
Operational Behaviour for Executing, Suspending, and
Aborting Goals in BDI Agent Systems

John Thangarajah1, James Harland1, David Morley2, and Neil Yorke-Smith2,3

1 RMIT University, Melbourne, Australia
{johnt,james.harland}@rmit.edu.au

2 SRI International, Menlo Park, USA
morley@AI.SRI.COM

3 American University of Beirut, Lebanon
nysmith@aub.edu.lb

Abstract. Deliberation over and management of goals is a key aspect of an
agent’s architecture. We consider the various types of goals studied in the lit-
erature, including performance, achievement, and maintenance goals. Focusing
on BDI agents, we develop a detailed description of goal states (such as whether
goals have been suspended or not) and a comprehensive suite of operations that
may be applied to goals (including dropping, aborting, suspending and resuming
them). We show how to specify an operational semantics corresponding to this
detailed description in an abstract agent language (CAN). The three key contribu-
tions of our generic framework for goal states and transitions are (1) to encom-
pass both goals of accomplishment and rich goals of monitoring, (2) to provide
the first specification of abort and suspend for all the common goal types, and (3)
to account for plan execution as well as the dynamics of sub-goaling.

1 Introduction

Deliberation over what courses of action to pursue is fundamental to agent systems.
Agents designed to work in dynamic environments, such as a rescue robot or an online
travel agent, must be able to reason about what actions they should take, incorporating
deliberation into their execution cycle so that decisions can be reviewed and corrective
action taken with an appropriate focus and frequency.

In systems based on the well-known Belief-Desire-Intention (BDI) framework [17],
most often a set of goals is ascribed to the agent, which is equipped with various tech-
niques to deliberate over and manage this set. The centrality of reasoning over goals is
seen in the techniques investigated in the literature, which include subgoaling and plan
selection, detection and resolution of conflicts [29,23] or opportunities for cooperation
[30], checking goal properties to specification [13,15], failure recovery and planning
[22,21,24], and dropping, suspending and resuming [28], or aborting goals [27]. A va-
riety of goals are described in the literature, including goals of performance of a task,
achievement of a state, querying truth of a statement, testing veracity of beliefs, and
maintenance of a condition [3,20].

An agent must manage a variety of goals, while incorporating pertinent sources of
information into its decisions over them, such as (user) preferences, quality goals, mo-
tivational goals, and advice [13]. The complexity of agent goal management—which

A. Omicini, S. Sardina, and W. Vasconcelos (Eds.): DALT 2010, LNAI 6619, pp. 1–21, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 J. Thangarajah et al.

stems from this combination of the variety of goals and the breadth of deliberation
considerations—is furthered because each goal can be dropped, aborted, suspended,
or resumed at arbitrary times. Note that while goals themselves are static (i.e., they
are specified at design time, and do not change during execution), their behaviour is
dynamic: a goal may undergo a variety of changes of state during its execution cycle
[15]. This evolution may include its initial adoption by the agent, being actively pur-
sued, being suspended and then later resumed, and eventually succeeding (or failing).
(Maintenance goals have a subtle life-cycle: the goal is retained even when the desired
property is true; it is possible that such goals are never dropped).

This paper analyzes the behaviour of the above types of goals, including the be-
haviour when goals are aborted or suspended. We consider the complete life-cycle of
goals, from their initial adoption by the agent to the time when they are no longer of
interest, and all stages in between, including being suspended and resumed.

Scenario. As a running example, consider a team of three robots—Alpha, Bravo and
Charlie—that are searching for the survivors of an air crash. Each has a battery life of
four hours, and has to return to its base to recharge within this time. The three robots
search individually for survivors, but when one is found, each may call on the others
for assistance to bring the survivor to the base.

Initially Alpha is told to search a particular area. After 30 minutes, Alpha finds a
survivor with a broken leg. Alpha calls for help from Bravo, as it will require at least
two robots to carry the survivor. Once Bravo arrives, both robots carry the survivor back
to the base, and then both resume searching. A little later, Alpha receives a call for help
from Bravo, who has found another survivor. It takes longer than expected for Alpha
to get to the location. Before Alpha arrives, another message from Bravo is received,
stating that the survivor has been transported back to the base and so Alpha’s assistance
is no longer required. Alpha resumes its search. Later it receives a call for help from
Charlie, who has found a survivor. Once Charlie’s survivor is safely back at the base,
Alpha considers resuming its search, but as it has only 30 minutes of battery life left, and
it predicts that it will take at least 15 minutes of travel time to get to where it needs to
be, Alpha decides to recharge. Once this is done, Alpha resumes its search. Eventually
it completes searching its given area, finding no more survivors, and returns to the base.

This example illustrates some of the complexity and richness of goal deliberation and
management and the need for a comprehensive and principled approach. Alpha initially
adopts the performance goal of searching its assigned area; this goal is suspended when
a survivor is found, and later resumed. (We assume that each robot is given a similar
area to search, and that Alpha’s task is complete once it has searched this area.) In the
interim times, Alpha adopts achievement goals (getting survivors to the base), which it
may have to abort (when Alpha is too late to help Bravo). Alpha also has the important
maintenance goal to monitor its power usage and recharge when appropriate.

Contribution. Our work extends previous efforts in two main directions. Our first area of
innovation is to develop a rich and detailed specification of the appropriate operational
behaviour when a goal is pursued, succeeded or failed, aborted, suspended, or resumed.
We (1) include sophisticated maintenance goals, along the lines of Duff et al. [8], that
encompass proactive behaviour (i.e., anticipating failure of a given condition) as well
as reactive behaviour (i.e., waiting until the condition becomes false), and allow for

Operational Behaviour for Executing, Suspending, and Aborting Goals 3

different responses in each case. This contrasts over most work on maintenance goals,
in which only the reactive behaviour is developed [20,15]. We (2) develop an appropriate
set of states for goals (which generalizes the two states of suspended and active of van
Riemsdijk et al. [20]), and a set of operations to move goals between these states. These
operations are richer than previous works, by including suspending and resuming for
all the common goal types, and the corresponding state transitions can be non-trivial.
We provide a detailed specification and a nearly-complete formal semantics.

Our second area of innovation is to address execution of plans to achieve goals within
our semantics. The spirit of our work is shared by Morandini et al. [15], who build
on van Riemsdijk et al. [20] by providing operational semantics for non-leaf goals,
i.e., semantics for subgoaling and goal achievement conditions. We (3) encompass the
same dynamic execution behaviour, but further consider plans as well as goals. Thus
we consider the execution cycle, not only the design phase like Morandini et al.

This paper elaborates our first and more brief report of a semantics for goal lifecycles
at the DALT’10 workshop [26]; we gave a short overview in [25]. Our earlier works—
that considered maintenance goals [8], or that established operations for aborting [27]
and suspending and resuming [28] goals—did not treat the lifecycle of goals.

The paper is organized as follows. In Sect. 2 we discuss various types of goals.
In Sect. 3 we specify goal management behaviours, particularly to support abort and
suspend. In Sect. 4 we present our semantics and a worked example. In Sect. 5 we
discuss related work, and in Sect. 6 we conclude.

2 Goal Types and Their Abstract States

We follow the syntax of goals given by Winikoff et al. [32], using the above robot
rescue scenario as a running example. Goals have a specification with both declarative
and procedural aspects. We take a goal G to have a context (or pre-condition) that
is a necessary condition before the goal may be adopted, a success condition S that
denotes when the goal may be considered to have succeeded, and a failure condition
F that denotes when it may be considered to have failed. Any of these conditions may
be empty. We take a plan P to have declarative success and failure conditions, and
procedural success and failure methods that are invoked upon its success and failure
respectively. A plan may have other dedicated methods attached, such as an abort clean-
up method [27], and suspend and resume methods [28]. By task we mean an abstract
action rather than a specific goal or plan.

Braubach et al. [3] are among those who survey the types of goals found in agent
systems. The consensus in the literature agrees that perform, achieve, query, test, and
maintain cover the widespread uses of goals [32,3,6,20]. We note that querying and
testing goals can be reduced to achievement and performance goals, respectively [20].

perform(τ, S, F): accomplish a task τ . These goals, sometimes called goals-to-do, de-
mand that a set of plans be identified to perform a task; they do not require a particular
state of the world be achieved. A perform goal succeeds if one or more of its plans com-
plete execution; it fails otherwise, such as if no plan is applicable or all applicable plans
fail to execute. Hence, the success condition S will express that “one of the plans in the

4 J. Thangarajah et al.

given set succeeds” to accomplish τ [32,20]. The perform goal also has a failure condi-
tion, F . If F is true at any point during execution, the goal terminates with failure, and
execution of all plans is terminated. The association between the task τ , which is not
more than an identifier, and the plans, is akin to the association between event type and
plans in the agent programming language JACK [4].

Example: Search a particular area for survivors.

achieve(S, F): reach a state S. These goals, sometimes called goals-to-be, generate
plans to achieve a state, S, and should not be dropped until the state is achieved or is
found to be unachievable, signified by the condition F . An achieve goal differs from a
perform goal in that it checks its success condition during plan execution and after a plan
completes. If the success condition S is true (at any point during execution), the goal
terminates successfully; if the failure condition F is true (at any point during execution),
the goal terminates with failure. Otherwise, the goal returns to plan generation, even if
the previous plan completed successfully.

An important difference between perform and achieve goals is their behaviour on
multiple instances of the same goal. An agent that is given three identical instances of
a perform goal will execute the goal three times (unless there is an unexpected plan
failure). An agent that is given three identical instances of an achievement goal may
achieve this goal between one and three times, depending on environmental conditions.

Example: Ensure a survivor gets to the base. Note that this is an achieve goal rather
than a perform goal as it can only succeed when the survivor is at the base.

The goals we have considered so far are goals of accomplishment: they all directly
result in activity. Maintenance goals, by contrast, are goals of monitoring, in that they
may give rise to other goals when particular triggering conditions are met, but they do
not themselves directly cause activity.

maintain(C, π, R, P, S, F): keep a condition C true. Maintenance goals monitor a main-
tenance condition, C, initiating a recovery goal (either R or P ; see below) to restore
the condition to true when it becomes false. Note that a recovery goal is initiated, not
a plan. More precisely, as introduced by Duff et al. [8], we allow a maintain goal to be
reactive, waiting until the maintenance condition is found to be false, B |= ¬C (where
B denotes the beliefs of the agent), and then acting to restore it by adopting a reactive
recovery goal R; or to be proactive, waiting until the condition is predicted to become
false, B |= π(¬C) (where π is some prediction mechanism, say using lookahead rea-
soning, e.g., [30,10]) and then acting to prevent it by adopting a proactive preventative
goal P . Although not specified in prior work, we insist that R and P be achieve goals.
The maintenance goal continues until either the success condition S or failure condition
F become true.

Example: Ensure that Alpha is always adequately charged.

2.1 Abstract Goal States and Transitions

We now move towards a formal characterization of goal states and the transitions a goal
undergoes between these states. Our focus is the life-cycle of each particular goal that

Operational Behaviour for Executing, Suspending, and Aborting Goals 5

Pending Waiting

Suspended

Active
consider

re-activate (M)

respond

re-consider
re-activate

(M)

activate (P,A)

activate (M)

suspend suspendre-activate
(P,A)

suspend

P – Perform goal A – Achieve goal M – Maintain goal T – drop/abort/succeed/fail

T

T

TT

Fig. 1. Goal life-cycle composed of abstract states

the agent has. Hence, our perspective is that of an individual goal, rather than the overall
agent per se. This means that we will not be concerned with issues such as the agent’s
overall deliberation, generation of goals (from Desires), or prioritization of goals. These
relevant topics are outside the scope of this paper.

Our objective is to specify the life-cycle of goals and the mechanisms of the agent.
The life-cycle we capture as four states, Pending, Waiting, Active, and Suspended, shown
in Fig. 1, together with the initial state (left) and the terminal state (right). The transition
from each state to the terminal state is shown. We combine the drop, abort, succeed, and
fail transitions into a single transition, T, as shown.

The states can be arranged into a precedence order: Pending ≺ Waiting ≺ Active ≺
Suspended. Observe that, if a goal transitions from a state s to Suspended, it may not
then next transition from Suspended to a state higher than s in the order. Some transi-
tions are essentially controlled by conditions, while others depend on an explicit agent
decision (or a combination of conditions and a decision), as will be made precise.

A new candidate goal may arise from a source external or internal to the agent’s
control cycle [16]. External to the control cycle, it may arise from obligations or com-
mitments concerning other agents, or from the agent’s own motivations. Internal to the
control cycle, it may arise from subgoaling within an executing plan. Either way, a
new candidate goal begins life in the Pending state if the agent has decided to consider
the goal. In the next section we describe the goal control cycle in detail, including the
mechanisms to perform the goal operations of interest.

3 Transitions between Goal States

The heart of our work is the effects that different operations an agent may apply to its
goals of different types, in each of the four states introduced. We now describe in detail
the life-cycle of a goal in each of the states. We call a top-level command a decision by
the agent’s deliberation to impose an operation upon a goal.

6 J. Thangarajah et al.

First, to any goal in any state, the drop operation implies that the goal and any goal-
related actions are halted; the goal is discarded with no further action. The agent may
choose to drop a goal if, for example, it believes the goal is accomplished, is no longer
required, impossible, or if it inhibits a higher priority goal. Note that there are three
essential cases here: the goal is dropped because it has succeeded, dropped because it
has failed, or dropped because the agent has decided to drop it.

Pending State. Goals in the Pending state are inactive, awaiting the agent to deliberate
over them and execute a particular operation. The activate operation on a perform or
achieve goal transitions the goal to the Active state where the goal is pursued. By contrast,
the activate operation on a maintain goal transitions the goal to the Waiting state.

The suspend operation takes a goal to the Suspended state. The abort operation sim-
ply drops the goal; no clean-up is required since no plans for the goal are in execu-
tion. If the success or failure condition become true in the Pending state, the goal is
dropped. Note that although perform goals do not contain an explicit success condition
(see Sect. 2), we make the distinction here for simplicity.

Waiting State. The Waiting state is shown with italics in Fig. 1 to emphasize that it
exclusively applies to goals of monitoring: maintain goals that (actively) check for a
triggering condition to be known. In this state, as in Pending, no plans are being ex-
ecuted. Goals transition into this state when they are (1) activated from Pending, (2)
re-activated from Suspended, or (3) re-activated from Active when the subgoal succeeds,
as described earlier. Should the maintenance condition be violated—or, in the proactive
case, should it be predicted to be violated—then the goal transitions to the Active state
with the respond operation. The suspend operation moves the goal to the Suspended

state, whilst abort simply drops it since no plans are in execution. The goal may also be
dropped if the success or failure condition becomes true.

Active State. Active goals are actively pursuing tasks: they may therefore have plan(s)
associated. We must define how the agent manages the plan(s) in accordance with the
operations it applies to the goal. Fig. 2 provides the internal details of the abstract Active

state. Transitions with bold label denote top-level commands and other transitions occur
when some condition is met. Sub-states of the active state that are shaded (e.g., aborting)
are uninterruptable states where top-level commands cannot be applied.

Maintain goals enter the Active state from the Waiting state when the triggering condi-
tion is true, and move to a post subgoal sub-state. A maintain goal posts a recovery goal
R if the maintenance condition was violated or a preventative goal P if the mainte-
nance condition is predicted to be violated. Recovery and preventative goals are always
achieve goals, and commence in the Pending state1.

If the subgoal succeeds, then the parent maintain goal g transitions back to the Waiting

state. If the subgoal fails, g is dropped. Should g be aborted or should its success or
failure condition become true, then it transitions to the abort subgoal sub-state where the
subgoal is aborted and then g is dropped. Should the goal g be suspended, the subgoal

1 An argument can be made for commencing these goals in the Active state. However, commenc-
ing in the Pending state allows more flexibility, in that a trivial activation condition will see
these goals immediately transition to the Active state, if that is desired.

Operational Behaviour for Executing, Suspending, and Aborting Goals 7

suspended
pending

suspended
waiting

suspended

reconsideringS

resuming
executing resume

methods unwinding
executing cleanup

methods

suspending
executing suspending

methods

*suspend

*re-consider

*suspend
(M)

re-activate (M)

*suspend (M)

*suspend
(P,A)

suspending
method

complete

*resumesuspend
*abort

restart/
drop/
S (P) or F (P,A)

activate re-activate (P,A)
(resuming method

complete)

re-consider

drop

re-consider

Pending Waiting

Pending

Suspended

*abort

*resume

*abort (M)

abort/drop/
(S or F)

reconsideringSW

aborting
executing abort

methods

drop
abort

P – Perform goal A – Achieve goal M – Maintain goal
F – failure condition true S – success condition true * – top level command

suspend

Active

Fig. 2. Active state in detail

plan
generation

executing
plan

aborting
executing abort

methods

*abort

*suspend

plan

*abort

drop (no plan)

*suspend
not F (P,A)

and
not S (A)

post
subgoal

respond (M)

abort
subgoalS

*abort

drop
(subgoal fails) abort

subgoalA

*suspend

Waiting

drop (abort
complete)

suspend

(abort
complete)

re-activate
(subgoal

succeeds)

Suspended

check
goal

drop (abort
complete)

Suspended

plan failed

plan complete (A)
drop (plan

complete (P))

activate (P,A) Pending

Active
drop if

F (P,A) or S (A)

S or F

F (P,A)
or
S (A)

Suspended

P – Perform goal A – Achieve goal M – Maintain goal
F – failure condition true S – success condition true * – top level command

re-activate (P,A)

Fig. 3. Suspended state in detail

8 J. Thangarajah et al.

is aborted in the abort subgoalS sub-state and then g moves to the suspended waiting

sub-state of Suspended. Any generated plans are handled according to the mechanisms
described in the literature [28].

Perform and achieve goals enter the Active state from the Pending state, or from the
Suspended state when the re-activation condition becomes true. These goals are first
examined in the check goal sub-state to determine if the success or failure condition is
true; if either is true, the goal is dropped. Otherwise, a plan is generated to achieve the
goal in the plan generation state. If no plan is found, the goal is dropped: this reflects the
most common behaviour in BDI systems. A goal is also dropped if it is aborted in this
sub-state since no plan is in execution. If a plan is found, then the goal transitions to the
executing plan sub-state.

In the executing plan sub-state, if the plan fails then the goal moves back to the check

goal state to retry the process of generating a new plan to achieve the goal.1 If the
plan completes for a perform goal, the goal succeeds and hence is dropped. If the plan
completes for an achieve goal, however, the goal is checked for its success condition
in the check goal state. If the success condition is not true then a new plan needs to be
generated and executed to achieve it. While executing a plan in the executing plan sub-
state, if the goal is aborted, or the success or failure condition become true, the goal
transitions to the aborting sub-state where abort methods are executed [27]; the goal is
dropped when they complete. If a goal is suspended in the executing plan sub-state it
transitions to the Suspended state.

Suspended State. This state contains a goal of any type that is suspended, monitoring
its reconsideration condition [28], awaiting possible resumption.

Goals of accomplishment may have one or more plans associated. We again must
define how the agent manages the plan(s) in accordance with the operations it applies
to the goal. Fig. 3 provides the internal details of the abstract Suspended state. Goals
transition to this state when the suspend operation is applied to them. Goals arriving
from the Pending state (top left) are held in a suspended pending sub-state and, when
resumed, move back to the Pending state.

Maintain goals suspended from the Active state or the Waiting state are held in a sus-

pended waiting sub-state. From this sub-state, a goal may be aborted, in which case it
is simply dropped, or resumed. If resumed, a goal moves to a reconsidering sub-state
where the agent deliberates over it and may either (re-)suspend the goal (back to sus-

pended waiting sub-state), reconsider the goal (back to Pending state), re-activate it (back
to Waiting), or simply abort or drop it. When a maintain is suspended, our semantics
specifies that its subgoals be aborted.

Perform or achieve goals suspended from the Active state first require any suspend
methods to be executed. This occurs in the suspending sub-state; then the goal moves to
the suspended state. A goal may be aborted from this state, causing its abort method to
be performed [27] in the aborting sub-state before it is dropped. If not aborted prior to
resumption, a goal may be resumed when its reconsideration condition becomes true, or
when the agent decides to resume it2. Upon resumption of the goal, the agent deliberates

2 That is, resume is a top-level command. Hence, the reconsideration condition is a ‘note’ from
the agent to itself to guide its deliberation over the suspended goal: a sufficient but not neces-
sary condition for when the agent should next look at the goal.

Operational Behaviour for Executing, Suspending, and Aborting Goals 9

over it in the reconsidering state. The agent may opt to (1) abort the goal (move to aborting

sub-state), (2) (re)-suspend it (move to suspended sub-state), (3) re-activate the goal by
performing resume methods [28] in the resuming sub-state before transitioning to the
Active state, (4) restart the goal, or (5) drop the goal. To restart is to halt any suspended
plans and re-consider the goal. Therefore, prior to restarting, any existing plans need
to be terminated in the unwinding sub-state, before the goal transitions to the Pending
state to be re-considered. Goals to be dropped follow a similar transition. Suspend and
resume methods, like abort methods, are assumed not to fail [28].

4 Towards a Formal Semantics

In order to use Fig. 1 as a specification of a goal deliberation process, we need to
determine what information is required for each goal, and how this information is used
to make decisions about when the transitions of Fig. 1 should be applied. Ultimately, we
wish to provide formal definitions of the transitions for each goal in an abstract, formal
agent language such as CAN [32,22,21], utilizing the generic approach initiated by van
Riemsdijk et al. [20], with some variations. Two of the key differences in our work
(besides the choice of formal language)— which enable us to support the full variety of
goal types and operations upon goals—are that we have four basic goal states (Pending,
Waiting, Active and Suspended) rather than two, and that not all transitions are possible
(for example, goals of accomplishment can never be in the Waiting state). This allows
us to deal with suspended goals in a more detailed and realistic manner, as well as
providing a more natural semantics for maintenance goals. Further, unlike Morandini
et al. [15], our semantics deals with plans as well as goals. This means that we can
incorporate subgoals into plans, allowing the agent designer a richer and more natural
way to specify the system’s behaviour.

In order to specify the appropriate state transitions independently of any agent pro-
gramming language, we will give an operational semantics for the goal transitions of
Fig. 1 in CAN. This also means that we can study properties of the semantics at an
appropriate level of abstraction. Using CAN as a basis means that the formal transi-
tions are between agent configurations of the form 〈B,G〉, where B is the agent’s be-
liefs, and G is a set of goals that the agent is pursuing concurrently. Each element of
G will contain more than just the goal itself; each G ∈ G is the goal context tuple
〈Id,Goal ,Rules,State,Plan〉.
– Id is a unique identifier for each goal
– Goal is the goal content (as given in Sect. 2),
– Rules is a set of condition-action pairs of the form 〈C, A〉, where C is a condition

and A is one of { activate, reactivate, reconsider, respond, suspend, drop, abort }
– State is one of { Pending, Waiting, Active, Suspended }
– Plan is the current plan (if any) being executed for this goal

The existence of unique identifiers ensures that goals can refer to each other. Recall that
goals are fixed at design time and do not change during execution; hence Goal is fixed
throughout execution. Rules, State, and Plan are dynamic and may change during
execution. Note that our notation for G from this point on differs from the informal
notational convenience used in Sect. 2.

10 J. Thangarajah et al.

Our deliberation process is specified by transitions between tuples of the form 〈B,G〉.
Our assumptions about this process are:

– All goals are known at compile time, and are given unique identifiers. This ensures
that goals can explicitly refer to other goals, allowing the agent designer to specify
transitions such as one goal being suspended when another specific goal is activated.

– Any change in any goal’s state has preference over any executing plans. This means
that execution can only take place when the set of goal contexts is stable, i.e., none
of the transitions in Fig. 1 are currently able to take place. This is somewhat conser-
vative, but it allows the agent designer the freedom to specify whatever interaction
between goals is desired (such as making all achieve goals inactive whenever any
maintenance goal becomes active), knowing that any change in any goal’s status will
result in the status of all goals being reconsidered. This, in turn, may result in a cor-
responding change in what is being executed.

– Plans are not necessarily known in advance, but may be generated online. This means
that we do not assume that the agent necessarily has a plan library (although this is
a perfectly valid option), and so we cannot rely on plans to be of a particular form.
This also means that we have to explicitly allow for plan generation in our formal
definition; we leverage previous techniques [20].

– No restriction is made on the number of goals that may be active at once. It may be
desirable to allow that there should be at most one active goal at any time, or perhaps
that there should be at most one goal active when any maintenance goal is active (but
allow any number of concurrent achievement goals to be active otherwise). Hence we
need to be able to provide the agent designer with mechanisms to enforce restrictions
like these if desired, but not to build them into the CAN rules. Accordingly we will
have a standard pattern for goal transition rules, which can be tailored by the designer
to suit the particular application.

– Goals of any type may be used as sub-goals in plans. This means that a plan may
contain a goal as a step, at which point the goal is executed, with the only difference
being that success and failure are treated in the same way as success and failure for
actions. In particular, if the subgoal fails (or is aborted), then this is treated as a plan
failure, i.e., we search for an alternative plan.

4.1 Introduction to CAN Rules

Formalization of the semantics hinges on the appropriate definition of Rules for each
goal. These definitions follow the same general principles, but can be tailored for indi-
vidual goals. It is also helpful to use CAN’s expressiveness to alter Rules dynamically,
such as adding reconsideration conditions to suspended goals.

Our approach is the following. Given an action A that takes goal G from state S1

to S2, we ensure that there is a rule 〈C, A〉 ∈ Rules such that whenever B |= c for
some c ∈ C, we update the agent configuration from 〈B, {〈Id, G, R, S1, P1〉} ∪ G〉 to
〈B, {〈Id, G, R, S2, P2〉} ∪ G〉, unless A is either drop or abort, in which cases the new
agent configuration is 〈B,G〉.

A goal G changing state from S1 to S2 via action A (which is neither drop nor abort)
is modelled by the following rule:

Operational Behaviour for Executing, Suspending, and Aborting Goals 11

〈C, A〉 ∈ R1 c ∈ C B |= c

〈B, {〈Id, G, R1, S1, P1〉} ∪ G〉 → 〈B, {〈Id, G, R2, S2, P2〉} ∪ G〉 (1)

The drop and abort actions are similarly modelled by the rule

〈C, drop/abort〉 ∈ R1 c ∈ C B |= c

〈B, {〈Id, G, R1, S1, P1〉} ∪ G〉 → 〈B,G〉. (2)

Note that for actions other than drop or abort, it is possible to change G.Rules , i.e., in
Eq. (2), R2 may be different from R1. This is particularly important for reconsideration
conditions.

In some cases, the agent wants a condition C to be evaluated ‘autonomously’, i.e.,
without any further deliberation. In other cases, the agent wants an explicit condition.
Thus, we require that all conditions contain a formula of the form reconsider(Id), so
that a reconsideration condition Cond is specified as Cond ∧ reconsider(Id). This
means that for the goal to change state, not only must Cond hold, we must also have
that the agent has explicitly decided to resume the goal by adding reconsider(Id) to its
beliefs. This mechanism also allows us to provide for the possibility that the agent may
decide to drop, abort, or suspend any goal at any time: it can do so by adding drop(Id)
(resp. abort(Id), suspend(Id)) to its beliefs.

As noted in Sect. 2, it is also common to include an activation condition of the form
〈{Cond ∧ activate(Id)}, activate〉}, so that the goal can only be activated when both
Cond is true and the agent has decided to activate the goal. As a result, we will denote
as standard(Id, Succ,Cond) the set of rules:

{〈{Succ, drop(Id)}, drop〉, 〈{abort(Id)}, abort〉,
〈{suspend(Id)}, suspend〉, 〈{Cond ∧ activate(Id)}, activate〉}

We now consider how to create parametrized rules within this framework for perform,
achieve, and maintain goals.

perform(τ, S, F): We commence with Rules as standard(Id, {S, F},Cond), For a
goal with identifier Id. We do not initially include any rules for the actions reconsider or
reactivate; these are added to Rules when the goal is suspended.

For the suspend action, we need to add reconsideration conditions to Rules. When
suspending a goal in the Pending state, the first of the following rules is added by the
transition; when suspending a goal in the Active state, both are added. This is because
the reactivate action is not possible if the goal was in the Pending state when suspended.

{〈{RC ∧ reconsider (Id)}, reconsider〉}
{〈{RC ∧ reactivate(Id)}, reactivate〉}

In these rules, RC is the reconsideration condition, which is determined by the agent.
The reconsider and reactivate actions remove the condition-action pairs for both of them-
selves when either of these actions is performed. This allows different reconsideration
conditions to be attached each time a suspension occurs.

12 J. Thangarajah et al.

achieve(S, F): The high-level rules for this goal type are the same as for a perform goal,
i.e., standard(Id, {S, F},Cond). This reflects the fact that the transitions in Fig. 1 are
the same for these goal types.

maintain(C, π, Recover, Prevent, S, F): The two pertinent differences between mon-
itoring versus accomplishment goals are that (1) there is now the extra state Waiting, in
which the maintenance condition is being monitored, but no action is being taken yet,
and (2) when the maintenance goal becomes active, it triggers the adoption of an extra
achievement goal, with the intention that when this new goal is achieved, the violation
of the maintenance condition (either actual or predicted) will be overcome. Hence, the
respond action, which is only available to maintenance goals, will result in not only the
maintenance goal becoming active, but also the adoption of a new achievement goal.

The initial set of rules is the same as for perform goals above. The transitions for drop
and abort are as above. The transition for activate now puts the goal into the Waiting state
rather than the Active state, and adds the rule: 〈{¬C, C ∧π(¬C)}, respond〉. Hence the
respond rule is only present when the goal is in the Waiting state. The only significant
difference to perform goals is the transition from Waiting to Active states, as follows:

〈C, respond〉 ∈ R1 c ∈ C B |= c

〈B, G ∪ {〈Id1, MG, R1, Waiting, e〉}〉 −→ 〈B, G ∪ {〈Id1, MG, R2, Active, AG〉}〉
where MG is maintain(C, π, Recover, Prevent, S, F);
Recover is achieve(SR, FR); Prevent is achieve(SP , FP); SG is achieve(SA, FA);
SA is SR and FA is FR if ¬C is true and SP and FP otherwise;
R1 is standard(Id, {FA, S, F}, true) ∪ 〈SA, reactivate〉}; and
R2 is standard(Id2, {SA, FA},¬C ∨ (C ∧ π(¬C))) ∪

{〈{drop(Id1), suspend(Id1), abort(Id1)}, abort〉}.

The idea is that the goal SG has been has been added (initially in the Pending state) to
attempt re-establishment of the maintenance condition. If SG succeeds, we reactivate
MG (i.e., MG returns to the Waiting state), due to the success condition SA of SG being
the only condition for the reactivate rule in R1. If SG fails or is dropped or aborted, one
option would be to drop MG; however, as SG is treated as a sub-goal here, we do not
drop MG but return to the planning level, in case another plan for MG can be found. If
not such plan can be found, MG will be dropped in any case. MG is dropped if either
its success condition S or failure condition F becomes true.

The rules R2 for SG specify it will be activated immediately (due to the activation
condition incorporating the maintenance condition), and that it should be aborted if the
agent decides to drop, abort or suspend MG (as reflected in the rules for drop in R2).
Note also that if SG is suspended, the maintenance goal remains in the Active state.

As in the above cases, the suspend transition attaches a reconsideration condition. A
minor difference is that the reactivate action can result in either the Waiting state or the
Active state, following the semantics of Fig. 1.

4.2 Designing CAN Rules

In Fig. 4 below we give formal CAN rules corresponding to the states and transitions of
Fig. 1. The rules may be divided into three groups:

Operational Behaviour for Executing, Suspending, and Aborting Goals 13

type(G) = Perform,Achieve B,R � activate

〈B,G ∪ g(id,G,R,P, π)〉 −→ 〈B, . . .A, π)〉 act(P,A)
type(G) = Maintain B,R � activate

〈B,G ∪ g(id,G,R,P, π)〉 −→ 〈B, . . .W, ε)〉 act(M)

B,R1 � respond

〈B,G ∪ g(id,MG,R,W, ε)〉 −→ 〈B, . . .A, AG)〉 respond

B,R � A A ∈ {drop, abort} State ∈ {S,A,W}
〈B,G ∪ g(id,G,R, State, π)〉 −→ 〈B,G〉 drop/abort

B,R � suspend State ∈ {P,A,W}
〈B,G ∪ g(id,G,R, State, π)〉 −→ 〈B, . . . R+, S, π)〉

suspend
B,R � reconsider

〈B,G ∪ g(id,G,R, S, ε)〉 −→ 〈B, . . . R−,P, ε)〉
recon

type(G) = Perform,Achieve B,R � reactivate

〈B,G ∪ g(id,G,R,A, π)〉 −→ 〈B, . . . R−,W, ε)〉
react(P,A)

type(G) = Maintain B,R � reactivate

〈B,G ∪ g(id,G,R, S, π)〉 −→ 〈B, . . . R−,W, ε)〉
react(M)

stable Π = mer(G,B,G ∪ g(G,R,A, ε)) Π �= ε

〈B,G ∪ g(G,R,A, ε)〉 −→ 〈B, . . .A, Π)〉 plan

stable Π = mer(G,B,G ∪ g(G,R,A, ε)) Π = ε

〈B,G ∪ g(G,R,A, ε)〉 −→ 〈B,G〉 noplan

stable π �= ε 〈B,G ∪ g(G,R,A, π)〉 −→ 〈B′, G ∪ g(G,R,A, fail)〉
〈B,G ∪ g(G,R,A, π)〉 −→ 〈B′, G ∪ g(G,R,A, ε)〉 fail

stable ¬simple(P1‖P2,) 〈B,P1〉 −→ 〈B′, P ′〉
〈B,P1‖P2〉 −→ 〈B,P ′‖P2〉

‖1

stable ¬simple(P1‖P2,) 〈B,P2〉 −→ 〈B′, P ′〉
〈B,P1‖P2〉 −→ 〈B,P1‖P ′〉

‖2

stable ¬simple(P1 � P2,) 〈B,P1〉 −→ 〈B′, P ′〉
〈B,P1 � P2〉 −→ 〈B′, P ′ � P2〉

�1

stable ¬simple(P1 � P2,) 〈B,P1〉 −→ 〈 , fail〉 〈B,P2〉 −→ 〈B′, P ′〉
〈B,P1 � P2〉 −→ 〈B′, P ′〉

�2

stable ¬simple(P1;P2,) 〈B,P1〉 −→ 〈B′, P ′〉
〈B,P1;P2〉 −→ 〈B′, P ′;P2〉

;
stable B |= pre(a)

〈B, a〉 −→ 〈B′, nil〉
act1

stable B �|= pre(a)

〈B, a〉 −→ 〈B, fail〉 act2

stable simple(P, P ′)

〈B,P 〉 −→ 〈B,P ′〉 simple
stable

〈B,nil〉 −→ 〈B, ε〉 nil

stable

〈B,+b〉 −→ 〈B ∪ {b}, ε〉 add
stable

〈B,−b〉 −→ 〈B\{b}, ε〉 del

stable B |= φ

〈B, ?φ〉 −→ 〈B, ε〉
query1

stable B �|= φ

〈B, ?φ〉 −→ 〈B, fail〉
query2

stable ψi : Pi ∈ Δ B |= ψi

〈B,< Δ >〉 −→ 〈B,Pi � < Δ \ {ψi : Pi} >〉 select

stable Δ = {ψiθ : Piθ | e′ : ψi ← Pi ∈ Π ∧ θ = mgu(e, e′)}
〈B, !e〉 −→ 〈B ∪ {e}, < Δ >〉 event

stable B |= φ 〈B,P 〉 −→ 〈B′, P ′〉
〈B, φ : P 〉 −→ 〈B′, P ′〉 wait1

stable B �|= φ

〈B, φ : P 〉 −→ 〈B, φ : P 〉 wait2

〈B,G ∪ g(P,G,R,A, G2)〉 −→ 〈B,G ∪ g(P,G,R,A, SubGoalP lan) ∪ g(C,G2, R3,Pending, ε)〉 Goal

Fig. 4. One formulation of CAN rules for the goal life-cycle

MG is maintain(C, π, Recover, Prevent, S, F); Recover is achieve(SR, FR);

Prevent is achieve(SP , FP); AG is 〈Id2, achieve(SA, FA), R2, Pending, e〉;

SA is SR and FA is FR if ¬C is true and SP and FP otherwise;

R1 is standard(Id1, {FA, S, F}, true) ∪ 〈{S}, reactivate〉};

R2 is standard(Id2, {SA, FA},¬C ∨ (C ∧ π(¬C))) ∪ {〈{drop(Id1), suspend(Id1), abort(Id1)}, abort〉}
SubGoalP lan is Sc ∨ Fc ∨ drop(Child) ∨ abort(Child) :?Sc

R3 is standard(Child, Sc ∨ Fc, true) ∪ {〈{drop(Parent), abort(Parent), suspend(Parent)}, abort〉}

– Goal transition rules: act(P,A), act(M), respond, drop/abort, suspend, recon, react
(P,A), react(M)

– Planning rules: plan1 , plan2 , fail
– Execution rules: the remaining rules

14 J. Thangarajah et al.

Table 1. Alpha’s sequence of goal states. Ser is the perform goal perform(search, S, F),
Main is the maintenance goal maintain(MC, π,Charge, Charge,⊥,⊥), MC
is the condition current charge > return time, Charge is the achievement
goal achieve(recharged,⊥), si is search i; . . . search10; return , ri is a plan
which returns the robot to sector i, R1 is standard (search, {S, F},�)4, R2 is
standard (recharge , {drop(charge), abort(charge)},�) ∪ {〈recharged , reactivate〉}, R3 is
R2∪{〈{¬MC, MC∧π(¬MC)}, respond〉}, R4 is standard (save , {at(survivor , base)}�),
R5 is R1 ∪ {at(base, survivor), reconsider 〉}, R6 is standard (help, satisfied(Other),�),
R7 is standard (charge, recharged ,¬C ∨ (C ∧ π(¬C))) ∪
{〈{drop(recharge), suspend(recharge), abort(recharge)}, abort〉} .

Stage Perform goals Achievement goals Maintenance goals
1 〈search, Ser, R1, Pending, search〉 - 〈recharge, Main, R2, Pending, e〉
2 〈search, Ser, R1, Active, search〉 - 〈recharge, Main, R3, Waiting, e〉
3 〈search, Ser, R1, Active, s2〉 - 〈recharge, Main, R3, Waiting, e〉
4 〈search, Ser, R5, Suspended, s2〉 〈save, Sav, R4, Pending, e〉 〈recharge, Main, R3, Waiting, e〉
5 〈search, Ser, R5, Suspended, s2〉 〈save, Sav, R4, Active, assist〉 〈recharge, Main, R3, Waiting, e〉
6 〈search, Ser, R5, Suspended, s2〉 (dropped after success) 〈recharge, Main, R3, Waiting, e〉
7 〈search, Ser, R1, Pending, s2〉 - 〈recharge, Main, R3, Waiting, e〉
8 〈search, Ser, R1, Active, r2; s2〉 - 〈recharge, Main, R3, Waiting, e〉
9 〈search, Ser, R1, Active, s5〉 〈help, Help, R6, Pending, e〉 〈recharge, Main, R3, Waiting, e〉
10 〈search, Ser, R5, Suspended, s5〉 〈help, Help, R6, Active, assist〉 〈recharge, Main, R3, Waiting, e〉
11 〈search, Ser, R5, Suspended, s5〉 (aborted) 〈recharge, Main, R3, Waiting, e〉
12 〈search, Ser, R1, Active, r5; s5〉 - 〈recharge, Main, R3, Waiting, e〉
13 〈search, Ser, R1, Active, s8〉 〈help, Help, R6, Pending, e〉 〈recharge, Main, R3, Waiting, e〉
14 〈search, Ser, R5, Suspended, s8〉 〈help, Help, R6, Pending, e〉 〈recharge, Main, R3, Waiting, e〉
15 〈search, Ser, R9, Suspended, s8〉 〈help, Help, R6, Active, assist〉 〈recharge, Main, R3, Waiting, e〉
16 〈search, Ser, R5, Suspended, s8〉 (dropped after success) 〈recharge, Main, R3, Waiting, e〉
17 〈search, Ser, R5, Pending, r8; s8〉 - 〈recharge, Main, R3, Waiting, e〉
18 〈search, Ser, R5, Active, r8; s8〉 - 〈recharge, Main, R3, Waiting, e〉
19 〈search, Ser, R5, Suspended, r8; s8〉 〈charge, Charge, R7, Pending, e〉 〈recharge, Main, R3, Active, e〉
20 〈search, Ser, R5, Suspended, r8; s8〉 〈charge, Charge, R7, Active, charge〉 〈recharge, Main, R3, Active, e〉
21 〈search, Ser, R5, Suspended, r8; s8〉 (dropped after success) 〈recharge, Main, R3, Active, e〉
22 〈search, Ser, R5, Suspended, r8; s8〉 - 〈recharge, Main, R3, Waiting, e〉
23 〈search, Ser, R1, Active, r8; s8〉 - 〈recharge, Main, R3, Waiting, e〉
24 (dropped after success) - 〈recharge, Main, R2, Waiting, e〉

We believe that this is the first time that these three aspects have been combined into
the one semantics. The goal transition rules, derived from Fig. 1, are most directly
comparable to previous works [20,15]; the planning rules are similar to those of the
former. The execution rules are based on the standard CAN rules, with some extensions.
In particular, the extensions include the wait construct (i.e., φ : P where P is not
executed unless φ is true), and the rule goal , which deals with the case when goals (of
any type) can occur in plans, and hence as sub-goals of another goal.

When a subogal is encountered, it is executed synchronously, i.e., the parent goal
waits until the subgoal has completed before moving on. If the subgoal succeeds, the
subgoal is dropped, and execution proceeds (just as in the case of any other successful
step). If the subgoal fails, or is dropped (other than after it has succeeded) or aborted,
then this is treated as a plan failure, i.e., that the step failed and that an alternative, if
available, should be pursued. Hence the plan for the parent goal is to wait for one of
the success or failure conditions to become true, or for the subgoal to be dropped or
aborted, and then query whether the subgoal succeeded. The parent goal’s step then
succeeds only if the success condition of the subgoal is true (see rule goal below).

Note also that we use a ‘traditional BDI’ approach to plans, in that if the precondi-
tion of an action is true, then we assume that the action succeeds. In other words, the
only way for an action to fail is for its precondition to be false. Hence in the rules act1
and act2 below, we first test the precondition (pre(a)); if this is true, then the action
succeeds and the beliefs are updated appropriately. Otherwise the action fails. It is pos-
sible to allow for more sophisticated processing, such as sensory actions, for which it is

Operational Behaviour for Executing, Suspending, and Aborting Goals 15

possible to tell immediately after execution whether it has succeeded or not. Designing
rules for such actions is outside the scope of this paper; for now, we note that this is not
a limitation of CAN, but is purely a design decision.

To simplify some of the execution rules, we define simple(P, P ′) to be true iff P is
one of the cases below and P ′ is its simplification:

P P ′ P P ′

nil‖Q Q fail‖Q fail
Q‖nil Q Q‖fail fail
nil; Q Q fail; Q fail
Q;nil Q
nil � Q nil fail � Q Q

To further ease legibility and reduce redundancy, we introduce some shorthand nota-
tions. We abbreviate the states to P, W, A, and S with the obvious meanings.
We often abbreviate 〈B, G ∪ g(id, Goal, R, P, π)〉 −→ 〈B, G ∪ g(id, Goal, R, A, π)〉
to 〈B, G ∪ g(id, Goal, R, P, π)〉 −→ 〈B, . . . A, π)〉.

We denote by R+ the rules in R with the rules for reconsider and reactivate added.
We denote by R− the rules in R with the rules for reconsider and reactivate deleted. We
abbreviate the rule

Condition
〈B, G ∪ g(Goal, R,Active, P1)〉 −→ 〈B′, G ∪ g(Goal, R,Active, P2)〉

to 〈B, P1〉 −→ 〈B′, P2〉 when no ambiguity occurs. We denote by B, R
 A the
statement that ∃〈C, A〉 ∈ R ∃c ∈ C such that B |= c.

We denote by stable(B, G) that for all goals Goal in G we have that if B, Goal.Rule

action, then action is not applicable. Applicable actions are defined by Fig. 1; for exam-
ple, the activate action is only applicable in the Pending state. This definition is needed
to allow for the possibility that B, Goal.Rule
 activate when Goal is already in the
Active state, and so the action will have no effect. We will often abuse notation and
write just stable when the beliefs and goals are clear from the context. Note that the
presence of stable in the premise of the execution rules is the mechanism that guaran-
tees that execution does not take place in preference to changes of goal state.

4.3 Worked Example

The sequence of goal transitions in the robot rescue scenario are given in Table 1. Al-
pha’s initial goals include the perform goal perform(search , S, F) where search is a
search plan for a region 10 units square, which Alpha searches one square at a time.
We will assume that search consists of the eleven steps search1; . . . search10; return
where searchi searches column i of the grid and return makes Alpha return to the base.
The success condition S is that each column has been searched and Alpha is at the base.

Alpha’s initial goals also include the maintenance goal that it should always retain
sufficient charge to return to the base. This means that it needs to estimate how long it
will take it to return to the base from its current position, and if its remaining charge
falls to this level, it should immediately suspend whatever it is doing and return to the
base to recharge. Hence Alpha’s initial goals include maintain(C, π, R, P,⊥,⊥) where

16 J. Thangarajah et al.

C is the condition that current charge > return time , π is an appropriate prediction
mechanism (such as estimating the time that will be taken by each of the currently
adopted plans), and R and P are both the achievement goal of returning to the base,
i.e., achieve(at base,⊥).

Alpha will adopt appropriate achievement goals when assisting a survivor back to
the base, and when responding to calls for help: achieve(at(Survivor, base),⊥) and
achieve(satisfied(Other),⊥) respectively. The success condition for the former is when
the survivor is safely back at the base. The success condition for the latter is determined
by the other agent; hence the goal only succeeds when Alpha believes the other agent is
satisfied, i.e., when the other agent sends a message to Alpha notifying it that the goal
has been achieved. The plans to achieve this goal will also be generated by the other
agent. Activation of either of these goals will suspend the search goal.

Each of these achievement goals will be triggered by a rule in Alpha’s plan library5,
so that we assume that Alpha contains in its library the following two rules:

survivor found :
 →achieve(at(Survivor, base),⊥)
request received :
 → achieve(satisfied(Other),⊥)

Alpha’s sequence of goal states is given in Table 1. As shown, its initial goals are the
perform goal Ser to search and the maintain goal Main concerned with its battery power.
The following states correspond to an actual execution from the initial goals.

Alpha’s first decisions are to activate both goals, so that the perform goal moves
into the Active state, and the maintain goal moves into the Waiting state (stage 2). Al-
pha thus starts to execute its search pattern. Alpha successfully executes search1 and
is in the midst of sub-plan search2 when the survivor is found (stage 3). The event
survivor found is raised, and the rule in Alpha’s plan library is fired, resulting the goal
Sav being added to Alpha’s goals (stage 4). This triggers the suspension of the search
goal. The reconsideration condition is when the survivor is safely at the base.

Alpha now activates the Sav goal. It plans to achieve at(Survivor, base) by calling
Bravo for help, asking the survivor about any others nearby, waiting until Bravo arrives
and together carrying the survivor to the base (stage 5). This plan is executed success-
fully; thus Sav is achieved, the goal is dropped, and Alpha resumes searching (stages
6–8). It is in sector 5 when Bravo’s call for help is received (stage 9). Again, this event
fires the appropriate rule in Alpha’s plan library, and a Help goal is added to Alpha’s
goal state. Alpha then suspends the search plan and adopts the goal of assisting Bravo
(stage 10). The reconsideration condition is when the survivor is safely at the base.

While Alpha is still executing the action find(bravo), a message from Bravo arrives
saying that the survivor is now safely at the base, and so Alpha aborts the plan to find
Bravo and the Help goal is dropped (stage 11). Alpha resumes its search, and then gets
the call from Charlie when it is in sector 8. As before, it suspends searching (stages
13–15), and adopts a Help goal. The reconsideration condition is when the survivor is
safely at the base. Alpha finds Charlie, the survivor is brought to the base, and so the
Help goal is dropped (stage 16).

5 Another possibility is to have these two goals intially in the Pending state and to use the
survivor found and request received events as part of the activation condition for them;
pursuing this possibility is part of our future work.

Operational Behaviour for Executing, Suspending, and Aborting Goals 17

At this point, Alpha reconsiders Ser , and activates the searching goal, only to dis-
cover that resuming its search will soon violate the maintenance goal, as it has only 30
minutes of charge remaining. Hence the searching goal is re-suspended while Alpha
recharges (stages 17–20). Once charging is finished, Charge is dropped (stage 21), and
recharge goes back to the Waiting state (stage 22), which means that searching can be
resumed (stage 23). As the perform goal Ser has now succeeded, it is dropped, and
Alpha is now idle (stage 24).

4.4 Implementation

A prototype implementation of the full CAN rules for our semantics consists of around
700 lines of Prolog. It has been tested under Ciao and SWI-Prolog. This implementa-
tion, denoted Orpheus, continues to be developed, and is available from the authors at
http://www.cs.rmit.edu.au/˜jah/orpheus

It should be noted that this implementation is intended as a proof-of-concept devel-
opment of the CAN rules, and should not be seen as a surrogate for well-known agent
implementations such as JACK [4], Jadex [16], or Jason [11,1]. Its purpose is to allow
some simple experimentation with the rules of CAN and the consequences of changes
in the early forms of the rules above.

5 Related Work

Goals play a central role in cognitive agent frameworks [20]: “mental attitudes rep-
resenting preferred progressions of a particular (multi)agent system that the agent has
chosen to put effort into bringing about.” Winikoff et al. [32] argue for the importance of
both declarative and procedural representations, and present the specification of goals
with context, in-conditions, and effects.

A goal type has been defined as “a specific agent attitude towards goals” [6]. The dif-
ferent types of goals found in the literature and in implemented agent systems are sur-
veyed by Braubach et al. [3]. While there is broad agreement about perform and achieve

goals, less attention has been directed towards maintain goals. The reactive and proactive
semantics for maintenance goals is explored by Duff et al. [8]. However, they do not
consider aborting or suspending goals, and do not give formal rules for the behaviour
of maintenance goals. Mechanisms for adopting and dropping goals, and generating
plans for them, have been variously explored at both the semantic theoretical and im-
plemented system levels; we do not cite here the extensive body of work. Thangarajah
et al. formalized the mechanisms for the operations of aborting, suspending, and re-
suming goals [27,28]. However, those authors considered only achieve goals. We find
that the literature lacks a state and transition specification for all classes of goals that
accounts for the current mechanisms for aborting and suspending. Beyond our scope
are recent examples of exploring goal failure and re-planning [21,24].

Bordini and Hübner et al. [1] provide a semantics for Jason’s ‘internal actions’, in-
cluding its mechansism for handling plan failure. Inasmuch as they act to modify in-
ternal state, these internal are akin to the internals of our abstract goal states, seen in
Fig. 2 and 3.

http://www.cs.rmit.edu.au/~jah/orpheus

18 J. Thangarajah et al.

Braubach et al. [3] build the Jadex agent system [16] on an explicit state-based ma-
nipulation of goals. Goals begin in a New state. When adopted, they move to the Option

state (akin to our Pending), and from there to Active (akin to our own Active). A goal
moves to the Suspended state if its in-condition (“context” [3]) becomes false: this is a
different concept from our deliberation-directed suspension and resumption. The aim of
Braubach et al. is to define a principled yet pragmatic foundation for the Jadex system;
no attempt is made for a generic formalization with a uniform set of operations on goals
at an abstract representational level. Braubach et al. [2] discuss long-term goals, which
may be considered as an input for determining when a goal should be dropped, aborted
or suspended; here we are concerned with the consequences of such decisions, rather
than the reason that they are made.

van Riemsdijk et al. [18,19] provide semantics based on default logic, emphasizing
that, while the set of an agent’s goals need not be consistent, its set of intentions must be.
This and similar work is complementary to ours, in that we do not consider the process
by which the agent decides whether to adopt a goal and whether to adopt an intention
(plan) from it [5]. The authors [6,7] expand their analysis of declarative goals to perform,
achieve goals, and maintain goals, providing a logic-based operational semantics.

van Riemsdijk et al. [20] present a generic, abstract, type-neutral goal model con-
sisting of suspend and active states. Their two states can be thought of as “not currently
executing a plan” and “currently executing a plan”, respectively. Their work, which like
ours encompasses achieve, perform, query, and maintain goals, has overly simple account-
ing for maintenance goals and for aborting and suspending. Further, we argue that the
states of non-execution and suspension should be distinguished, and that goals should
be created into the Pending not Suspend state. Winikoff et al. [31] extend this work with
new types of time-varying goals, such as ‘achieve and maintain’, sketching a semantics
in Linear Temporal Logic.

Morandini et al. [15] use the generic goal model of van Riemsdijk et al. to reduce the
semantic gap between design-time goal models and run-time agent implementations.
Their operational semantics is focused on providing an account of the relationship be-
tween a goal and its subgoals, including success conditions which are not necessarily
the same as those of the subgoals. Our work likewise encompasses dynamic achieve-
ment of a goal according to logical conditions, enabled by a subgoaling mechanism.
Crucially, since we are concerned with execution, our semantics accounts for plans as
well as goals. This means that our goal states contain finer distinctions, and in particular
the sub-division of the Active and Suspended states. Our work is further distinguished
by a richer range of operations that may be applied to a goal (e.g., a richer semantics
for suspending a goal and its children; aborting as well as failing), and by the inclusion
of proactive maintenance goals.

Khan and Lespérance [12] tackle goal dynamics for prioritized goals through a log-
ical approach. Their focus is to ensure that active goals are consistent with each other
and the agent’s knowledge. Lorini et al. [14] study in detail the dynamics of goals and
plans under changes to the agent’s beliefs. Such works that enable an agent to recon-
sider its goals in the light of belief updates are complementary to our work, and beyond
our scope here.

Operational Behaviour for Executing, Suspending, and Aborting Goals 19

6 Conclusion and Further Work

Management of goals is central to intelligent agents in the BDI tradition. This paper pro-
vides mechanisms for goal management across the common goal types in the literature,
including goals of maintenance. The three key contributions of our generic framework
for goal states and transitions are (1) to encompass both goals of accomplishment and
rich goals of monitoring, (2) to provide the first specification of abort and suspend for
all the common goal types, and (3) to account for plan execution as well as the dynamics
of sub-goaling. To the best of our knowledge, no existing framework for goal operation
accounts all of these points.

By developing the formal operational semantics for our generic framework in the
agent language CAN [21], we have not been tied to any particular agent implementa-
tion. However, besides disseminating the formal semantics, a first priority is to imple-
ment our framework as proof of concept. As mentioned at the end of Sect. 4, we have
implemented the CAN rules described in this paper and will continue to experiment
with the above scenario and various other examples.

This paper accounts for the life-cycle of each goal. We have not sought to address
overall agent deliberation, plan deliberation, resource management, or plan scheduling.
Thus far we have examined the same questions as Braubach et al. [3]; future work
is to address the other questions they pose. Likewise, we have not considered failure
handling and exceptions. Our work is complementary to works that consider generic
or application-specific reasoning about goal interactions, such as [30,23], works that
consider goal generation, such [5], and works that consider goal and plan selection,
such as [9,14].

References

1. Bordini, R.H., Hübner, J.F.: Semantics for the Jason Variant of AgentSpeak (Plan Failure
and some Internal Actions). In: Proceedings of the European Conference on Artificial Intel-
ligence, Lisbon, Portugal, pp. 635–640 (August 2010)

2. Braubach, L., Pokahr, A.: Representing Long-Term and Interest BDI Goals. In: Braubach, L.,
Briot, J.-P., Thangarajah, J. (eds.) ProMAS 2009. LNCS, vol. 5919, pp. 201–218. Springer,
Heidelberg (2010)

3. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal Representation for BDI Agent
Systems. In: Bordini, R.H., Dastani, M.M., Dix, J., El Fallah Seghrouchni, A. (eds.)
PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 44–65. Springer, Heidelberg (2005)

4. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents — Components
for Intelligent Agents in Java. AgentLink News (2), 2–5 (1999)

5. da Costa Pereira, C., Tettamanzi, A.: Belief-Goal Relationships in Possibilistic Goal Genera-
tion. In: Proceedings of the European Conference on Artificial Intelligence, Lisbon, Portugal,
pp. 641–646 (August 2010)

6. Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Goal Types in Agent Programming. In:
Proceedings of the Fifth International Conference on Autonomous Agents and Mult-Agent
Systems, Hakodate, Japan, pp. 1285–1287 (May 2006)

7. Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Goal Types in Agent Programming. In:
Proceedings of the European Conference on Artificial Intelligence, Riva del Garda, Italy, pp.
220–224 (July 2006)

20 J. Thangarajah et al.

8. Duff, S., Harland, J., Thangarajah, J.: On Proactivity and Maintenance Goals. In:
Proceedings of the Fifth International Conference on Autonomous Agents and Mult-Agent
Systems, Hakodate, Japan, pp. 1033–1040 (May 2006)

9. Hindriks, K.V., van der Hoek, W., van Riemsdij, M.B.: Agent Programming with Temporally
Extended Goals. In: Proceedings of the Eighth International Conference on Autonomous
Agents and Mult-Agent Systems, Budapest, pp. 137–144 (May 2009)

10. Hindriks, K.V., van Riemsdijk, M.B.: Using Temporal Logic to Integrate Goals and Qualita-
tive Preferences into Agent Programming. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B.,
Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp. 215–232. Springer, Heidel-
berg (2009)

11. Hübner, J.F., Bordini, R.H., Wooldridge, M.: Programming declarative goals using plan pat-
terns. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS (LNAI), vol. 4327, pp. 123–140.
Springer, Heidelberg (2006)

12. Khan, S.M., Lespérance, Y.: A Logical Framework for Prioritized Goal Change. In:
Proceedings of the Ninth International Conference on Autonomous Agents and Mult-Agent
Systems, Toronto, Canada, pp. 283–290 (May 2010)

13. van Lamsweerde, A.: Goal-oriented Requirements Engineering: A Guided Tour. In:
Proceedings of the International Conferece on Requirements Engineering, Toronto, pp. 249–
263 (August 2001)

14. Lorini, E., van Ditmarsch, H.P., Lima, T.D.: A Logical Model of Intention and Plan Dynam-
ics. In: Proceedings of the European Conference on Artificial Intelligence, Lisbon, Portugal,
pp. 1075–1076 (August 2010)

15. Morandini, M., Penserini, L., Perini, A.: Operational Semantics of Goal Models in Adaptive
Agents. In: Proceedings of the Eighth International Conference on Autonomous Agents and
Mult-Agent Systems, Budapest, pp. 129–136 (May 2009)

16. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine. In: Bordini, R.,
Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.) Multi-Agent Programming, pp. 149–174.
Springer, Heidelberg (September 2005)

17. Rao, A.S., Georgeff, M.P.: An Abstract Architecture for Rational Agents. In: Rich, C.,
Swartout, W., Nebel, B. (eds.) Proceedings of Third International Conference on Principles
of Knowledge Representation and Reasoning, pp. 439–449. Morgan Kaufmann Publishers,
San Francisco (1992)

18. van Riemsdijk, M.B., Dastani, M., Meyer, J.J.C.: Semantics of Declarative Goals in Agent
Programming. In: Proceedings of the Fourth International Conference on Autonomous
Agents and Mult-Agent Systems, Utrecht, The Netherlands, pp. 133–140 (July 2005)

19. van Riemsdijk, M.B., Dastani, M., Meyer, J.J.C.: Goals in Conflict: Semantic Foundations
of Goals in Agent Programming. J. Autonomous Agents and Multi-Agent Systems 18(3),
471–500 (2009)

20. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in Agent Systems: A Unifying
Framework. In: Proceedings of the Seventh International Conference on Autonomous Agents
and Mult-Agent Systems, Estoril, Portugal, pp. 713–720 (May 2008)

21. Sardiña, S., Padgham, L.: Goals in the Context of BDI Plan Failure and Planning. In:
Proceedings of the Sixth International Conference on Autonomous Agents and Mult-Agent
Systems, Hawai’i, USA, pp. 16–23 (May 2007)

22. Sardiña, S., de Silva, L., Padgham, L.: Hierarchical Planning in BDI Agent Programming
Languages: A Formal Approach. In: Proceedings of the Fifth International Conference on
Autonomous Agents and Mult-Agent Systems, Hakodate, Japan, pp. 1001–1008 (May 2006)

23. Shaw, P.H., Farwer, B., Bordini, R.H.: Theoretical and Experimental Results on the Goal-
Plan Tree Problem. In: Proceedings of the Seventh International Conference on Autonomous
Agents and Mult-Agent Systems, Estoril, Portugal, pp. 1379–1382 (May 2008)

Operational Behaviour for Executing, Suspending, and Aborting Goals 21

24. de Silva, L., Sardina, S., Padgham, L.: First Principles Planning in BDI Systems. In:
Proceedings of the Eighth International Conference on Autonomous Agents and Mult-Agent
Systems, Budapest, pp. 1105–1112 (May 2009)

25. Thangarajah, J., Harland, J., Morley, D., Yorke-Smith, N.: On the Life-Cycle of BDI
Agent Goals. In: Proceedings of the European Conference on Artificial Intelligence, Lisbon,
Portugal, pp. 1031–1032 (August 2010)

26. Thangarajah, J., Harland, J., Morley, D., Yorke-Smith, N.: Operational Behaviour for Ex-
ecuting, Suspending and Aborting Goals in BDI Agent Systems. In: Omicini, A., Sar-
dina, S., Vasconcelos, W. (eds.) DALT 2010. LNCS (LNAI), vol. 6619, pp. 1–21. Springer,
Heidelberg (2011)

27. Thangarajah, J., Harland, J., Morley, D., Yorke-Smith, N.: Aborting Tasks in BDI Agents. In:
Proceedings of the Sixth International Conference on Autonomous Agents and Mult-Agent
Systems, Hawai’i, USA, pp. 8–15 (May 2007)

28. Thangarajah, J., Harland, J., Morley, D., Yorke-Smith, N.: Suspending and Resuming Tasks
in BDI Agents. In: Proceedings of the Seventh International Conference on Autonomous
Agents and Mult-Agent Systems, Estoril, Portugal, pp. 405–412 (May 2008)

29. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and Avoiding Interference
between Goals in Intelligent Agents. In: Proceedings of the International Joint Conference on
Artificial Intelligence, Acapulco, Mexico, pp. 721–726 (2003)

30. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and Exploiting Positive Goal
Interaction in Intelligent Agents. In: Proc. of AAMAS 2003, Melbourne, Australia, pp. 401–
408 (July 2003)

31. Winikoff, M., Dastani, M., van Riemsdijk, M.B.: A Unfied interaction-aware goal
framework. In: Proceedings of the European Conference on Artificial Intelligence, pp. 1033–
1034 (2010)

32. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and Procedural Goals
in Intelligent Agent Systems. In: Proceedings of the International Conference on Knowledge
Representation and Reasoning, Toulouse, France, pp. 470–481 (April 2002)

	 Operational Behaviour for Executing, Suspending, and Aborting Goals in BDI Agent Systems
	Introduction
	Goal Types and Their Abstract States
	Abstract Goal States and Transitions

	Transitions between Goal States
	Towards a Formal Semantics
	Introduction to Can Rules
	Designing Can Rules
	Worked Example
	Implementation

	Related Work
	Conclusion and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

