discussions. The
work of the second author was supported by the Defense
Advanced Research Projects Agency (DARPA) under Contract
No. FA8750-07-D-0185/0004. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
DARPA, or the Air Force Research Laboratory.

References

Bellotti, V., Dalal, B., Good, N., Flynn, P., Bobrow, D.G., and
Ducheneaut, N. 2004. What a to-do: Studies of task management
towards the design of a personal task list manager. In Proc. of
CHI’04, Vienna, Austria, pp. 735-742.

Berry, P., Conley, K., Gervasio, M., Peintner, B., Uribe, T., and
Yorke-Smith, N. 2006. Deploying a personalized time
management agent. In Proc. of AAMAS’06 Industrial Track,
Hakodate, Japan, pp. 1564-1571.

Berry, P., Donneau-Golencer, T., Duong, K., Gervasio, M.,
Peintner, B., and Yorke-Smith. N. 2008. Emma: An event
management assistant. In ICAPS’08 System Demos, Sydney,
Australia.

Berry, P., Donneau-Golencer, T., Duong, K., Gervasio, M.,
Peintner, B., and Yorke-Smith, N. 2009. Evaluating user-adaptive
systems: Lessons from experiences with a personalized meeting
scheduling assistant. Proc. of IAAI’09, Pasadena, CA.

Berry, P., Gervasio, M., Peintner, B., and Yorke-Smith, N. 2007.
Balancing the Needs of Personalization and Reasoning in a User-
Centric Scheduling Assistant. Technical Note 561, Artificial
Intelligence Center, SRI International.

Conley, K. and Carpenter, J. 2007. Towel: Towards an intelligent
to-do list. In Proc. of AAAI Spring Symposium on Interaction
Challenges for Artificial Assistants, Stanford, CA, pp. 227-236.

Hiatt, L., Zimmerman, T., Smith, S.F., and Simmons, R. 2009.
Strengthening schedules through uncertainty analysis. In Proc. of
IJCAI’09, Pasadena, CA.

Jennings N.R. and Jackson, A.J. 1995. Agent based meeting
scheduling: A design and implementation. IEE Electronic Letters,
31(5):350-352.

Keeney, R.L. and Raiffa, H. 1976. Decision with Multiple
Objectives. John Wiley, New York.

Labreuche, C. and Grabisch, M. 2003. The Choquet integral for
the aggregation of interval scales in multicriteria decision
making. Fuzzy Sets and Systems, 137(1).

Maheswaran, R.T., Pearce, J.P., Varakantham, P., Bowring, E.,
and Tambe M. 2005. Valuations of Possible States (VPS): a
quantitative framework for analysis of privacy loss among
collaborative personal assistant agents. In Proc. of AAMAS’05,
Utrecht, The Netherlands, pp. 1030-1037.

Mitchell, T.M., Caruana, R., Freitag, D., McDermott, J., and
Zabowski, D. 1994. Experience with a learning personal
assistance. Comm. of the ACM, 37(7):80-91.

Modi, P.J., Veloso, M., Smith, S.F., and Oh, J. 2004. CMRadar:
A personal assistant agent for calendar management. In Proc. of
6th Intl. Workshop on Agent-Oriented Information Systems
(AOIS’04), Riga, Latvia, pp. 134-148.

Refanidis, I. 2007. Managing personal tasks with time constraints
and preferences. Proc. of ICAPS’07, Providence, RI, pp. 272-279.

Refanidis, I. and Alexiadis, A. 2008. SELFPLANNER: Planning
your time! In Proc. of ICAPS’08 Workshop on Scheduling and
Planning Applications, Sydney, Australia.

Sen, S. and Durfee, E.H. 1998. A formal study of distributed
meeting scheduling. Group Decision and Negotiation, 7:265-289.

Weld. D. 1994. An Introduction to Least Commitment Planning.
AI Magazine, 15(4): 27-61.

52

