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ABSTRACT

Uncertainty estimation is pivotal in machine learning, especially for classification tasks, as it improves
the robustness and reliability of models. We introduce a novel ‘Epistemic Wrapping’ methodology
aimed at improving uncertainty estimation in classification. Our approach uses Bayesian Neural
Networks (BNNs) as a baseline and transforms their outputs into belief function posteriors, effectively
capturing epistemic uncertainty and offering an efficient and general methodology for uncertainty
quantification. Comprehensive experiments employing a Bayesian Neural Network (BNN) baseline
and an Interval Neural Network for inference on the MNIST, Fashion-MNIST, CIFAR-10 and CIFAR-
100 datasets demonstrate that our Epistemic Wrapper significantly enhances generalisation and
uncertainty quantification.

1 Introduction

In the realm of machine learning, particularly in classification tasks, uncertainty estimation plays a crucial role in
enhancing the robustness and reliability of models [43]. Accurately quantifying uncertainty is vital for applications
where decisions must be made with confidence, such as in medical diagnosis [28], autonomous driving [14] and
financial forecasting. Traditional deterministic neural networks, while powerful, cannot often effectively capture and
express uncertainty [32]. This shortfall has spurred interest in probabilistic approaches, with Bayesian neural networks
(BNNs) emerging as a promising solution in this context. BNNs offer a principled approach to uncertainty estimation
by incorporating prior distributions over the model parameters, leading to posterior distributions that reflect model
uncertainty [23]. Despite their theoretical appeal, BNNs face practical challenges, including high computational costs
and complexity in training.
The literature majors on two sources of uncertainty: Epistemic Uncertainty (EU) and Aleatoric Uncertainty (AU)
[22, 1]. Epistemic uncertainty is due to a lack of knowledge about the true model parameters and can be reduced with
more data or better models. In contrast, aleatoric uncertainty (AU) stems from the inherent randomness in the data
generation process and cannot be reduced. Over the years, various studies [22, 1] have recognised that accurately
modelling parameter uncertainty can produce a variety of credible network models, which are likely to include the true
underlying network model, leading to both better EU estimation and more reliable inference. In particular, second-order
uncertainty frameworks (including belief functions [9]) can be employed to model both EU and AU, effectively
expressing ‘uncertainty about a prediction’s uncertainty’ [22, 43].

https://arxiv.org/abs/2505.02277v1
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Figure 1: Epistemic Wrapper transforms weights posteriors from a Bayesian Neural Network into belief posteriors
through a five-step process. It involves extracting probability posteriors, calculating belief values over Borel intervals,
computing mass values using Moebius inversion, fitting a Dirichlet distribution to these masses via method of L-
moments, and using the resulting belief posteriors as weights to Interval Neural Networks (INNs) for final predictions.

BNNs, as one of the prevalent method for uncertainty estimation, treat all the weights and biases of the network as
probability distributions. The prediction of the NN is represented as a second-order distribution, thus representing the
probability distribution of distributions [22]. Although effective approximation techniques have been developed, such
as variational inference approaches [3, 16] and sampling methods [41, 19], the high computational cost of BNNs during
training as well as inference time limit their practical adoption, especially in real-time applications [1].
Recent results support the claim that modelling EU using uncertainty measures more general than probability distri-
butions [11], such as credal sets [30] or random sets / belief functions [45], can lead to better uncertainty estimation
and robustness [35, 38, 37, 5, 51, 50, 4, 36]. Still, all those efforts model (epistemic) uncertainty in the model’s target
space, rather than its parameter space. To our knowledge, no attempts have been made to model EU in the parameter
space via higher-order uncertainty measures.
This paper proposes Epistemic Wrapper, a novel method which, for the first time, models EU in the parameter space via
a random set representation by “wrapping" a learnt Bayesian posterior there in the form of a belief function. posterior
(Fig. 1). Our Epistemic Wrapper follows a structured five-step process, where each step is executed in a hierarchical
manner: (i) We begin by extracting posterior distributions with parameters (µ, σ) from a pre-trained BNN model, where
the priors are modeled as Gaussian distributions. (ii) The posterior distributions are then truncated, and continuous
belief functions are computed over closed intervals. (iii) In the third step, these belief values are transformed into mass
values using Moebius inversion. (iv) A Dirichlet distribution is fitted to the grid of mass values using the Method of
L-moments. (v) Finally, inference is performed using a Hybrid Interval Neural Network (INN).
Our approach leverages the strengths of BNNs while injecting the ability of higher-order measure to improve robustness
and uncertainty estimation.
Our contributions are therefore:

1. A first attempt to model EU in the parameter space using higher-order uncertainty measures.
2. This happens via a new, versatile Epistemic Wrapper concept, that can be applied to any BNN baseline to

convert it automatically into a belief-function posterior.
3. Based on the above, a novel approach to uncertainty estimation in classification which efficiently leverages

BNNs as a foundation.
Our experiments demonstrate the versatility of the proposed Epistemic-wrapper approach across the BNN baseline on
two datasets: MNIST and Fashion-MNIST. The results indicate that the epistemic wrapper generalizes effectively across
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these diverse datasets, significantly improving performance over the baseline BNN. On MNIST dataset, the baseline
BNN achieved an accuracy of 72.44% ± 0.24, whereas the Epi-Wrapper substantially outperformed it, achieving
91.02% ± 0.05. Similarly, on the Fashion-MNIST dataset, the baseline BNN attained an accuracy of 58.91% ± 0.24,
while the Epi-Wrapper demonstrated a notable improvement, reaching 82.45% ± 0.10. These results highlight the
effectiveness of our approach in enhancing predictive performance across different datasets.

Why do we model epistemic uncertainty in the parameter space rather than in the target space?
The motivation behind modeling epistemic uncertainty in the parameter space using higher-order uncertainty measures
stems from the idea that parameter uncertainty is a primary source of epistemic uncertainty. By modeling uncertainty
directly in the parameter space before it propagates to predictions we capture model-level uncertainty in a more
principled way. Modeling in the parameter space offers several advantages: (a) It provides a prior-agnostic mechanism
to represent epistemic uncertainty, without relying solely on the model’s output distribution. (b) It enables structured
and interpretable sampling through belief functions and Dirichlet distributions, supporting more stable and calibrated
uncertainty estimates via interval-based inference. (c) It can be seamlessly integrated with existing BNNs without
retraining, offering flexibility and broader applicability.
The paper is organised as follows. Section 2 surveys the relevant literature. Section 3 explains in detail our epistemic
wrapper approach. Section 4 reports the experiments and results. Section 5 concludes.

2 Relevant Work

2.1 Bayesian Neural Networks

Bayesian Neural Networks (BNNs) provide a principled framework for uncertainty estimation by treating weights
and biases as probability distributions, supporting robust decision-making [23]. Efficient methods like Variational
Inference (e.g., Bayes by Backprop [3]) and dropout-based approximations [16] have made BNNs scalable. However,
their high computational demands, especially during training and inference, remain a significant challenge for practical
applications [1].
While various types of uncertainty measures [10] have been employed in machine learning in the past [12, 8, 33, 17],
recent advancements in epistemic uncertainty modelling have introduced a range of methods to improve predictive
reliability across various neural architectures. Evidential deep learning predicts second-order probability distributions
to estimate uncertainty, but faces challenges in optimisation and interpretation [24]. Methods like G-∆UQ refine
uncertainty calibration in Graph Neural Networks (GNNs) through stochastic data centering [49], while SPDE-based
GNNs employ Q-Wiener processes for uncertainty propagation in complex graphs [31]. The Graph Energy-Based
Model (GEBM) leverages graph diffusion to quantify uncertainty at different structural levels [15], and credal set-based
ensemble learning constructs plausible probability distributions to measure aleatoric and epistemic uncertainty [20].

Crucially, [36] introduces a unified evaluation framework for uncertainty-aware classifiers, mapping all uncertainty-
aware predictions into credal sets [7], thus enabling a standardised assessment of epistemic uncertainty across BNNs,
Deep Ensembles, Evidential Deep Learning (EDL), and Credal Set-based approaches. [38] extends uncertainty
modelling through Random-Set Neural Networks (RS-NNs), which employ random set theory to construct belief-based
uncertainty representations, providing a more flexible alternative to conventional probabilistic models. Credal Interval
Neural Networks [52], instead, represent predictions as credal sets, which encapsulate a range of probable outcomes,
thereby explicitly modelling epistemic uncertainty. Building on the latter, Credal Deep Ensembles [51] predict and
aggregate ensembles of convex sets of probability distributions, resulting in a more conservative and informative
epistemic uncertainty quantification. In an alternative approach [6, 34, 44] predictions are modelled as Dirichlet
distributions. A key challenge with these methods is the lack of ground truth labels for uncertainty, making direct
supervision difficult.

While these models can be highly effective, they primarily quantify uncertainty at the target level, leaving the question
of modelling epistemic uncertainty at parameter level open. In contrast, our proposed Epistemic Wrapper leverages
BNNs to do exactly so, by transforming probability posteriors into belief posteriors, to offer a robust solution for
uncertainty quantification in classification tasks.

2.2 Interval neural networks

Traditional Interval Neural Networks (INNs) employ deterministic interval-based representations for inputs, outputs,
weights, and biases, ensuring robust uncertainty modelling in neural computations. The forward propagation in an
INN follows interval arithmetic principles, where the interval-formed activations in each layer are computed using
element-wise interval addition, subtraction, and multiplication [18]. Specifically, the activation output of the lth layer is
determined by applying a monotonically increasing activation function to the interval-weighted sum of the previous
layer’s outputs and the corresponding interval biases. This formulation guarantees the set constraint property, ensuring
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that for any given input and network parameters within their defined intervals, the computed activations remain bounded
within a well-defined range. When the activation function is non-negative (e.g., ReLU), further simplifications allow
efficient computation of interval bounds using minimum and maximum operators. This structured interval propagation
enables INNs to maintain rigorous mathematical constraints while modelling uncertainties in deep learning architectures
[40].
In our approach, we employ INNs at inference time using our epistemic wrapper weights, sampled from the wrapped
belief posterior, thus leveraging their structured interval-based representations to quantify and propagate epistemic
uncertainty effectively.

3 Methodology

The proposed Epistemic Wrapper approach consists of a five-step process for transforming learnt posterior distributions
on model parameters into belief functions posteriors.

3.1 Learning a Bayesian Posterior (Baseline)

In the first step we use BNNs trained on Gaussian priors with parameters (µ, σ) and obtain posterior distributions with
the same parameters. The posterior distribution p(ω|D) is learned using Bayes’ theorem, where ‘Variational Inference’
(VI) is employed to approximate the intractable posterior by optimizing a variational distribution q(ω) that closely
matches p(ω|D). During inference, we approximate the posterior via Bayesian Model Averaging by sampling weights
from the variational posterior.

3.2 Dynamic Truncation

A typical Bayesian weight posterior will look like the one in Figure 2.

Figure 2: Posterior distribution of weights for the last layer. The histogram displays the sampled weights, overlaid with
a fitted normal distribution (mean = 0.01, std = 0.23). Vertical dashed lines indicate truncation points at ±3σ.

In the second step, such posterior distributions are truncated using a dynamic distribution truncation mechanism,
designed as an adaptive technique used to define the range of a distribution based on its mean and standard deviation.
This dynamically scales the bounds to parameter values according to the variance of the distribution, ensuring that
the truncation bounds are tighter for distributions with smaller variances, as they inherently have more concentrated
probability masses, and looser for those with larger variances.
The truncation bounds are calculated as: Lower Bound = µ − dynamic_multiplier · σ, Upper Bound = µ +
dynamic_multiplier · σ, where µ is the mean, σ is the standard deviation, and the dynamic_multiplier is calculated
as: dynamic_multiplier = min(5.0, 1.0

σ ), ensuring that the multiplier decreases for low-variance distributions while
capping its value at 5.0 to prevent excessive truncation in high-variance cases. We have selected this approach as it
provides a balance between capturing the significant probability mass of the distribution and avoiding overly wide or
narrow bounds, which could either dilute meaningful mass representation or exclude critical probabilistic regions.

3.3 Continuous Belief Functions on Closed Intervals

Belief Functions. Belief functions, grounded in the mathematical framework of random sets, were initially introduced
by Dempster [13] and later formalized by Shafer [46] as an alternative model for subjective belief to Bayesian probability.
In finite domains, such as a collection of classes, belief functions are characterised by a basic probability assignment
(BPA) [46], which is a set function m : 2Θ → [0, 1] satisfying m(∅) = 0 and

∑
A⊆Θ m(A) = 1. The value m(A) is
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Figure 3: Graphical visualisation of the continuous PDF/mass function on intervals, with the area whose integral
amounts to Bel([a, b]).

interpreted as the probability mass directly assigned to subset A ⊆ Θ in a random-set formulation [47]. Subsets A of Θ
with m(A) > 0 are referred to as focal elements. Classical belief functions extend the notion of discrete mass functions
by assigning normalized, non-negative mass values not only to elements θ ∈ Θ but to subsets of Θ, governed by:

m(A) ≥ 0,∀A ⊆ Θ,
∑
A⊆Θ

m(A) = 1. (1)

The belief function Bel(A) associated with a mass function m is defined as the total mass assigned to all subsets
B ⊆ A. Conversely, m can be recovered from Bel through Moebius inversion [46]:

Bel(A) =
∑
B⊆A

m(B), m(A) =
∑
B⊆A

(−1)|A\B|Bel(B). (2)

This formulation demonstrates that classical probability measures are a special case of belief functions, assigning mass
exclusively to singletons.
Continuous belief functions on intervals. Belief functions can be easily extended to continuous spaces (e.g., a
network’s parameter space) by defining a continuous mass function over the collection of closed intervals, rather than
the entire power set. Given a network parameter ω with values in R, this requires defining a continuous PDF over the
collection of intervals [a, b] ⊂ R [9]. Here we will assume that parameter values are bounded after truncation (for
illustration, in [0, 1]); however, the method can be easily extended to unbounded parameter values as well.
The space of all closed intervals in [0, 1] is a triangle, as illustrated in Fig. 3. Given a continuous mass function there
(non-negative and with integral 1), one can compute the belief and plausibility value of a parameter interval A = [a, b]
by integrating it over specific regions of the triangle [48] (Fig. 3). The same applies for parameters bounded by arbitrary
values.

Given a posterior distribution over a network’s weight, learned by a BNN, our Wrapper transforms it into a continuous
belief function using the method proposed in [53]. For any closed interval A = [a, b] of the parameter space, one can
compute its plausibility from the posterior distribution by taking the supremum of the normalised posterior p̂(ω|D)
across all ω ∈ A, namely:

PlΘ(A|D) = sup
ω∈A

p̂(ω|D). (3)
The corresponding belief value is then calculated as the complement of the plausibility:

BelΘ(A|D) = 1− PlΘ(A
c|D), (4)

ultimately providing the sought random-set representation in the parameter space.
The method is grounded into rationality principles, such as (i) the likelihood principle, (ii) compatibility with Bayesian
inference (which ensures that combining a Bayesian prior with the belief function yields the Bayesian posterior), and
(iii) the principle of Minimum Commitment, which maintains that among the belief functions satisfying the previous
two principles, the one chosen should commit to the least amount of information necessary [9].
To cap complexity, sample belief values can be computed for a grid of parameter values only. The corresponding mass
values can then be easily obtained by Moebius inversion [45].
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3.4 Fitting a Dirichlet Distribution

The fourth step of our Epistemic wrapper employs the method of L-moments [21] to fit a Dirichlet distribution to the
grid of mass values so obtained.
A Dirichlet distribution is a family of continuous multivariate probability distributions parameterised by a vector α of
positive real numbers; in fact, a multivariate extension of the Beta distribution (Figure 4):

f(x1, . . . , xK ;α1, . . . , αK) =
1

B(α)

K∏
i=1

xαi−1
i . (5)

As they are defined on the collection of vectors x ∈ [0, 1]K of dimension K whose coordinates add to 1, Dirichlet
distributions can be interpreted as second-order distributions.

Figure 4: Probability densities of the Dirichlet distribution as functions on the 2D-simplex: α = (6,2,6) (left), α = (2,3,4)
(right).

The method of L-Moments is a statistical approach employed for parameter estimation in probability distributions.
Here we utilise this method to estimate the parameters of a Dirichlet distribution over mass values. L-moments are
analogous to conventional moments but are based on linear combinations of order statistics, making them more robust
to outliers and capable of providing a more reliable characterization of the data.
To fit a Dirichlet distribution to the grid of mass values, we compute weighted L-moments from the data represented in
a 3D simplex space, where each data point has an associated weight derived from its mass value. An example grid in a
3D simplex representation is shown in Figure 5-Left.

Figure 5: Left: Scatter plot showing intervals projected onto a 2D simplex. Each point represents an interval A = [a, b]
with its location determined by the values a and b, and the colour scale indicates the corresponding mass values m(A),
ranging from 0.00 to 0.012. Right: Visualization of Dirichlet samples on a 2D simplex. The scatter plot shows points
sampled from the fitted Dirichlet distribution over mass values.

Computation of weighted L-Moments. We first need to compute the first-order and second-order weighted L-moments
from the grid of data points. Let xi ∈ R3 denote the i-th data point in the 3D simplex and wi its associated weight
(derived by normalizing the mass values, so that

∑
i wi = 1). The L-moments are computed as follows. First-order
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Algorithm 1 Weighted L-Moments for Dirichlet Parameter Estimation

Require: X ∈ Rn×3 (3D simplex coordinates), w ∈ Rn (masses), ϵ > 0
1: Normalize weights: w← w/

∑n
i=1 wi

2: Compute L1 ←
∑n

i=1 wixi

3: Compute L2 ←
∑n

i=1 wi(xi−L1)
2∑n

i=1 wi

4: Adjust L2 ← max(L2, ϵ)

5: Estimate α← L1 ⊙
(

L1⊙(1−L1)
L2

− 1
)

6: Enforce positivity: α← max(α, ϵ)
Ensure: Dirichlet parameters α

L-moment (L1). This is the weighted mean of the points in the simplex and is given by:

L1 =

n∑
i=1

wixi. (6)

Second-order L-moment (L2). This represents the weighted spread (variance) of the points relative to L1:

L2 =

∑n
i=1 wi(xi − L1)

2∑n
i=1 wi

(7)

To ensure numerical stability, a small value ϵ is added to L2 when necessary, preventing division by zero in subsequent
computations.

Fitting the Dirichlet Distribution. Using the computed L-moments, we can estimate the parameters α = (α1, α2, α3)
of the Dirichlet distribution. The relationship between L-moments and the Dirichlet parameters is expressed as:

αk = L1,k

(
L1,k(1− L1,k)

L2,k
− 1

)
, k = 1, 2, 3 (8)

where L1,k and L2,k are the respective components of the first and second L-moments along each axis of the simplex.
The whole procedure is summarised in Algorithm 1.
As a sanity check, after fitting a Dirichlet distribution to the grid of mass values, samples from it are also concentrated
on the top of the simplex as shown in Figure 5-Right.
Theoretical Properties of the Epistemic Wrapper
The Epistemic Wrapper preserves an important theoretical property. Specifically, the original Bayesian posterior P lies
within the credal set induced by the belief and plausibility functions after wrapping, satisfying

Bel(A) ≤ P (A) ≤ Pl(A) for all measurable sets A.

This relation ensures that our transformation is conservative: it enriches the original posterior with second-order uncer-
tainty without distorting the underlying predictive information. Consequently, the model maintains consistency with the
Bayesian posterior while gaining robustness, which helps to explain the observed improvements in generalization and
uncertainty estimation. The plausibility Pl(A) captures the maximum value of p̂(ω|D) over A, while belief Bel(A)
captures the minimum guaranteed mass by considering the complement Ac. Since P (A) is the integral of p̂(ω|D) over
A, it must lie between the least conservative estimate (Bel) and the most generous estimate (Pl) over A. This follows
from the construction rules of likelihood-based belief functions and random set theory (see [46, 53, 9]).

3.5 Budgeting

A budgeting strategy is introduced (detailed in Section 4.2) to selectively transform the posterior distributions of a
subset of parameters (weights and biases). Posteriors that are not selected, referred to as unwrapped posteriors, retain
their original learned parameters. We propose four distinct budgeting strategies: three are parameter-based, prioritizing
posteriors with high µ, high σ, or simultaneously high µ and σ, while the fourth employs a random selection strategy
that remains unbiased with respect to these parameter values.

3.6 Inference via Hybrid Interval Neural Networks

The fifth step in our approach is inference. For this purpose, we employ a Hybrid Interval Neural Network Hybrid-INN,
where weight intervals are derived from a combination of Dirichlet-derived intervals (wrapped parameters) and Gaussian
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Table 1: Classification accuracies on MNIST under different budgeting criteria before and after fine-tuning for posterior
weights. Results are from 15 runs. Best scores are presented in bold.

BUDGETING MLP SIZE
BEFORE FINE-TUNING AFTER FINE-TUNING

HYBRID-INN EPI-WRAPPER BNN HYBRID-INN EPI-WRAPPER

↑ σ
2 9.11 ± 0.53 12.93 ± 0.75 33.14 ± 0.22 57.77 ± 0.81 62.43 ± 0.46
4 10.44 ± 0.77 19.94 ± 0.47 40.19 ± 0.55 83.32 ± 0.24 85.17 ± 0.10
8 9.33 ± 0.54 25.46 ± 1.57 72.44 ± 0.24 91.12 ± 0.08 91.08 ± 0.09

↑ µ
2 9.11 ± 0.53 10.63 ± 0.34 33.14 ± 0.22 57.77 ± 0.81 63.06 ± 0.47
4 10.44 ± 0.77 18.13 ± 0.71 40.19 ± 0.55 83.32 ± 0.24 85.35 ± 0.06
8 9.33 ± 0.54 51.33 ± 1.21 72.44 ± 0.24 91.12 ± 0.08 91.02 ± 0.05

↑ µ+ σ
2 9.11 ± 0.53 10.45 ± 0.16 33.14 ± 0.22 57.77 ± 0.81 63.02 ± 0.55
4 10.44 ± 0.77 18.55 ± 0.68 40.19 ± 0.55 83.32 ± 0.24 85.18 ± 0.07
8 9.33 ± 0.54 51.31 ± 1.29 72.44 ± 0.24 91.12 ± 0.08 91.12 ± 0.07

RS
2 9.11 ± 0.53 9.80 ± 0.00 33.14 ± 0.22 57.77 ± 0.81 64.84 ± 0.16
4 10.44 ± 0.77 17.35 ± 0.27 40.19 ± 0.55 83.32 ± 0.24 85.45 ± 0.06
8 9.33 ± 0.54 9.23 ± 0.64 72.44 ± 0.24 91.12 ± 0.08 90.80 ± 0.09

posteriors (unwrapped parameters). Although our architecture is based on a standard INN, the way we handle these
intervals is by computing the mean of the upper and lower bounds, which introduces an important distinction. For
this reason, we refer to our model as Hybrid-INN. This averaging mechanism of the interval bounds prevents extreme
values from distorting predictions. It ensures a more stable, well-calibrated uncertainty representation, particularly
for epistemic uncertainty, which can otherwise be highly sensitive to interval width. It also harmonizes wrapped and
unwrapped weights by smoothly integrating both Dirichlet and Gaussian-based uncertainty representations.

Namely, the unwrapped weights (Gaussian posteriors) generate the following intervals: Lower bound = µ −
σ,Upper bound = µ + σ. The process of defining these wrapped and unwrapped weights can be considered the
weight initialisation step for the Hybrid-INN model. In contrast, the baseline Hybrid-INN retains the default weight ini-
tialisation scheme [25]. In other words, at inference time, the model operates as a Hybrid-INN but with two distinct sets
of weights: (i) with random initialisation, (baseline Hybrid-INN) and (ii) with weights transformed by the Epi-Wrapper.
Both models are also fine-tuned: the baseline with randomly initialized weights, while the Epi-Wrapper utilizes weights
transformed through the wrapping strategy. For a fair comparison, both the baseline and our Epi-Wrapper operate under
identical functional settings.

4 Experiments

In this section, we present a comprehensive evaluation of our Epi-Wrapper approach through a series of experiments
designed to assess its effectiveness in uncertainty estimation and predictive performance. We begin by describing the
experimental setup, including datasets, model architecture, and ablation studies. We then compare our method against
relevant baselines, followed by an analysis of key performance metrics.

4.1 Implementation Details

Datasets. We evaluated the performance of the Epistemic Wrapper on three classification benchmarks: MNIST [29],
Fashion-MNIST [55] and CIFAR-10 [27]. The MNIST dataset comprises 70,000 grayscale images of handwritten
digits (0–9), each with a resolution of 28× 28 pixels, and is mostly used for classification and pattern recognition tasks
due to its simplicity and accessibility. Fashion MNIST serves as a more challenging alternative to MNIST, containing
70,000 grayscale images of fashion items, such as shirts, shoes, and bags, also at same resolution of 28× 28 pixels. This
dataset provides a greater diversity in texture and structure, making it suitable for evaluating model’s generalization
capabilities.
As baseline we use a standard variational BNN [2], applied to the classical Multilayer Perceptron (MLP) architecture.
The MLP Backbone is composed of an input layer, a single hidden layer and an output layer. The Input Layer
processes the input data with a shape corresponding to the dimensions of the dataset. For grayscale datasets (MNIST
and Fashion MNIST), the input shape is 28× 28× 1, and for CIFAR-10, the input shape is 32× 32× 3. A Flattening
Layer flattens the input into a single-dimensional vector to be fed to the subsequent dense layers. DenseFlipout Layers
are implemented using TensorFlow Probability’s DenseFlipout. They approximate the weight posterior distributions
using a Flipout Monte Carlo estimator, which reduces the variance of gradient estimates during backpropagation.
The first dense layer contains hidden units with ReLU activation, followed by a dropout layer with a rate of 0.1 to
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prevent overfitting. The second dense layer, which acts as the output layer, maps to the number of classes in the dataset.
The Bayesian MLP is trained using the Evidence Lower Bound (ELBO) loss function, which combines the negative
log-likelihood (NLL) of the observed data with the Kullback-Leibler (KL) divergence between the approximate posterior
and the prior distributions of the weights. The NLL component is computed using the softmax cross-entropy between
the true labels and the predicted logits, while the KL divergence is derived from the prior and posterior distributions of
the weights. The model is trained over 20 epochs (for MNIST and Fashion MNIST) and using Adam.
A number of hyperparameters are fixed across all experiments: namely, the number of closed intervals (30) and the
number of samples drawn from the posterior distributions (5,000). Additionally, the budgeting strategy is consistently
applied by selecting 5% of the weights based on the selected criteria specified per experiment.

4.2 Ablation on Budgeting

We first conducted an ablation study on the MNIST dataset in which four different Budgeting criterias were tested.
In Budgeting using High Variance (↑ σ) we sampled 5% weights with ’High Variance’ from the posterior distributions
(parameters: µ, σ) of the whole model and transformed them to belief posteriors using Epistemic Wrapper. The results
are shown in Table 1, where “MLP size" is the number of hidden units in the single hidden layer of the model.
Since inference in our methodology is done using INNs, we compare our results with those of Hybrid INN (taken as a
baseline). The results shows that using the wrapper improves the quality of the weights initialization with respect to
the Hybrid INN baseline. For instance, an MLP with 32 hidden units and weights randomly initialized achieved an
accuracy of 10.37% on the test data, while for our wrapper the test accuracy was 50.20%.
Budgeting using High Mean (↑ µ) is another strategy in which we sample and “wrap" the 5% weights with ’High
Mean’ from the posterior distributions. From the results shown in Table 1, it can be seen that “High Mean" performs
better for MLP size (no hidden units) = 8.

In Budgeting using High Mean and High Variance (↑ (µ, σ)) we rank the parameters by computing a combined
score, defined as the sum of the mean and variance of their posterior distributions: combined_score = µ + σ. This
acts as a proxy for an upper bound of the posterior distribution, allowing us to prioritize parameters that are either
highly informative (high mean) or uncertain (high variance). We then wrap these top 5% weights using Epi-wrapper.
The results are shown in the Table 1. This strategy allows us to selectively wrap the most influential and uncertain
parameters, ensuring that the transformation captures meaningful epistemic uncertainty. However, this approach also
imposes a strict constraint on the selection process, as only weights satisfying both conditions are chosen, which may
limit flexibility in certain scenarios.

Table 2: Classification accuracies on MNIST and Fashion-MNIST datasets for posterior weights transformations using
‘High Mean’ Budgeting (5% posterior distributions selection) before and after fine-tuning. Results are from 15 runs.
MLP (Hidden Units = 8).

DATASETS
BEFORE FINE-TUNING AFTER FINE-TUNING

HYBRID-INN EPI-WRAPPER BNN HYBRID-INN EPI-WRAPPER

MNIST 9.33 ± 0.54 51.33 ± 1.21 72.44 ± 0.24 91.12 ± 0.08 91.02 ± 0.05
FASHION-MNIST 8.57 ± 1.03 26.93 ± 1.44 58.91 ± 0.24 82.41 ± 0.19 82.45 ± 0.10

Budgeting using Random Selection (RS) (µ, σ) is done by randomly selecting 5% weights from the baseline BNN
and extract belief posteriors using the wrapper. Table 1 shows that the results are worse than with other strategies. This
is due to the fact that random sampling, while giving us an unbiased selection of posterior weights, may miss those
posterior distributions with high uncertainty that can be improved using our wrapping approach.

4.3 Fine-Tuning

We performed the Fine-tuning of the models, the baseline (Hybrid-INN) and ours (Epi-Wrapper), on the training data.
The results are shown in Table 1. In comparison to the Hybrid-INN and BNN baselines, our model performs well as the
weights wrapping mechanism acts as an initialization strategy in fine-tuning.

4.4 iD and OoD Experimental Evaluation

Analysis of Accuracy Rejection Curve (ARC) on in-Domain Data Figure 6 presents the Accuracy Rejection Curve
(ARC) for the in-domain (iD) dataset, comparing the performance of two models, Hybrid-INN and Epi-Wrapper,
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Table 3: Performance comparison regarding uncertainty estimation on MNIST vs Fashion-MNIST OoD samples.
OoD SamplesiD Test

Accuracy (%) AUROC AUPRC EU

Hybrid-INN 91.07 ± 0.08 0.5329 0.8951 0.0023

Epi-Wrapper 91.12 ± 0.06 0.6673 0.9120 0.0059

Figure 6: Accuracy Rejection Curve (ARC) for the MNIST dataset, comparing Hybrid-INN and Epi-Wrapper.

on MNIST. In the in-domain setting, both the training and testing are conducted on the MNIST dataset, with no
distributional shift. It can be seen in the plot that, as the rejection rate increases, the accuracy steadily improves for both
models, demonstrating that removing high-uncertainty predictions enhances the overall correctness of classification.
However, the Epi-Wrapper model consistently outperforms the Hybrid-INN model across the entire range of rejection
rates. This suggests that Epi-Wrapper is better at identifying and filtering uncertain predictions, leading to an increase
in accuracy. Since this evaluation is conducted in an in-domain setting (iD), the observed performance improvements
primarily reflect how well the models handle uncertainty within a familiar data distribution. For OOD samples, the
results are presented in Table 3. Clearly our Epi-wrapper performs well in comparison to the baseline (Hybrid-INN).
Uncertainty Evaluation: In this work, we employ Monte Carlo (MC) Dropout to estimate predictive uncertainty by
performing multiple stochastic forward passes through the model at inference time. Unlike standard deterministic
models, where a single forward pass generates fixed predictions, MC Dropout enables the model to capture both
aleatoric and epistemic uncertainty. The results are presented in Table 3.
Table 3 presents a comparative analysis of uncertainty estimation performance between Hybrid-INN and Epi-Wrapper
on out-of-distribution (OoD) samples from the Fashion-MNIST dataset, while both models were trained and evaluated
in-domain (iD) on MNIST. The table provides key evaluation metrics, including iD test accuracy, AUROC (Area
Under the Receiver Operating Characteristic Curve), AUPRC (Area Under the Precision-Recall Curve), and Epistemic
Uncertainty. For iD Test Accuracy: Both models achieve comparable in-domain classification accuracy on MNIST,
with Hybrid-INN attaining an accuracy of 91.07% and Epi-Wrapper slightly outperforming it with 91.12%. AUROC
on OoD Samples: This is a key metric for OoD detection, measuring the model’s ability to distinguish between iD
and OoD samples. A higher AUROC indicates better separation. Epi-Wrapper achieves a higher AUROC of 0.6673,
outperforming Hybrid-INN (0.5329). This suggests that Epi-Wrapper is more effective at recognizing and distinguishing
OoD samples from in-domain data. AUPRC on OoD Samples: AUPRC provides insight into how well the model
prioritizes high-confidence predictions for OoD detection. Epi-Wrapper achieves an AUPRC of 0.9120, surpassing
Hybrid-INN (0.8951). The higher AUPRC indicates that Epi-Wrapper generates better-calibrated uncertainty estimates,
ensuring that truly OoD samples receive higher uncertainty scores.
EU represents the model’s epistemic uncertainty measure, where higher values suggest better sensitivity to OoD data.
Epi-Wrapper achieves an EU of 0.0059, which is more than twice the EU of Hybrid-INN (0.0023). This implies
that Epi-Wrapper assigns greater uncertainty to OoD samples, making it more reliable in real-world scenarios where
detecting unfamiliar inputs is crucial.
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4.5 Comparative Analysis

Table 2 offers a comparative analysis of classification accuracies on the MNIST and Fashion-MNIST datasets. Epi-
Wrapper exhibits distinct performance advantages over its counterparts, BNN and Hybrid-INN. Before fine-tuning,
Epi-Wrapper significantly outperforms Hybrid-INN on both datasets, achieving high accuracy of 51.33% on MNIST
and 26.93% on Fashion-MNIST. This indicates our Wrapper’s superior ability to perform better on challenging data.
After the fine-tuning process, while the BNN and Hybrid-INN models show notable improvements demonstrating their
adaptability through training, the Epi-Wrapper maintains competitive, high-performance levels. Its superiority on the
Bayesian baseline, both before and after fine tuning, confirms our hypothesis that employing higher-order, random-set
representations in the parameter space is advantageous.

5 CONCLUSIONS

This paper presented a novel methodology, Epistemic Wrapper, which, for the first time, extends higher-order uncertainty
representation to the parameter space of neural networks. Utilizing Bayesian neural networks as a baseline, our approach
transforms their outputs into belief-function posteriors. This method effectively captures epistemic uncertainty, thus
offering a robust, efficient, and generic approach to uncertainty quantification. Our experimental analysis on a BNN
baseline with MLP architecture across two datasets, MNIST and Fahion-MNIST, validated the effectiveness of Epistemic
Wrappers. The results demonstrated that Epi-Wrapper does generalise well. Our future work is to extend and validate
the approach on larger scale networks, and develop a framework to use the wrapped weights to generate a predictive
random set in the target space.
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A Appendix

A.1 Interval Neural Networks (INNs)

Traditional interval neural networks use deterministic interval-based inputs, outputs, and parameters (weights and
biases) for each node. The forward propagation in the lth layer of INNs is expressed as:

[a,a]l=σl([ω,ω]l ⊙ [a,a]l−1 ⊕ [b, b]l)

=[σl(o+ b), σl(o+ b)] with

[o,o]l=[ω,ω]l ⊙ [a,a]l−1,

(9)

where ⊕, ⊖, and ⊙ represent interval addition, subtraction, and multiplication, respectively [18]. The terms [a,a]l,
[a,a]l−1, [ω,ω]l, and [b, b]l denote the interval-formed outputs of the lth and (l − 1)th layers, as well as the intervals
of weights and biases of the lth layer, respectively. σl(·) is the activation function of the lth layer, which must be
monotonically increasing. The application of interval arithmetic [18] in (9) grants INNs the ‘set constraint’ property.
Specifically, for any al−1∈ [a,a]l−1, ωl∈ [ω,ω]l, and bl∈ [b, b]l, the constraint in (10) consistently holds.

al=σl(ωl ·al−1+bl)∈ [a,a]l. (10)

If [a,a] is non-negative, such as the output of RELU activation, the calculation of [o,o] in (9) can be simplified as:

o=min{ω,0}·a+ max{ω,0}·a
o=max{ω,0}·a+ min{ω,0}·a. (11)

A.2 Datasets:

CIFAR-10 is a collection of 60,000 color images (split into 50,000 training and 10,000 testing samples) across 10
classes, including animals and vehicles, with each image having a resolution of 32× 32 pixels.
CIFAR-100 consists of 60,000 color images, each of size 32× 32 pixels with three RGB channels, divided into 50,000
training images and 10,000 test images. The dataset contains 100 fine-grained classes, with each class having 600
samples, making it a more challenging extension of the CIFAR-10 dataset. Unlike CIFAR-10, which includes only 10
broad categories, CIFAR-100 introduces a hierarchical structure, grouping its 100 classes into 20 superclasses based on
semantic similarity.

A.3 Bayesian Baselines

For baselines, we utilize two standard variational BNNs: BNNR (Auto-Encoding Variational Bayes [26] with the local
re-parameterization trick [39]), and BNNF (Flipout gradient estimator with the negative evidence lower bound loss
[54]). The results before fine-tuning are presented in Table 6.

A.4 Backbones

LeNet-5 is adapted in this study into a Bayesian framework. Following are the details of the model’s architecture.
Input Layer: The model accepts input data with a shape corresponding to the dataset used (e.g., 28 × 28 × 1 for
grayscale datasets like MNIST and Fashion MNIST, and 32 × 32 × 3 for RGB datasets like CIFAR-10). Bayesian
Convolutional Layers: The first convolutional layer employs a Convolution2DFlipout layer with 6 filters, a kernel
size of 5× 5, and ReLU activation. This is followed by an average pooling layer to reduce spatial dimensions. The
second convolutional layer also uses a Convolution2DFlipout layer with 16 filters, a kernel size of 5× 5, and ReLU
activation. This layer is also followed by an average pooling layer for further downsampling. Flattening Layer: After
the convolutional layers, the output is flattened into a one-dimensional vector, preparing it for fully connected layers.
Bayesian Fully Connected Layers: The first fully connected Bayesian layer uses a DenseFlipout layer with 120
units and ReLU activation. The second fully connected Bayesian layer uses a DenseFlipout layer with 84 units and
ReLU activation. Output Layer: The output is produced by a DenseFlipout layer with a number of units equal to
the number of classes in the dataset, applying a softmax activation function to generate class probabilities.

ResNet-18 The Bayesian ResNet-18 model integrates Bayesian inference into the classical ResNet-18 architecture.
This model leverages Bayesian Convolutional Neural Networks (Bayesian CNNs) with Flipout and Reparameterization
layers from TensorFlow Probability, enabling weight uncertainty modeling. The architecture consists of four main
residual blocks, with convolutional layers followed by batch normalization and ReLU activation. The convolutional

14



A PREPRINT - JUNE 11, 2025

(a) Number of intervals 30 (b) Number of intervals 60 (c) Number of intervals 90

(d) Number of intervals 120 (e) Number of intervals 150 (f) Number of intervals 180

Figure 7: Varying Number of closed intervals

layers employ Bayesian weight posterior distributions, where the kernel weights follow a Gaussian posterior
parameterized by mean and variance. These distributions are constrained using a log-variance regularization technique,
ensuring numerical stability. The weight posteriors are sampled using the Mean-Field Variational Inference approach,
enabling Bayesian updates during training. The ResNet-18 backbone begins with an initial convolutional layer followed
by four residual blocks, each progressively increasing the number of filters from 64 to 512. The residual connections
allow gradient flow through the network, ensuring stable training. To approximate the posterior over weights,
Convolution2DReparameterization and Convolution2DFlipout layers are utilized, capturing epistemic uncertainty
through stochastic weight sampling. The final layers include average pooling, flattening, and a fully connected Bayesian
dense layer with Flipout, producing the classification logits.

VGG-16 The Bayesian VGG-16 model integrates Bayesian inference into the classical VGG-16 architecture to enable
principled uncertainty estimation in deep learning. The standard convolutional layers are replaced with Bayesian
Convolutional Neural Networks (Bayesian CNNs) using Convolution2DReparameterization and Convolution2DFlipout
layers from TensorFlow Probability. These layers approximate posterior distributions over weights using Mean-Field
Variational Inference, ensuring reliable uncertainty quantification. VGG-16 follows a deep convolutional architecture
with 16 layers, consisting of multiple stacked convolutional layers with small 3× 3 filters, followed by max pooling
layers to progressively reduce spatial dimensions. The Bayesian adaptation maintains this structure while introducing
posterior weight sampling in convolutional layers, ensuring that the feature extraction process incorporates uncertainty
information. Batch normalization and ReLU activation are applied to enhance convergence stability, while Bayesian
priors constrain weight posteriors, preventing overconfidence in predictions. The final classification layers include
Bayesian fully connected layers with Flipout, which sample weights during inference to produce uncertainty-aware
predictions.

A.5 Hyperparameter Analysis

The main manuscript experimental setup contains fixed hyperparameters such as number of closed intervals (30) and
samples drawn from the posterior distributions (5,000). Also, the budgeting strategy is consistently applied by selecting
5% of the weights based on the selected criteria specified per experiment.
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Table 4: Before Fine-tuning: Performance comparison regarding Budgeting percentage on MNIST. Number of intervals
fixed 30.

EPI-WRAPPER

HYBRID INN
ACCURACY (%) 5% (WEIGHTS) 10% (WEIGHTS) 20% (WEIGHTS) 30% (WEIGHTS) 40% (WEIGHTS) 50% (WEIGHTS)

9.33 ± 0.54 25.46 ± 1.57 45.34 ± 1.38 42.25 ± 1.26 32.62 ± 2.00 19.07 ± 0.80 14.08 ± 0.94

Table 5: After Fine-tuning: Performance comparison regarding Budgeting percentage on MNIST.

EPI-WRAPPER

HYBRID INN
ACCURACY (%) 5% (WEIGHTS) 10% (WEIGHTS) 20% (WEIGHTS) 30% (WEIGHTS) 40% (WEIGHTS) 50% (WEIGHTS)

91.12 ± 0.08 91.08 ± 0.09 91.83 ± 0.04 91.84 ± 0.04 91.85 ± 0.13 91.82 ± 0.09 91.50 ± 0.05

Table 6: Classification accuracies for Hybrid-INN and Epi-Wrapper across CIFAR-10 and CIFAR-100 datasets using
different Bayesian backbones (BNNF and BNNR) and network architectures (LeNet-5, ResNet-18, VGG-16).

DATASET BACKBONE # PARAMETERS BNN BASELINE HYBRID-INN EPI-WRAPPER

CIFAR-10

LENET-5 166.3K BNNF 11.01 ± 0.40% 45.54 ± 0.03%
BNNR – –

RESNET-18 9.82M BNNF 10.00 ± 0.10% 37.66 ± 1.10%
BNNR 9.57 ± 0.20% 35.66 ± 1.09%

VGG-16 30.24M BNNF 9.98 ± 0.21% 30.12 ± 0.78%
BNNR 9.89 ± 0.60% 31.04 ± 0.69%

CIFAR-100

RESNET-18 9.8M BNNF 10.42 ± 0.44% 21.09 ± 0.14%
BNNR 10.08 ± 0.34% 22.87 ± 0.11%

VGG-16 30.24M BNNF 9.01 ± 0.56% 19.98 ± 1.30%
BNNR 10.01 ± 0.32% 20.10 ± 1.21%

A.6 Fine-tuning on Large-scale models

We modulate the spread of Bayesian neural network weights by applying a layer-specific scaling factor k to the
standard deviation when constructing interval bounds. This technique serves to regulate the initial uncertainty of model
parameters. A similar concept exists in variational Bayesian inference, where a tempering parameter τ is introduced to
control the contribution of the likelihood in the posterior distribution [42]. Lower values of τ (or equivalently, of k in
our case) lead to sharper, more concentrated posteriors, enhancing training stability and convergence. This calibration
mechanism ensures a well-behaved uncertainty estimate, particularly important in interval neural networks (INNs)
where the width of intervals directly influences both prediction confidence and robustness.
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