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ABSTRACT

ReLU neural networks have been modelled as constraints in mixed integer linear programming
(MILP), enabling surrogate-based optimisation in various domains and efficient solution of machine
learning certification problems. However, previous works are mostly limited to MLPs. Graph neural
networks (GNNs) can learn from non-euclidean data structures such as molecular structures efficiently
and are thus highly relevant to computer-aided molecular design (CAMD). We propose a bilinear
formulation for ReLU Graph Convolutional Neural Networks and a MILP formulation for ReLU
GraphSAGE models. These formulations enable solving optimisation problems with trained GNNs
embedded to global optimality. We apply our optimization approach to an illustrative CAMD case
study where the formulations of the trained GNNs are used to design molecules with optimal boiling
points.

Keywords graph neural networks · mixed integer programming · optimal boiling point · GraphSAGE · molecular design

1 Introduction

The modelling and designing of molecules have long been an interest to researchers. The domains where these
methods can be applied range anywhere from fuel design, resulting in molecules with decreased emissions, to designing
molecules for drug discovery, possibly saving human lives. Whereas these methods mostly relied on human expertise
and experimentation, Computer Aided Molecular Design (CAMD) has become the de facto state of the art (Achenie
et al., 2002). CAMD methods for instance pre-screen a large number of molecules, such that the most promising
candidates can be investigated for further testing, saving time and resources.

An early and still established method used for CAMD is the Quantitative Structure Property Relationship (QSPR).
With QSPR, chemical descriptors are manually designed and then used to predict chemical properties de Lima Ribeiro
and Ferreira (2003); Katritzky et al. (1995). Many examples exist in which QSPR regressions include constitutional
Katritzky et al. (1995); Ha et al. (2005), topological Begam and Kumar (2016); de Lima Ribeiro and Ferreira (2003),
electrostatic Wessel and Jurs (1995); Egolf et al. (1994), geometrical Ivanciuc et al. (2002) and quantum-chemical
(de Lima Ribeiro and Ferreira, 2003; Hilal et al., 2003) descriptors or combinations of these descriptors. A drawback of
QSPR methods is that they are heavily dependent on the knowledge of researchers to select which chemical descriptors
are important. In addition, these methods design a molecule in the descriptor space and thus also give a solution in the
descriptor space; mapping this vector back to (existing) molecules is highly problematic. Group contribution (Gani
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et al., 1991; Zhang et al., 2015) presents an alternative family of modelling methodologies, where compounds are
represented as a collection of function groups. We note that group contribution methods are sometimes classified as a
special case of QSPR regression (Alshehri et al., 2020; Gani, 2019).

Often in molecular design, it is interesting to identify a molecule where a desired property is maximised or minimised.
There are different methods to achieve this. For instance, mixed integer linear programming (MILP) formulations of
QSPR regressions and optimizing them Austin et al. (2016). The goal is to optimize an approximation of a particular
property and find a corresponding input molecule that corresponds to the maximal value. Many efforts also seek
to identifying constraints to eliminate infeasible molecules from the optimization search space (Lampe et al., 2015;
Zhang et al., 2015). Owing to the large search spaces and challenging constraints, the resulting optimization problems
are often difficult to solve deterministically; moreover, multiple (suboptimal) solutions may be preferred, e.g., to
generate a set of promising, ranked candidates. Therefore, alternative strategies for the optimization step include genetic
algorithms (Herring III and Eden, 2015; Venkatasubramanian et al., 1994; Zhou et al., 2017), or heuristics such as Tabu
search (Lin et al., 2005; McLeese et al., 2010).

The advent of machine learning (ML) models and the increased availability of large data sets, resulted in an increased
interest in using ML for property prediction tasks (Alshehri et al., 2020). There have been various applications of
machine learning in CAMD. Most instances use multi-layer perceptrons (MLPs) in the QSPR methods, where linear or
polynomial regression methods are replaced by MLPs to perform regression Austin et al. (2016). More recently, graph
neural networks (GNNs) have been developed for non-euclidean input data types such as molecular graphs. GNNs are
neural networks that learn using a graph as input. Accompanying the spatial graph information, every node in the graph
also has an associated feature vector, storing information about that particular node. The information of a node gets
passed through an MLP for every node in the network. However, the information that gets passed through the MLP for
a node is not only the feature vector of that node but also the feature vectors of the neighbouring nodes in the graph
(Wu et al., 2020). This allows GNNs to take spatial information into consideration when learning non-euclidean data.

The attraction of using GNN in CAMD is that molecules can naturally be represented as graphs. Every atom in a
molecule is represented by a node, and the properties of this molecule are stored in the feature vectors associated with the
atom-representing nodes. Moreover, GNNs preserve invariance of the graph structure, e.g., rotating a molecule does not
affect the prediction. There have been multiple studies where GNNs have been used to predict properties of molecules
(see Wieder et al. (2020) for an overview). To use these methods in CAMD, just as with the previously-mentioned
QSPR methods, one wants to optimize the modelled properties and see which molecule corresponds to this optimized
value. Rittig et al. (2022) have done exactly that, using Bayesian optimization and a genetic algorithm to optimize the
trained GNNs. However, these methods are not deterministic optimization methods. This means that the found solution
might be the local maximum of the trained GNN and not the global maximum. In many cases, it is favourable to know
with certainty that the found solution is the global optimum.

GNNs in chemistry can be categorised into three subgroups (Wieder et al., 2020): (1) Recurrent GNNs (Rec-GNN), (2)
Convolutional GNNs (Conv-GNN) and (3) Distinct Graph Neural Network Architectures (Dist-GNN). We will consider
the first two subcategories as they are relevant to this paper. All of the previously mentioned graph structures have been
applied to learning chemical properties. This includes basic Rec-GNNs Lusci et al. (2013); Scarselli et al. (2008) and
gated variants Mansimov et al. (2019); Withnall et al. (2020); Altae-Tran et al. (2017); Bouritsas et al. (2022). Several
Conv-GNNs have also found applications in chemistry, such as spectral Conv-GNNs Liao et al. (2019); Henaff et al.
(2015) and basic Duvenaud et al. (2015); Errica et al. (2019), attention Hu et al. (2019) and general Gilmer et al. (2017)
spatial conv-GNNs. For a comprehensive overview of molecular property prediction with graph neural networks, see
Wieder et al. (2020).

Recently, various MILP formulations have been introduced for Rectified Linear Unit (ReLU) MLPs (Anderson et al.,
2020; Fischetti and Jo, 2018; Huchette et al., 2023; Tsay et al., 2021). ReLU MLPs are MLPs where each activation
function is a piece-wise linear function called the ReLU function. Due to its piece-wise linear nature, the activation
function can be expressed with linear programming constraints using big-M constraints. The other functions in a MLP
are affine and thus the whole network can be linearised. Besides MLP formulations, NNs have also been solved using
deterministic global solvers in a reduced space formulation Schweidtmann and Mitsos (2019). The class of MILP
problems can be solved to global optimality using commercial solvers. This young research area has been applied to
a wide variety of topics like MLP verification Fischetti and Jo (2018); Tjeng et al. (2017); Bunel et al. (2017); Dutta
et al. (2017), compression of MLPs Kumar et al. (2019); Serra et al. (2020) and using MLPs as surrogate models in
linear programming problems Grimstad and Andersson (2019); Di Martino et al. (2022); Kody et al. (2022); Yang et al.
(2021). We refer the interested reader to Huchette et al. (2023) for an overview of methodologies and applications.

The current work, first reported in the master thesis of McDonald (McDonald, 2022), is to our knowledge the first MILP
formulation of a trained GNN presented in the literature. The importance of such a model is that MILP formulations
for GNNs can be used in CAMD, where properties of molecules can be modelled using GNNs and then optimized

2



Mixed-integer Optimisation of Trained GNNs A PREPRINT

using MILP formulations of these trained GNNs. More recent work by Zhang et al. (2023) develops symmetry-
breaking constraints that can reduce the search space for MILP or other optimization strategies. Furthermore, there
are broader applications, namely the use of MILP formulations of GNNs for similar applications as MLPs (Huchette
et al., 2023), e.g., verification of GNNs, lossless compression of GNNs, and using GNNs as surrogate models in
optimization problems. The latter may be of particular interest for applications such as integrated molecule and process
design (Bardow et al., 2010).

In particular, this current paper considers two GNN architectures. The first is the Graph Convolutional Neural Network
by Kipf and Welling (2016). This neural network is one of the earliest GNN and is used often in GNN applications. The
second is the GraphSAGE network by Hamilton et al. (2017), which learns properties of large graph data by sampling
the neighbourhood of nodes instead of using information of all neighbouring nodes.

Contributions Summarised, this paper adds to the state-of-the-art in the literature as follows:

• We propose a mixed integer non-linear programming formulation of the frequently used Graph Convolutional
Network model by Kipf and Welling (2016).

• We propose a mixed integer linear programming formulation of the GraphSAGE model by Hamilton et al.
(2017).

• We demonstrate the computational performance of our approach on a case study of optimizing the boiling
points of molecules modelled with the GraphSAGE and GCN models.

Organisation Following this introduction, Section 2 provides technical background, leading to our main contribution
of the MI(N)LP formulations of GNNs in Section 3. Section 4 reports empirical results on a case study. Section 5
discusses the models and results, and Section 6 concludes.

Appendices are provided in McDonald (2022).

2 Background

This section introduces the terminology for neural networks needed in the remainder of the paper. We assume the reader
has familiarity with mixed integer (linear) programming, referring to Wolsey (2020) for an introduction.

2.1 Multilayer Perceptrons

A feedfoward multilayer perceptron (MLP) consists of consecutive layers of neurons connected through a directed
acyclic graph. A neuron in a particular layer receives a weighted signal from the neurons of the previous layer expressed
as a real number. Like synapses in the brain, these neurons get activated when the sum of these signals reaches a
particular threshold. The result of this system is a neural network that has the ability to emulate complex non-linear
relationships.

In mathematical terms this translates to a neural network f(x) : Rm 7→ Rn built of multiple layers k ∈ {1, . . . ,K},
including the input layer k = 1, the hidden layers k = {2, . . . ,K − 1} and the output layer k = K. Each layer contains
nk neurons. Naturally, the input layer has n1 neurons and receives the input vector x1 ∈ Rn1 of the function. Every
layer k has an associated weight matrix wk ∈ Rnk×nk−1 and a bias vector bk ∈ Rnk Goodfellow et al. (2016).

The values associated with neurons in consecutive layers xk ∈ Rnk are calculated with a propagation function which is
a composition of a set of affine functions and non-linear activation functions. This propagation function takes the inputs
from real values of the neurons of the previous layer xk−1 ∈ Rnk−1 . Thus, for the hidden layers k = {2, . . . ,K − 1}
we have

gk(xk−1) = xk = σ(wkxk−1 + bk), (1)
where σ(·) is the activation function. Normally, in the last layer K the activation function is absent. Completely
composed, the neural network f(x) : Rn1 7→ RnK is defined by Goodfellow et al. (2016):

f(x1) = xK = (gK ◦ gK−1 ◦ · · · ◦ g2 ◦ g1)(x1). (2)

The activation function, indicated by σ in Eq. (1), is a non-linear function, which allows the neural network to find a
non-linear relationship between input and output data. Commonly used activation functions include the sigmoid, tanh,
and ReLU functions. The latter will be the main focus for this this contribution. It is defined as σ(z) = max{0, z}.
Supervised learning uses paired data, where each data point consists of an input vector x, and a desired output y. The
goal of the learning task is to tune the weights and biases to minimize a loss function, e.g., mean squared error (MSE),
for the predictions and target values Goodfellow et al. (2016).
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2.2 MILP Formulations of Multilayer Perceptrons

Exact MILP formulations of NNs with ReLU activation functions have been proposed. These exact formulations
emulate the ReLU operator using binary activation variables and big-M formulations. We refer to Huchette et al. (2023)
for a survey of methods and applications and defer some details to 1.

Consider, for each hidden layer k ∈ {1, . . . ,K − 1}, the following MLP layer:

xk = σ(W kxk−1 + bk) (3)

where σ(·) = max {0, ·} is the ReLU function, xk ∈ Rnk is the output of layer k, W k and bk are respectively the
found weights and bias of layer k. This paper considers the linearisation of (3) by Fischetti and Jo (2018). The output
of the affine equations are decoupled in a positive part x ≥ 0 and negative part s ≥ 0, and a binary activation variable z
and big-M activation constraints are introduced. It is assumed that bounds can be found such that l ≤ wT y + b ≤ u.
For every neuron j layer k of any neural network where the ReLU function is applied the following set of constraints
are introduced:

xk
j ≤ uk

j z
k
j (4a)

skj ≤ −lkj (1− zkj ) (4b)

zkj ∈ {0, 1}. (4c)

The big-M constraints are applied to every node in the network.

The following states the formulation for a multilayer perceptron with K layers and nk nodes j per layer. It assumes the
final output layer K to be singular and there not to be a ReLU function on that layer.

maxxK
1 (5a)

s.t. WKxK−1 + bK = xK
1 (5b)

W k
j x

k−1 + bkj = xk
j − skj ∀k ∈ {1, . . . ,K − 1},∀j ∈ {1, . . . , nk} (5c)

xk
j ≤ uk

j z
k
j ∀k ∈ {1, . . . ,K − 1},∀j ∈ {1, . . . , nk} (5d)

skj ≤ −lkj (1− zkj ) ∀k ∈ {1, . . . ,K − 1},∀j ∈ {1, . . . , nk} (5e)

xk
j , s

k
j ≥ 0 ∀k ∈ {1, . . . ,K − 1},∀j ∈ {1, . . . , nk} (5f)

zkj ∈ {0, 1} ∀k ∈ {1, . . . ,K − 1},∀j ∈ {1, . . . , nk} (5g)

x0 ∈ Ω (5h)

In this formulation, W k
j is row j of the weight matrix of layer k, which naturally has the same dimension as the output

xk−1 of the previous layer. The first input vector is constrained by the input constraints Ω. These are additional input
constraints, containing the input bounds, but also other properties which can constrain the input vector, when used in
surrogate models for example.

As noted by Grimstad and Andersson (2019), this is an exact formulation of the ReLU neural network. This means that
the above formulation exactly emulates the trained neural network from which the weight matrices W k and biases b are
extracted. For any given input x0 the output of the MILP formulation and the neural net should have the same outcome.
The solution which the MILP solver finds also finds consistent solution variables, with the exception of differing zkj
variables in case the input node xk

j is 0. Note this has no effect on the output, however.

2.3 Graph Neural Networks

We now turn from MLPs and ‘regular’ neural networks to GNNs.

2.3.1 General Graph Neural Network Architecture

When using GNNs for property prediction, each data point consists of the structure of a graph G = (V,E) represented
by the adjacency matrix A ∈ RN×N , and properties of the graphs. The properties of these graphs are stored in node
feature vectors X ∈ RN×F , and can sometimes include edge feature vectors. For our purposes of CAMD, node features
will suffice. Every node i ∈ V has an accompanying feature vector Xi ∈ RF . These feature vectors store information
about the node in question. In a supervised setting, the data is thus of the form ((X,A), y).
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Figure 1: A graph (left) with a feature vector on every node. Neighbourhoods of a node with multiple convolutional
layers in a spatial GNN (right)

Graph convolutional neural networks are divided in spectral and spatial based methods. Spectral based methods are
graph neural networks based on graph signal filters. Spatial based methods are generally GNNs consisting of a function
which aggregates neighbourhood information and some sort of propagation function, similar to those found in MLPs.
The aggregation function sums the the feature vectors of neighbouring nodes of a node i, which is used as input of an
affine function. Thereafter, the affine combination of the aggregated feature vectors is passed through an activation
function, similar to the feedfoward neural network architecture. Doing this for every node in the graph constitutes one
convolutional layer. After one convolutional layer, every node has a new feature vector.

Stacking multiple convolutional layers consecutively allows a node i to not only process node feature vector information
of its neighbouring nodes N (i), but also of the neighbours N (s) of these neighbours ∀s ∈ N (i). This works as follows:
in the first convolutional layer, for every node i, all neighbourhood information is aggregated. In the next layer this is
repeated; however, all neighbours of node i have already processed the information of their respective neighbours. This
means i also internalises the information of all neighbours removed with a 2-length path. After k convolutions, node i
processes information from all nodes k-length paths removed.

In the following subsections we will discuss the graph aggregation functions of two GNNs, for they define the
architectures of the GNNs we consider.

2.3.2 Graph Convolutional Neural Network (GCN)

We focus on spatial Conv-GNN methods, which are conceptually similar to non-graph based convolutional neural
nets (CNN), as “spatial-based graph convolutions convolve the central node’s representation with its neighbors’
representations to derive the updated representation for the central node” Wu et al. (2020). Micheli (2009) introduced
these spatial graph Neural Networks. Thereafter, many varieties of spatial Graph Neural networks have been introduced.
Basic models include PATCHY-SAN, LGCN and GraphSAGE Niepert et al. (2016); Gao et al. (2018); Hamilton et al.
(2017). All use a combination of convolutional operators, combined with different neighbour selection systems and
different aggregators. There is also a set of attention-based spatial approaches which assign different weights for
different neighbours to minimise noise Veličković et al. (2017); Zhang et al. (2018). Finally, there are more general
frameworks which try to unify multiple models in a single formulation as an abstraction over multiple GNNs Monti
et al. (2017); Gilmer et al. (2017); Battaglia et al. (2018).

The first GNN we consider is the Graph Convolutional Neural Network (GCN) Kipf and Welling (2016). It is one of the
earlier models which can be considered as a spatial GNN method. The GCN has its roots in spectral graph GNNs as it
is a first order Chebychev approximation of the ChebNet Defferrard et al. (2016) architecture, which is a spectral based
method. However, this first order approximation is basically a spatial based method.

Kipf and Welling (2016) introduce the k-th convolutional layer in the GCN can be expressed as follows:

H(k+1) = σ(D̃− 1
2 ÃD̃− 1

2H(k)W (k)) (6)

Here, Ã = A+ IN is the adjacency matrix of the undirected graph G with added self-connections. IN is the identity
matrix, D̃ii =

∑
j Ãij and W (k) is a layer-specific trainable weight matrix. σ(·) denotes an activation function, such

5
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as the ReLU(·) = max(0, ·). H(k) ∈ RN×nk is the matrix of activations in the kth layer; H(0) = X , where X is a
matrix of node feature vectors Xi belonging to node i in the graph.

The formula to find feature j for a node i in layer k + 1 shows the spatial nature of the GCN network:

H
(k+1)
ij = σ

(
W

(k)
j

)T ∑
l∈N+(i)

1√
d+(i)

√
d+(l)

(
H

(k)
l

) (7)

Here, N+(i) is the neighbourhood of i including i itself, and d+(i) is the degree of node i. The aggregation function
is a normalised sum of all the feature vectors of l ∈ N+(i) in layer k. Thereafter, just as in MLP models, an affine
combination is taken of the aggregated feature vectors and passed through an activation function σ.

2.3.3 GraphSAGE Network

The GraphSAGE network is another spatial convolutional neural network, developed to learn large graph networks. Its
input is merely one large graph G = (V,E) on which it performs the learning task. When trained, the GraphSAGE
network can classify nodes, without having seen all nodes of the network. This means that it can generalise to unseen
nodes in the network.

GraphSAGE also uses an aggregation scheme, for instance the mean, max, ltsm or add aggregation scheme. However,
for node i, GraphSAGE does not aggregate over all feature vector of its neighbours N (i), but over a randomised
subset of the neighbourhood. This allows it to learn large graphs. The aggregated subset of the neighbourhood vectors
gets concatenated with the vector of the root node i. The concatenated vectors are then multiplied with a learned
weight matrix W k ∈ R(nk+1×2nk) which consecutively passes through an activation function σ. Finally, the vector gets
normalised. As usual, all previously described steps are performed for all nodes i ∈ V .

For this paper we are interested in the GraphSAGE network as it is linearisable, when specific choices for the hyper-
parameters are made. We set the sampling to select all neighbours with a probability of 1. This can be interpreted such
that we don’t have a sampling function. The chosen activation function is the ReLU function. We choose the aggregate
scheme to be add, which means that we add all feature vectors of the neighbouring nodes. The propagation function
becomes:

H
(k+1)
i = σ

H
(k)
i ·W (k)

1 +
∑

l∈N (i)

H
(k)
l ·W (k)

2

 (8)

The matrices W (k)
1 ,W

(k)
2 ∈ R(nk+1×nk) are a split representation of the matrix W k ∈ R(nk+1×2nk), introduced for

legibility. Using the add function is also more natural when predicting the boiling points for chemical compounds,
which we will discuss in the next subsection.

3 Methods

This section provides the main contribution of the paper, by presenting the novel formulations of graph neural networks
as MI(N)LPs, starting from the multilayer perceptron MILP formulation of Section 2.2. Section 3.1 describes a
formulation of the Graph Convolutional Network, which is linear (MILP) for a fixed graph structure and bi-linear
(MINLP) for a variable graph structure. Then, Section 3.2 describes a MILP formulation of the GraphSAGE architecture.
Section 3.3 shows how to add domain-specific background knowledge (inductive bias). Finally, Section 3.4 applies
bound tightening techniques to the formulations.

3.1 MI(N)LP Formulation for GCN Models

We wish to train a graph neural network that finds the function f : {0, 1}|N |×|N | ×R|N |×|F | 7→ R. This function maps
an adjacency matrix A and a feature vector X , with |F | features, to a singular output. The function is a composition of
GNN layers, a pooling layer, and MLP layers, where the latter takes a fingerprint of the graph and maps it to a singular
output. Mathematically this constitutes:

f(A,X) = MLP (POOL (GNN(A,X))) (9)

where POOL is the pooling layer. This subsection states the linear MILP formulations for graph neural networks in
case the graph structure is predetermined.

6
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3.1.1 Predetermined Graph Structure

In the following subsection the Graph Convolutional Network layers as described in Section 2.3 are formulated as an
MILP. We first consider the GCN, which has the layer-wise propagation rule defined by Eq. (6). To linearise Eq. (6) we
employ the big-M formulation stated in Eq.s (5). As described in Section 2.2, the ReLU constraints are the same for
every node, with altering big-M values (lower and upper bounds). For the MLP structure, there were K layers with nk

neurons in each kth layer. For the GCN structure we have the same but for every node i ∈ {1, . . . , N}. In the first layer
these input nodes are the feature vectors for those nodes.

Since the ReLU constraints stay the same, merely the left hand side of Eq. (5c) and Eq. (5d) need to be altered to
represent the linear part of the GCN layer as described between the brackets in Eq. (6). To simplify the formulation we
write Ā = D̃− 1

2 ÃD̃− 1
2 . The entries of this matrix are the following:

Āil =

{
0, if Ãil = 0

1√
d+(i)

√
d+(l)

, if Ãil = 1 (10)

where d+(i) is the cardinality of the adjacent set N+(i) for node i, where the + indicates that it also includes self loops.

Kipf and Welling (2016) note the following, with N nodes in our graph

Y 0 = X =

X1

...
XN

 (11)

where Xi is a row vector containing the features of node i. H(k)
ij is considered, which is the j-th neuron of node i, after

k GCN layers. The value of this neuron is found as follows (the activation function σ is omitted from every line for
clarity):

H
(k)
ij =

(
ĀH(k−1)W (k)

)
ij

(12a)

= Āi

H(k−1)
1 W

(k)
j

. . .

H
(k−1)
N W

(k)
j

 (12b)

=
∑

l∈N+(i)

1√
d+(i)

√
d+(l)

(
W

(k)
j

)T (
H

(k−1)
l

)T

(12c)

It is commonplace to write vectors in column notation for linear programming, so we will deviate from Kipf and

Welling (2016), replacing
(
H

(k−1)
l

)T

by
(
H

(k−1)
l

)
. The MILP formulation becomes:

∑
l|Ãil=1

1√
d+i d

+
l

W k
j

T
H

(k−1)
l = Hk

ij − Sk
ij

∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , nk} (13a)

Hk
ij ≤ Uk

ijZ
k
ij ∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , nk} (13b)

Sk
ij ≤ −Lk

ij(1− Zk
ij) ∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , nk} (13c)

0 ≤ Hk
ij , S

k
ij ∈ R ∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , nk} (13d)

Zk
ij ∈ {0, 1} ∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , nk} (13e)

A,H0 ∈ Ω (13f)

where i indicates node i, j feature j, and k the corresponding GCN layer. d+i represents the degree +1 of node i.

In the above, H0 ∈ Ω indicates a restriction of the input space (see Section 3.3). For a molecule we can see these as
constraints as providing domain knowledge such that only physically possible molecules are considered in the input
space. One example could be that node i, has a feature xij = 1 indicating that it is a carbon molecule. In that case

7



Mixed-integer Optimisation of Trained GNNs A PREPRINT

∑
j Aij < 5, meaning it cannot share a bond with more than 4 other molecules since the amount of atomic bonds is

maximally 4 for a carbon molecule.

Combining all constraints of (13) with (5) almost finalises our formulation of function (9) in case the graph structure
A is known. We still need to include a pooling layer. The pooling layer is a function which operates over all neuron
outputs of the nodes of the graph to combine them into a single vector. There are multiple options for pooling layers but
we utilise a sum pooling layer to maintain a linear model:

x0
j =

N∑
i=1

HK
ij ∀j ∈ {1, . . . , nK} (14)

Naturally, the amount of entries of the input vector x0 of the MLP layer, must match the number of neurons in the final
layer K of the GCN layers.

3.1.2 Variable Graph Structure

The formulation of the previous subsection is linear in case the structure of the graph is known. If A is unknown, this
formulation is non-linear. There are many examples where we wish to find the graph structure accompanying an optimal
solution. The non-linear terms in the above formulation, in case the structure is unknown, are

∑
l|Ãil=1 and 1√

d+
i d+

l

,

where l in the latter is dependant on the former non-linear term. We describe a bi-linear formulation for these terms,
which MIQP/MIQCP solvers such as Gurobi can accomodate.

A linear conditional sum The sum in the formulation is conditional and thus non-linear. To linearise the sum a
support variable bkil is introduced. This new support variable follows the following logic for two nodes i and j:

bkil =

{
0 if Ãil = 0

Hk
l if Ãil = 1

(15)

If this logic is implemented the sum over all bkil results in the same outcome as the conditional sum. For every node i,
bkil are only equal to the output of ReLU layer if they are connected to node i.

The logic as described in (15) can be implemented by using big-M constraints, because the entries of Ã are binary.
Replacing Eq. (13a) by the following constraints for k ∈ {1, . . . ,K}, i ∈ {1, . . . , N}, j ∈ {1, . . . , nk} we have
removed the conditional sum:∑

l

1√
d+i d

+
l

W k
j

T
b
(k−1)
il = Hk

ij − Sk
ij (16a)

H
(k−1)
l −M(1− Ãil) ≤ b

(k−1)
il ≤ H

(k−1)
l +M(1− Ãil) (16b)

−M(Ãil) ≤ b
(k−1)
il ≤ M(Ãil) (16c)

In case node i is not connected to node l, then Ãil = 0. In that case constraint (16c) forces b(k−1)
il = 0. In case both

nodes are connected, Ãil = 1 and b
(k−1)
il is constrained by (16b) such that it is equal to H

(k−1)
l .

A linear normalisation term We are still left with 1√
d+
i d+

l

, which is also non-linear. The term is also multiplied

with the variable vector bkil, which makes the entire constraint non-linear. It is possible to remove the fraction and the
square root, albeit in a contrived way, adding a lot of extra variables. We note that the cardinality of the co-domain of
the function g(i, l) = 1√

d+
i d+

l

, is upper bound by the maximum degree of the graph dmax, adding 1 for the self loops.

In case of molecules this is 4 for instance. This means that the function g has a maximum of (4 + 1)2 outcomes. We
can index these outcomes in a (dmax + 1)2 long vector g, where at index p = d+i (dmax + 1) + d+l , gp = 1√

d+
i d+

l

. The

function g(i, l) is undefined in case d+i = 0 or d+l = 0. In these cases gp = 0.

Using linear constraints, we can linearise the fractional term in Eq. (16) by the following set of equations∑
l

silW
k
j

T
b
(k−1)
il = Hk

ij − Sk
ij

∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , nk} (17a)

8
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d+i =
∑
j

Ãij ∀i ∈ {1, . . . , N} (17b)

pil = d+i (dmax + 1) + d+l ∀i, l ∈ {1, . . . , N} (17c)

0 = pil − 1cil1 − 2cil2 − . . . (17d)

− (dmax + 1)2cil(dmax+1)2 ∀i, l ∈ {1, . . . , N} (17e)

1 = cil1 + · · ·+ cil(dmax+1)2 ∀i, l ∈ {1, . . . , N} (17f)

cil ∈ {0, 1}(dmax+1)2 ∀i, l ∈ {1, . . . , N} (17g)

sil = cil1 g1 + · · ·+ cil(dmax+1)2g(dmax+1)2 ∀i, l ∈ {1, . . . , N} (17h)

With this set of equations, we are mapping the index pil to its corresponding value in vector g, which is a set of
predetermined parameters. Since the structure of graph stays the same over all GCN layers, we only have to add these
constraints once and not for every layer k. The resulting model is bi-linear as it involves multiplication of decision
variables sil and bil.

3.1.3 Full MINLP Formulation of the GCN GNN

Section 3.1.2 presents a reformulation for the non-linear terms of Eq. (13a). Specifically, the conditional sum is
reformulated as Eq. (16) and the normalisation term as Eq. (17), resulting in an overall bi-linear formulation. For GCN
models, we can combine the binary variables introduced by Eq. (16) and Eq. (17) Notice how for every layer k, Eqs.
(16b) and (16c) constrain whether or not the feature vector of the neighbours of node i are included in the conditional
sum. We can simplify this by incorporating it in the variable which encompasses the linearised normalisation term sil.
Once again we incorporate the following logic with big-M constraints for i, l ∈ {1, . . . , N} :

ŝil =

{
0 if Ãil = 0

sil if Ãil = 1
(18)

This enforces that the feature vector of a neighbouring node of i is only included if Ãil = 1, which is the same as∑
l|Ãil=1. The resulting bi-linear MINLP formulation becomes:∑

l

ŝilW
k
j

T
H

(k−1)
l = Hk

ij − Sk
ij

∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , nk} (19a)

d+i =
∑
j

Ãij ∀i ∈ {1, . . . , N} (19b)

pil = d+i (dmax + 1) + d+l ∀i, l ∈ {1, . . . , N} (19c)

0 = pil − 1cil1 − 2cil2 − . . . (19d)

− (dmax + 1)2cil(dmax+1)2 ∀i, l ∈ {1, . . . , N} (19e)

1 = cil1 + · · ·+ cil(dmax+1)2 ∀i, l ∈ {1, . . . , N} (19f)

cil ∈ {0, 1}(dmax+1)2 ∀i, l ∈ {1, . . . , N} (19g)

sil = cil1 g1 + · · ·+ cil(dmax+1)2g(dmax+1)2 ∀i, l ∈ {1, . . . , N} (19h)

sil −M(1−Ail) ≤ ŝil ≤ M(1−Ail) + sil ∀i, l ∈ {1, . . . , N} (19i)
−MAil ≤ ŝil ≤ MAil ∀i, l ∈ {1, . . . , N} (19j)

In this formulation, constraints (19b)–(19h) describe the linearisation of the normalisation term as described in
Section 3.1.2 and constraints (19i) and (19j) incorporate the conditional-sum logic from Eq. (18). Note that we only
have to find ŝil once for every layer, since the structure of the molecule is constant per layer.

A reader might note that when the degree of either node i or node j is zero, this means that sil will automatically
be equal to zero, and thus the introduction of Eqs. (19i) and (19j) might be superfluous. However, there could be an
instance when both i and l have a degree higher than 0, but still not be connected. In that case sil is not zero, and thus
the extra constraints need to be introduced.

9
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3.2 GraphSAGE

So far we have successfully formulated an exact MINLP (bi-linear) representation of a GCN. This section describes an
MILP formulation for a more recent and popular GNN architecture, the GraphSAGE model by Hamilton et al. (2017).

In this paper the activation function and affine layer are described by the following equation:

f (t)(v) = σ

f (t−1)(v) ·W (t)
1 +

∑
w∈N(v)

f (t−1)(w) ·W (t)
2

 (20)

where f (t)(v) describes the feature vector of node v after t GraphSAGE layers and σ describes an activation function,
which for this paper will once again be the ReLU activation function.

As can be seen from Eq. (20), after training a neural net with K GraphSAGE layers, it finds two weight matrices for
every layer t. The first weight matrix W

(t)
1 , which we will refer to as the root weight, is multiplied with the feature

vector of the previous layer f (t−1)(v). The second weight matrix W
(t)
2 is multiplied with the neighbouring feature

vectors of node v. In case the adjacency matrix of the graph is unknown, this neighbourhood of v is a non-linear relation.
The rest of the model is linear.

For consistency, we rewrite Eq. (20) in a notation similar to the presentation in Section 3.1. We find the following for
node i ∈ {1, . . . , N}, feature j ∈ {1, . . . , nk} and layer k ∈ {1, . . . ,K}:

H
(k)
ij = σ

Ŵ
k

j

T

H
(k−1)
i + W̄

k
j

T ∑
l|Ail=1

H
(k−1)
l

 (21)

where H
(k)
ij ∈ R is the feature j of node i after k layers, and Ail is the adjacency matrix without self loops.

To remove the conditional sum we again introduce big-M constraints and support variables to encode the following
logic:

bkil =

{
0 if Ail = 0

Hk
l if Ail = 1

(22)

The full MILP formulation including the pooling layer becomes:

(Ŵ k
j )

TH
(k−1)
i + (W̄ k

j )
T
∑
l

b
(k−1)
il = Hk

ij − Sk
ij

∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , nk}
(23a)

Hk
ij ≤ Uk

ijZ
k
ij ∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , nk} (23b)

Sk
ij ≤ −Lk

ij(1− Zk
ij) ∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , nk} (23c)

Hk
l −M(1−Ail) ≤ bkil ∀k ∈ {0, . . . ,K − 1},∀i, l ∈ {1, . . . , N} (23d)

bkil ≤ Hk
l +M(1−Ail) ∀k ∈ {0, . . . ,K − 1},∀i, l ∈ {1, . . . , N} (23e)

−M(Ail) ≤ bkil ≤ M(Ail) ∀k ∈ {0, . . . ,K − 1},∀i, l ∈ {1, . . . , N} (23f)

H0
i = xi ∀i ∈ {1, . . . , N} (23g)

H∗K
j =

∑
i

HK
ij ∀j ∈ {1, . . . , nK} (23h)

0 ≤ Hk
ij , S

k
ij ∈ R ∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , nk} (23i)

Zk
ij ∈ {0, 1} ∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , nk} (23j)

x, A ∈ Ω (23k)

10
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Table 1: Background knowledge about molecule properties

Xif type descriptor

1 atom C
2 atom O
3 atom F
4 atom Cl
5 neighbours 0
6 neighbours 1
7 neighbours 2
8 neighbours 3
9 neighbours 4
10 hydrogen 0
11 hydrogen 1
12 hydrogen 2
13 hydrogen 3
14 hydrogen 4

Intuitively, Eqs. (23a)–(23c) reformulate the ReLU function in Eq. (21), Eqs. (23d–23f) are the big-M constraints to
enforce the logic in Eq. (22). The values of these big-M constraints are the same as the upper bounds Uk

ij (as explained
in Section 3.4.3). Eq. (23g) defines the input feature vector xi of node i and Eq. (23h) is the sum pooling layer in layer
K. Finally, Eq. (23k) represent the input constraints as described in Section 3.3.

Note that a drawback of this method compared to the MINLP formulation is that constraints (23d), (23e) and (23f) are
calculated for every layer k. This increases the number of constraints significantly (by O(n2nk) constraints per layer k).
For the GCN network this is only O(n2). For networks where there are a lot of nodes per hidden layer, the GraphSAGE
network will have significantly more constraints than the GCN network.

3.3 Constraining the Input Space for Molecular Design

With the purpose of CAMD in mind, we next describe the input space constraints, A, x ∈ Ω. These constraints limit the
search space to include structures which try to emulate physically-feasible molecular structures.

3.3.1 Basic MILP Formulation of Molecules

QSPR methods used for property prediction in previous works are mostly based on group contribution methods Zhang
et al. (2015). As a result MILP formulations of molecules used in CAMD are also often based on group contribution
methods. Modelling chemical properties with GNNs means that molecules are described in terms of an adjacency matrix
A ∈ {0, 1}N×N and feature vectors X ∈ {0, 1}N×F . We therefore introduce an MILP formulation for molecules
based on topological structure similar to the input of GNNs. This is similar in spirit to topological indexing methods for
QSPR (Austin et al., 2016), which are in turn based on chemical graph theory.

The structure of a solution is described by the adjacency matrix A, where Aij = 1 indicates that node i is connected to
node j. The entries of a feature vector of a node i are indicated by xif , where f is the position of a feature in that vector.
The simplest machine learning model we consider comprises 14 features, which represent the knowledge summarised
in Table 1.

With the adjacency matrix and the feature vectors for all the nodes, we introduce constraints to avoid trivially infeasible
molecules. These constraints are summarised here and detailed in 1:

(a) Molecules should be connected and of at least length 2.
(b) Nodes are active if and only if they are connected to others.
(c) To avoid redundancies, no gaps should exist between activated atoms (a molecule of length 3 should be

A11 = A22 = A33 = 1 and not A11 = A22 = A55 = 1).
(d) Each node should only have one atom type.
(e) The covalence of each atom must equal the number of active neighbours.

The formulation is not a tight formulation, and molecules can be found in the search space that might not be able to be
synthesized or stable in a natural setting. For instance, the formulation does not consider steric constraints on the bonds.

11
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There are also molecules which are excluded from the search space. An example of these are molecules with double or
triple bonds. Therefore we next describe how to extend this model.

3.3.2 Additional Properties

The formulation in the previous subsection is seen as a basis which can be extended or modified for a particular CAMD
setting. First of all, to limit the search space to molecules with no loops, consider the following constraint:

n−1∑
i

n∑
j|j>i

Aij = n− 1 (24)

The constraint guarantees that the number of edges (LHS) is equal to the number of nodes minus one. This fact,
combined with basic graph properties and the result of constraint (24), guarantees the graph to be acyclic.

Next, we consider constraints to have the search space include double bonded molecules. To achieve double bonds in
our formulation, an extra feature is included in the feature vectors X ∈ RN×F . This feature xi,15 indicates whether
node i is included in at least one double bond. This is a learnable parameter for the GNN. Outside the context of MILP
formulations for GNNs, this feature would be included in a GNN which also includes edge features. However, we leave
such network architectures for subsequent work.

We introduce a binary variable dbil that tracks whether a double bond is present between nodes i and l.

3 · dbil ≤ xi,15 + xl,15 +Ail ∀i, l ∈ {1, . . . , n} (25a)

2 · xi,1 + 1 · xi,2 ≥
n∑
l

dbil ∀i ∈ {1, . . . , n} (25b)

4 · xi,1 + 2 · xi,2 + 1 · xi,3 + 1 · xi,4 = (25c)
4∑

s=0

s · xi,(5+s) +

4∑
s=0

s · xi,(10+s) +

n∑
l

dbil ∀i ∈ {1, . . . , n} (25d)

xi,15 ≤
n∑
l

dbil ∀i ∈ {1, . . . , n} (25e)

dbil = dbl,i ∀i, l ∈ {1, . . . , n} (25f)
dbi,i = 0 ∀i ∈ {1, . . . , n} (25g)

Constraint (25a) enforces that double bonds are only possible if nodes i and l are connected and xi,15 = xl,15 = 1.
Constraint (25b) limits the number of double bonds based on the covalence of the molecule. For instance, xi,1 indicates
a carbon molecule, meaning that there can be a maximum of 2 double bonds. Constraint (25c) limits the total number
of bonds (including double bonds). Constraint (25e) forces xi,15 to be zero if there are no double bonds connected to
node i. The final two constraints are a symmetry constraint and a constraint indicating that a node cannot have a double
bond with itself.

For triple bonds, the above formulation would be nearly identical. Instead, the variable dbil would be replaced by tbil in
all constraints to indicate a triple bond between node i and node l. Constraint (25b) would have 1 ∗ xi,1 on the left-hand
side because generally, only a carbon molecule can have a triple bond. Finally, in constraint (25c),

∑n
l tbil would

include a scalar multiple of 2, because every triple bond removes two binding opportunities.

Including both triple and double bonds in the search space can be achieved with the following set of constraints.

3 · dbil ≤ xi,15 + xl,15 +Ail ∀i, l ∈ {1, . . . , n} (26a)
3 · tbil ≤ xi,16 + xl,16 +Ail ∀i, l ∈ {1, . . . , n} (26b)

2 · xi,1 + 1 · xi,2 ≥
n∑
l

dbil ∀i ∈ {1, . . . , n} (26c)

1 · xi,1 ≥
n∑
l

tbil ∀i ∈ {1, . . . , n} (26d)

12
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4 · xi,1 + 2 · xi,2 + 1 · xi,3 + 1 · xi,4 =

4∑
s=0

s · xi,(5+s) +

4∑
s=0

s · xi,(10+s)

+

n∑
l

dbil +

n∑
l

2 · tbil

∀i ∈ {1, . . . , n} (26e)

xi,15 ≤
n∑
l

dbil ∀i ∈ {1, . . . , n} (26f)

xi,16 ≤
n∑
l

tbil ∀i ∈ {1, . . . , n} (26g)

dbil = dbli ∀i, l ∈ {1, . . . , n} (26h)
tbil = tbli ∀i, l ∈ {1, . . . , n} (26i)
dbii = tbii = 0 ∀i ∈ {1, . . . , n} (26j)
dbli + tbli ≤ 1 ∀i, l ∈ {1, . . . , n} (26k)

where xi,15 and xi,16 indicate that an atom i is part of a double or triple bond respectively.

Once again we note that the introduction of these constraints does not span the entire space of possible molecules, nor
does it include only naturally feasible molecules. For instance, introducing the triple bonds constraints would not find
the molecule carbon monoxide.

3.4 Bound Tightening Techniques

Solving times of linear programming solvers are influenced by the tightness of the big-M constraints. It is therefore im-
portant to find tight constraints of the big-M values associated with a neuron. We first take a look at the computationally
efficient method of feasibility based bound tightening (FBBT). We first consider this for regular MLPs and then we
continue adapting these methods for the GCN and GraphSAGE.

3.4.1 Big-M Coefficients for MLPs

Feasibility based bound tightening techniques are bound tightening techniques which limit the feasible solution space
by propagating the domain of the input space through the non-linear expression. This technique relies on interval
arithmetic to compute the bounds on constraint activations over the variable domains (Gleixner et al., 2017). For the
formulation of MLPs in Eq. (4), recall we require bounds such that l ≤ wT y + b ≤ u. We now denote these as lkj and
uk
j for a node j in layer k. Using interval arithmetic we can find bounds for the nodes for k ≥ 2 in two ways, which

result in the same bounds. For the first method, for layers k ≥ 2 we find the upper bound uk
j and lower bound lkj as

follows:

uk
j =

nk−1∑
i=1

max
{
wk

ji max
{
0, uk−1

i

}
, wk

ji max
{
0, lk−1

i

}}
+ bkj , (27a)

lkj =

nk−1∑
i=1

min
{
wk

ji max
{
0, uk−1

i

}
, wk

ji max
{
0, lk−1

i

}}
+ bkj . (27b)

Note that the inner max operators function as the ReLU activation function. The outer max function is necessary
since the weight matrix entries can also be negative. For k = 1 we remove the inner max functions as the input is not
necessarily positive since there is no ReLU operator. The same bounds can be found by solving the LP problems:

uk
j = max

{
tkj : tkj ∈ Ck

j

}
lkj = min

{
tkj : tkj ∈ Ck

j

} (28)

for the constraint set
Ck

j =
{
tkj : tkj = wk

j x
k−1 + bk, xk−1 ∈

[
max

{
0, Lk−1

}
,max

{
0, Uk−1

}]
⊂ Rnk−1

}
(29)

To speed up the solving time, some activation variables z can be determined based on the value of the lower and upper
bound. When the lower bound lkj of a particular node is above 0, zkj can be set to 1. In this case, it is known that xk

j will
always be positive and thus zkj must be 1. The same goes for a positive lower bound lkj > 0: in this case zkj = 0.
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3.4.2 Big-M Coefficients for GCNs

The following subsection explains how to find the upper and lower bounds associated with the ReLU constraints for a
GCN model. Specifically, we require the upper and lower bounds, Uk

ij and Lk
ij in Eq.s (13a)–(13c).

It is assumed that the lower and upper bounds of all the input feature vectors are the same. This is because the input
feature vectors of all nodes describe the same features of those nodes, and the feature vectors must be equal in length.
This makes the bound propagation symmetric over all nodes, which in turn allows us to only calculate the bounds of all
nodes once per layer k. Before the optimisation, for node i, the number of neighbouring nodes and the number of their
respective neighbours are unknown. In the case of maximisation, we have to find a scalar which upper bounds Hk

ij

for all possible neighbourhood structures of node i. Specifically, we compute d+i and d+l such that the following is
maximised (remember that d+i = di + 1, where di is the degree of node i if self loops are not possible):

max
d+
i ,d+

l

d+i
1√
d+i d

+
l

W k
j

T
H

(k−1)
l (30)

The upper bound of W k
j
T
H

(k−1)
l is determined as in Eq. (27a) with zero bias. If this upper bound is positive, we

want to add as much as possible to account for all possible neighbourhood structures, i.e., d+
i

d+
l

should be maximized.

The degree of node i, d+i , can maximally be dmax + 1, and the minimum degree of the neighbours of i needs to be

d+l = 1 + 1. One of other hand, if the upper bound from Eq. (27a) is negative, d+
i

d+
l

should be minimized following the
same logic. This results in

Uk
ij = max

{√
dmax + 1

2

nk−1∑
s=1

max
{
wk

js max
{
0, Uk−1

sj

}
, wk

js max
{
0, Lk−1

sj

}}
,

√
2

dmax + 1

nk−1∑
s=1

max
{
wk

js max
{
0, Uk−1

sj

}
, wk

js max
{
0, Lk−1

sj

}}} (31a)

Lk
ij = min

{√
dmax + 1

2

nk−1∑
s=1

min
{
wk

js max
{
0, Uk−1

sj

}
, wk

js max
{
0, Lk−1

sj

}}
,

√
2

dmax + 1

nk−1∑
s=1

min
{
wk

js max
{
0, Uk−1

sj

}
, wk

js max
{
0, Lk−1

sj

}}} (31b)

In practice, we only need the first term of each bound, as in the case that max
{
wk

ji max
{
0, uk−1

i

}
, wk

ji max
{
0, lk−1

i

}}
is negative, the node is turned off and on for the upper bound and lower bound respectively (as described in Section 3.4.1).

For a similar formulation as Eqs. (28) and (29), the following set of equations can be considered:

Uk
ij = max

{
tkij : t

k
ij ∈ Ck

ij

}
(32a)

Lk
ij = min

{
tkij : t

k
ij ∈ Ck

ij

}
(32b)

Ck
ij =

{
tkij : t

k
ij =

√
dmax + 1

2
wk

j x
k−1, (32c)

xk−1 ∈
[
max

{
0, Lk−1

i

}
,max

{
0, Uk−1

i

}]
⊂ Rnk−1

}
(32d)

3.4.3 GraphSAGE

For GraphSAGE, FBBT is very similar to the FBBT proposed for the GCN. We now require the upper and lower
bounds, Uk

ij and Lk
ij in Eq.s (23a)–(23c).

There are two parts that contribute to the total bound. The first, which is associated with the root node i, is calculated
similarly as the MLP FBBT. The second part is calculated in the same way as the GCN, but with the root node i omitted.
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This results in the following bound propagation equations:

Uk
ij =

nk−1∑
s=1

max
{
ŵk

js max
{
0, Uk−1

sj

}
, ŵk

js max
{
0, Lk−1

sj

}}
+

√
dmax

2

nk−1∑
s=1

max
{
w̄k

js max
{
0, Uk−1

sj

}
, w̄k

js max
{
0, Lk−1

sj

}}
,

(33a)

Lk
ij =

nk−1∑
s=1

min
{
ŵk

js max
{
0, Uk−1

sj

}
, ŵk

js max
{
0, Lk−1

sj

}}
+

√
dmax

2

nk−1∑
s=1

min
{
w̄k

js max
{
0, Uk−1

sj

}
, w̄k

js max
{
0, Lk−1

sj

}}
.

(33b)

Notice that
√

dmax

2 replaces
√

dmax

2 because the root node is omitted.

For a similar formulation as Eqs. (28) and (29), the following set of equations can be considered:

Uk
ij = max

{
tkij : t

k
ij ∈ Ck

ij

}
(34a)

Lk
ij = min

{
tkij : t

k
ij ∈ Ck

ij

}
(34b)

Ck
ij =

{
tkij : t

k
ij = ŵk

j y
k−1 +

√
dmax

2
w̄k

j x
k−1, (34c)

xk−1, yk−1 ∈
[
max

{
0, Lk−1

i

}
,max

{
0, Uk−1

i

}]
⊂ Rnk−1

}
(34d)

where ŵ is the weight matrix associated with the root node, and w̄ is the weight matrix multiplied with the aggregated
nodes.

The upper bounds calculated in this subsection also serve as the values for the big-M constraints in (23d), (23e) and
(23f). For instance, consider constraint (23d) and let there be no connection between node i and node l. In that case bkil
needs to be able to be equal to 0. Enough M needs to be subtracted such that the left hand side of the equation is lower
than 0. To achieve this M needs to be larger than Hk

l , which can be achieved if M is equal to the upper bound of Hk
l .

3.5 Benchmark Genetic Algorithm

As a benchmark, we implement a straightforward genetic algorithm (GA) to optimise over trained GNNs. This GA
does not depend on a latent space architecture, as proposed by Rittig et al. (2022). It uses a string representation of
the symmetric adjacency matrix of the molecules and of the feature vectors of the molecules such that single-point
crossovers and string mutations can be applied. A description is given in 1.

4 Numerical Results

Recall that the goal of this work is to formulate graph neural networks such that they can be used as surrogate models in
optimisation problems. To validate the MI(N)LP formulations, we turn to the case study of chemical property prediction,
specifically the prediction of boiling points.

4.1 Experimental Setup

The workflow of the experiments is as follows. First a data set is chosen, which will be used to train a GNN. Thereafter,
this trained GNN is represented using the methods described in Section 3. The resulting formulations are optimised
using a deterministic solver, namely Gurobi version 9.5.1 (Gurobi Optimization, LLC, 2022).

The experiments were ran on two different machines, a laptop, and a virtual machine. The laptop was used for quick,
low-resource-intensive experiments in which we were only interested in the MI(N)LP solutions. The virtual machine
was used for experiments where solving times were compared. These experiments took longer and required constant
CPU availability. The laptop was equipped with a 1.4 GHz Quad-Core Intel Core i5 processor, 8GB memory. The
virtual machine was equipped with eight 2.5 Ghz Intel Xeon Gold 6248 CPUs, and 16GB memory. The machine
learning models were trained using PyTorch 1.11.0 (Paszke et al., 2019), and implemented using PyTorchGeometric
2.0.4 (Fey and Lenssen, 2019).
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Figure 2: Box-plots of the MSE, for the GCN and GraphSAGE models for different layer depths and node width, after
independently running the models 20 times for each configuration. The box-plots indicate the median, the lower and
upper quartile and the lowest and largest MSE, when outliers, which are indicated by the dots, are excluded.

4.1.1 Case Study

In order to examine the output results of the proposed methods, we consider a representative test case where a chemist
models a chemical property and tries to optimise it. This is a common use case of CAMD Frühbeis et al. (1987). The
chemist can then use the found solutions and test the predicted properties instead of having to search over the entire
search space of feasible molecules. Models and training hyperparameters were selected heuristically following some
preliminary experiments discussed in 1. Note that accurately training GNNs is not the focus of this work.

The input space constraints were extended by including the possibility to find double and triple bonds, implemented
using the input constraints described by Eqs. (26). Initial testing of the experiments found problems with steric
constraints on the model, and to circumvent this, molecules with loops were excluded from the search space.

The case study included the optimisation of the simplest GraphSAGE configuration with at least one hidden layer,
which was the 1 × 16 configuration. A total of three different formulations were tested: (i) only single and double
bonds allowed, (ii) only single and triple bonds allowed, and (iii) single, double, and triple bonds allowed. As double
and triple bonds are handled using extra features, three different neural neural network configurations were trained. The
GNNs are trained using the best hyperparameters found in our preliminary experiments, and the model with the lowest
validation error was selected as input for the MILP formulation. The formulation was solved to optimality on the laptop.
Multiple solutions (max 8) were recorded for molecule lengths 4 and 5. All solutions were analysed, checking whether
the found solutions were molecules which naturally exist in nature.

4.2 Results

The following section describes the results that were found in the experiments. First, the results are discussed for the
GCN and GraphSAGE models individually. The results per model differ in node depth, layer width and molecule
length. Thereafter, a comparison is described between models with the same parameters. Lastly, the CAMD case study
is described, showing which molecules were found using the proposed methods.

4.2.1 Initial Experiments

For both GCN and GraphSAGE models, we trained seven configurations (differing in the amount of hidden layers and
nodes per hidden layer) using the MSE as a loss function. A comparison of the box plots of the MSE of the models can
be found in Fig. 2.

For the GCN model, the minimum MSE values range from 0.0213 to 0.0278 and the median MSE values range from
0.0360 to 0.0495. For the GraphSAGE model the minimum MSE values range from 0.0171 to 0.0277 and the median
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Table 2: Solving times (up to 36000s; smaller is better) and remaining optimality gaps (smaller is better) for the GCN
MINLP formulation for different molecule lengths.

num. layers 0 1 2

nodes/layer 0 16 32 64 16 32 64

molecule length
4

Time (s) 45 536 6426 13404 9428 - -
MIP Gap 0.00 0.00 0.00 0.00 0.00 3.59 30.19

molecule length
6

Time (s) 2309 - - - - - -
MIP Gap 0.00 2.92 8.61 8.20 31.61 47.10 93.86

molecule length
8

Time (s) - - - - - - -
MIP Gap 0.54 7.79 14.21 12.11 39.32 63.47 104.51

Table 3: Solving times (up to 36000s; smaller is better) and remaining optimality gaps (smaller is better) for the
GraphSAGE MINLP formulation for different molecule lengths.

num. layers 0 1 2

nodes/layer 0 16 32 64 16 32 64

molecule length
4

Time (s) 3 384 1045 30248 - - -
MIP Gap 0.00 0.00 0.00 0.00 0.91 4.93 13.99

molecule length
6

Time (s) 1108 - - - - - -
MIP Gap 0.00 0.57 2.29 8.49 5.57 11.39 17.26

molecule length
8

Time (s) - - - - - - -
MIP Gap 0.33 5.19 3.63 11.18 7.11 13.60 26.54

from 0.0308 to 0.0438. In case of the GraphSAGE we can see that median MSE values decrease as the amount of nodes
per layer increase. For GCN no such pattern can be detected. Comparing the model accuracy of both GNN models
show that the GraphSAGE model has a better median MSE validation value for 4 out of the 7 configurations. The
minimum MSE values also show the GraphSAGE model to be better for 4 out of the 7 configurations. The best overall
minimum MSE is found in the 1 x 64 configuration of the GraphSAGE model, with an MSE of 0.0171. However, the
1 x 16 is a close second with an MSE of 0.0181.

We then optimized the MILP and MINLP formulations of the trained GNNs with a maximum time limit of 10 hours.
Table 2 compares the results for the optimisation of the MINLP formulation for the different configurations. Only six
out of the 21 experiments were solved within 10 hours. All configurations were solved for molecule length n = 4 apart
from 2 x 32 and 2 x 64, with solution times increasing with the number of nodes. For n = 6 only the formulation
with 0 hidden layers was solved to optimality. The optimality gaps are non-zero for the configurations where an
optimum is not found. Recall that the optimality gap indicates how far the upper bound is removed from the lower
bound, expressed in multiples of the lower bound. As the node depth increases, the remaining optimality gap after
10 hours increases, apart from increasing the node depth from 32 to 64 with 1 hidden layer for n = 6 and n = 8. As
the layer depth increases, the optimality gap also increases for all non-solved configurations. Finally, we note that all
optimality gaps increase as the molecule length increases.

Table 3 shows the results of optimising the MILP formulations of the trained GraphSAGE neural networks. Only 5
configurations were solved to optimality. All the others terminated after a time limit of 10 hours. Of the solved cases,
four optima were found when the search space was limited to atoms of length 4 (n = 4), the other one was found when
n = 6. Once again, the solution times increase with both the size of the GNN and the length of the molecules. We
see that for n = 4, 6, as the node depth increases, the remaining optimality gaps become larger. For n = 8, this is not
the case. When increasing the node depth for one hidden layer from 16 to 32, the optimality gap decreases. When
increasing the number of layers, the optimality gap always gets larger when the node depth stays the same, for all
molecule lengths. Finally as the molecule length increases, the optimality gap also increases.

We can also compare between the GCN and GraphSAGE models. As mentioned previously, six of the GCN formulations
were solved within 10 hours, while only five of the GraphSAGE formulations were solved. For the solved problems, the
GraphSAGE model is generally faster, apart from the configurations 1 x 64 and 2 x 16 for n = 4, where in the latter
case GCN solves to optimality and GraphSAGE does not. We also obseve that GraphSAGE has a better optimality gap
than the GCN formulation for most configurations and molecule lengths. There are a few exceptions however. For
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(a) GA vs GCN, n = 4 (b) GA vs GraphSAGE, n = 4

(c) GA vs GCN, n = 6 (d) GA vs GraphSAGE, n = 6

(e) GA vs GCN, n = 8 (f) GA vs GraphSAGE, n = 8

Figure 3: Comparison of the GA and GNN. The solving time in seconds for the GA indicates after how many seconds
the GA found an objective value of equal quality or better, than the MILP formulation of the GNN.

n = 4, 2 x 16 and 2 x 32, GCN has a smaller optimality gap than the GraphSAGE formulation. The same goes for
n = 6 with 1 hidden layer and 64 nodes in that layer.

Finally we compare the solving times of the GNNs with a baseline. Fig 3 shows this comparison. For 35 out of 42
instances (83%), the GA found an equally good solution as the deterministic optimiser in less than 2 minutes. For 3
instances, the GA did not find an equally good objective value and terminated because it reached the time limit of 10
hours.
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4.2.2 Case Study

For the case study we selected the GraphSAGE GNN with 1 hidden layer and 16 nodes. The reason for choosing this
model is explained in 1. Recall from Section 4.1.1 there were three different search spaces for the molecules. These
were the search space of single and double bonded molecules, single and triple bonded molecules, and single, double
and triple bonded molecules. Graphical representations of the found solutions for n = 4 and n = 5 are shown in Fig. 4.

There are multiple molecules obtained from the outcomes of the MILP solver. This was achieved using Gurobi’s
Solution Pool tool. Specifically, while the goal of a MILP solver is to find the globally optimal solution, other feasible
solutions can be found as an algorithm progresses as an indirect output. We note that MILP can in this way produce a
candidate pool similar to how GA can.

There are repeat molecules in the solution set. These are solutions that have different adjacency matrices but constitute to
the same molecule. In total there were 20 unique molecule-like structures found during the optimisation of the different
search spaces. The analysis of these molecules can be found in Table 4. Zhang et al. (2023) develop symmetry-breaking
constraints, which is a route to prevent generation of repeat molecules; their work applies to MILP and also to GA
approaches, and could be added to our formulations in the future.

For 12 of the 20 molecules, we found sources indicating that the molecules were experimentally observed. For the
12 observed molecules, 9 were synthesised, and their boiling points were recorded. Two of the molecules were not
experimentally observed but were mentioned in papers as hypothetically possible under large pressure. Two of the
molecules found during the optimisation process were also present in the training data set; all the others were not.

The absolute difference between the experimental observed boiling points and the predicted boiling points from the
optimisation ranged from 9.44 to 72.24. The relative difference, calculated by the difference divided by the experimental
boiling point, ranged from 2.7%–24.2%.
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Figure 4: The molecules associated with the best found lower bounds during the branch and bound optimisation process
of the GraphSAGE formulation with 1 hidden layer and 16 nodes.
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5 Discussion

5.1 Model Complexity

When comparing the MILP formulation of the GCN and the MINLP formulation of the GraphSAGE network, the
MINLP formulation is bi-linear, whereas the MILP formulation is linear. Linear solvers are known to be faster than
non-linear solvers in general. Another drawback for the GCN formulation is that initially, a vast amount of constraints
and variable are introduced to linearise the normalisation term. This is not the case for the GraphSAGE model.

However, the amount of constraints and variables introduced in the GraphSAGE formulation is far greater than for
the GCN model for deep and wide networks. This is because for every layer k the amount of constraints for the
GraphSAGE model grows by O(n2nk) whereas the GCN model only grows by O(n2). For the variables we also find
that the increase is of the order O(n2nk) for GraphSAGE and O(n2) for the GCN.

While theoretical comparisons between the models has value, we also consider our empirical findings.

5.2 Individual Experiments

First we note that for very few instances the solver actually solves to optimality, for both the GCN model and the
GraphSAGE model. This means that, in its current configuration, the proposed formulations can only be used to find
small graphs of size 4 in a time span of 10 hours. Some improvements can be made to improve solving times, which
will be discussed later. However, even with improvements we do not expect the search space to be able to include
graphs that are multiple orders of magnitude larger than the graphs that we currently find. This means that the proposed
optimisation formulations can not be used in other contexts where large graph neural networks are used, like road
network modelling, or recommender systems. This implies that that the proposed techniques, in its current formulation,
should be used for small graph optimisations only, like molecule optimisation. At the same time, the encountered
computational complexity also motivates the use of inexact solvers, such as the genetic algorithm.

Second, we note that the use of a deterministic optimiser (i.e., Gurobi for MILPs) has the advantage of knowing
how close one is to the actual solution, while running the algorithm, expressed by the optimality gap. However, the
experiments show that optimality gaps rapidly increase as the model becomes more complex, or as the search space
includes larger graphs. When modelling some instances, this optimality gap might not be as useful anymore. For
instance, in the case that n = 8, the optimality gap was 26.54 after running the 2 x 64 instance of the GraphSAGE
model for 10 hours. The range of boiling points in the training set ranged from 145.15–482.05 K. With the found
objective lower bound, the optimality gap of 26.54 implies that the solution lies in a range of approximately 675–2045
K. For the set of refrigerants we could assume beforehand that the temperatures were in this boiling point range for
molecules of length 8.

Third, we discuss the simple fact that when the number of nodes per layer increases, the solving time goes up for
both the GCN and GraphSAGE. The same pattern can be seen when increasing the hidden layers per model. These
results are as expected for general mixed integer linear programming formulations. As the number of layers and nodes
increases, the amount of decision variables and constraints increases, making the problem more difficult to solve. The
optimality gap shows similar results apart from a few exceptions as laid out in the result description section. The cases
where unexpected results were seen were rerun, but resulted in similar optimality gaps, implying that the problem lay
somewhere with the learned parameters of the GNN. We further explore this in the next section.

Finally, a general remark on the bounds for the GNNs. The input bound size for the MLP which comes after the pooling
layer increases linearly with the amount of nodes that are in the graphs in the search space. This is because the output
bounds of the feature vectors of the GNNs get summed in the pooling layer. In some cases this makes sense. Larger
structures sometimes result in higher objective values, as is the case with boiling points of molecules. However, when
bound are loose to start with, it amplifies this error, resulting in even larger bounds. This has a negative impact on the
solving times.

5.3 Comparison of the Experiments

As discussed above, the GraphSAGE model is generally better than the GCN model in terms of solving times, and
when not solved to optimality, also in terms of an optimality gap. There are instances where the GCN is better than the
GraphSAGE model empirically. First we note that the bounds for the GCN models are smaller than the GraphSAGE
model, for equal node depth and layer width. As mentioned before, smaller bounds result in faster solving times.
However, the bound difference is generally present for all instances when comparing the GCN and GraphSAGE. There
thus must be another reason for these exceptions.
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Training a neural network is a stochastic process. This means that training different neural networks with the same
hyper-parameters does not result in the same weights and biases. We hypothesize that training different trained graph
neural networks with the same configurations results in different solving times. Having different weights and biases has
an impact on the bounds. In turn, we know that larger bounds have a negative impact on the solving time. We tested
this hypothesis as can be seen in 1. The same experiment for the instance 2 x 16 was repeated 5 times. It shows that
different trained neural network parameters result in different solving times when optimised using a deterministic solver.
This confirms our hypothesis. However, we find no correlation between the bounds and the solving time. We expected
larger bounds to result in slower solving times, but this small test in the appendix does not confirm this hypothesis.

A final point to discuss concerning the initial experiments is the genetic algorithm baseline comparisons. It is clear
from the results that in most cases the GA is superior to the deterministic solvers in terms of finding a solution of equal
quality while taking less time.

There are three instances where the GA does not find a solution of equal quality. In these cases, the GA gets stuck in a
local maximum. These instances also illustrate the main shortcoming of the GA: having no guarantee of convergence to
the global optimum.

5.4 Discussion of the Case Study

The goal of the case study was to emulate an instance where a researcher is looking for molecules with a maximal
boiling point. First of all, 12 of the molecules that were found were experimentally observed. Of the other 8, we able to
find two which were mentioned in research as hypothetical molecules. These were able to be synthesised under very
high pressure or were an unstable molecule of molecular reaction. Of the other 6, we were unable to find any mentions
in literature.

We also note that only two of the 20 molecules that were found were in the original data set. We believe that this shows
that a model can be trained on a particular data set and that other molecules can be found outside of that data set, of
which some can be synthesised. This means there is a real-life use case for the proposed formulation in this article. Let
us say a researcher wants to design a fuel with high energy storage, and low emissions. With GNNs the researcher
can model these chemical properties. Using the methods proposed in this article, the researcher can make a MILP
formulation of these networks, and find solutions while optimising. The researcher can use these solutions as a starting
point to look for molecules with the desired properties, instead of having to start with a pool of all possible fuels.

There are two final remarks we would like to make on the found solutions. Again, these should be taken with a grain of
salt, as the modelling of the chemical properties was not the main focus of this work. However, we do see that when
experimental results exist of molecules with similar input constraints and molecule length, the experimental boiling
points increase as the modelled boiling points increase. This shows some validation for the modelling quality. On
the other hand, we note that the mean absolute error of the trained GNN is about 6.65. For the found molecules, of
which experimental boiling point data is available, we see that our mean absolute error is around 17.75. Without further
exploration, we can not draw immediate conclusions from this. However, one hypothesis is that this might suggest that
when modelled molecules are at the higher end of the boiling point spectrum, that the errors of the GNNs become larger.

6 Conclusion and Outlook

The success of computer aided molecular design and the ubiquity of neural networks lead to the question whether one
can optimally search for molecular designs, constrained by certain properties, by making use of graph neural networks.
A key barrier to using ‘traditional’, non-graph structured networks is that they struggle to learn from non-euclidean
data, whereas molecules are naturally modelled as graph-like structures, motivating the use of GNNs.

Recognising recent progress on exact formulations of non-graph neural networks as mixed integer (non-)linear programs,
this work therefore formulated trained GNNs as MILP programming formulations. These formulations can be used as
surrogate models in optimisation problems. In particular, we treated two classes of GNNs: the frequently-used GCN
and the contemporary GraphSAGE. We developed a formulation of GCN as an MINLP, and of GraphSAGE as a MILP.

In terms of accuracy, we hypothesised that the GCN would reach better model accuracy with fewer hidden layers and
nodes per layer than GraphSAGE, due to the GCN model’s more complex architecture. The results (Fig. 2), do not
support this hypothesis. For four of the seven configurations (hidden layers × nodes) the GraphSAGE model has a
better median validation MSE while running for 20 iterations, and for four of the seven configurations, the GraphSAGE
model has a lower minimum validation error than the GCN model. Overall, with the hyper-parameters tested, we
achieved similar model accuracy for both the GCN and GraphSAGE model, even with the same number of hidden
layers and nodes per layer.
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In terms of solving speed, we hypothesised was that the GraphSAGE MILP formulations would be faster than the
GCN MINLP formulations because linear solvers are faster than non-linear solvers (in this case, bi-linear). The
results (Tables 2 and 3) find that the GraphSAGE model was generally faster (four of the six solved instances). The
optimality gaps also seem to suggest that if the experiments were ran for longer the GraphSAGE would generally solve
to optimality first. This is because for all but three configurations (12 out of 15 early terminated cases) the GraphSAGE
model had a smaller optimality gap than the GCN model. Overall, there is evidence to suggest the MILP formulation of
the GraphSAGE model solves to optimality faster than the MINLP formulation of the GCN model, with similar model
accuracy. This is because our trained model accuracy is about the same and sometimes better for the GraphSAGE
model compared to the GCN model, for models with similar hidden layers and number of nodes, combined with the
fact that the GraphSAGE model often solves to optimality faster with similar configurations.

Our final contribution was to apply the MI(N)LP formulations to a case study of optimising the boiling points of
molecules. The case study successfully derived a set of optimal molecules, given constraints on the design space. Of
the 20 molecules derived, 12 were found were experimentally observed. Of the other eight, the literature notes two as
hypothetical molecules. These were able to be synthesised under very high pressure or were an unstable molecule of
molecular reaction. The remaining six molecules appear to be novel; their chemical feasibility in practice would be
tested in vitro studies.

Our work opens up several prominent research directions. First, the models themselves have potential for improvement
with stronger bound tightening techniques, and we think techniques for tightening MLP MILP formulations can be
applied to GNN MILPs also. Going beyond feasibility-based bound tightening, optimisation-based bound tightening
techniques (OBBT), and the combined technique of Wang et al. (2021). Second, using GNNs in CAMD, there is
opportunity in increasing the training set size and using more of the learnable features, and reconsidering linearise
structures and the input constraints. We underline that training of the GNNs was not the main focus of the current work,
and that we applied our novel formulations to GNN as a case study. Third, when deterministic optimisation is not the
main priority for researchers, our straightforward GA for optimising trained GNNs already shows promise.
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