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ABSTRACT

When solving optimization problems under uncertainty with contextual data, utilizing machine learn-
ing to predict the uncertain parameters is a popular and effective approach. Decision-focused learning
(DFL) aims at learning a predictive model such that decision quality, instead of prediction accuracy, is
maximized. Common practice here is to predict a single value for each uncertain parameter, implicitly
assuming that there exists a (single-scenario) deterministic problem approximation (proxy) that is
sufficient to obtain an optimal decision. Other work assumes the opposite, where the underlying
distribution needs to be estimated. However, little is known about when either choice is valid. This
paper investigates for the first time problem properties that justify using either assumption. Using
this, we present effective decision proxies for DFL, with very limited compromise on the complexity
of the learning task. We show the effectiveness of presented approaches in experiments on problems
with continuous and discrete variables, as well as uncertainty in the objective function and in the
constraints.

1 Introduction

Decision making under uncertainty is encountered everywhere. Imagine packing your suitcase or finding the best travel
route when going to a conference. To better make these decisions, we use available data that correlate with what is
uncertain: e.g. we use seasonal weather patterns to predict the weather and decide if an umbrella is needed. We are
trying to solve a contextual optimization or ‘predict and optimize’ problem: making predictions based on contextual
information that we then use for optimization (decision making). Since our goal is to make the best decision, we do
not care about the predictions by themselves, but only about the decisions they lead to. This is the main premise of
decision-focused learning (DFL): learning a predictive model that is optimized for decision quality instead of prediction
accuracy.

Observing contextual information in the form of feature values z ∈ Rn, the goal of the decision maker is to find optimal
decision (solution) x from constrained set X by solving the following problem:

x∗(z) = argmin
x∈X

Ec∼Cz
[f(c, x)|z], (1)

where distribution Cz is unknown. In this setting, we can learn a predictive model ϕθ(·) for uncertain c, and use it to get
a single-valued prediction, with the ‘estimated scenario’ ĉ = ϕθ(z) when contextual information z is observed. We do
this because we would like to predict the realized value of c, i.e., the value that c will take in this empirical observation.
If we do this successfully, we will get the empirical optimal decision by solving the deterministic approximation (proxy)
of the true optimization problem 1: argminx∈X f(ĉ, x). However, since the true c is stochastic and its distribution Cz
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Figure 1: Schematic representation of contextual optimization and the difference between the true optimal decision based on the
unknown contextual distribution (orange) and the empirical optimal decision based on the deterministic proxy (blue)

is unknown, the empirical optimal decision is different from the true optimal decision based on Equation 1. Still, the
deterministic proxy is a natural choice. This is also because it is proven to be able to lead to true optimal decisions, for
example, when E[f(c, x)] = f(E[c], x), which happens when uncertainty is linear in the objective (Elmachtoub and
Grigas, 2022); or, recently shown for certain fixed recourse, fixed costs two-stage stochastic problems (Homem-de-Mello
et al., 2024).

We identify the following gap in the literature: When is a deterministic proxy provably sub-optimal, and how can we
efficiently apply DFL in this case? In this work we contribute the following:

1. We provide sufficient conditions for (deterministic) decision proxies to be able to lead to an optimal decision and
present problem-classes where these conditions are violated.

2. We present sufficient and efficient, i.e., computationally cheap, alternative decision proxies.

3. We analyze continuous and discrete problems where the sufficient conditions do not hold for deterministic proxies,
and show the effectiveness of the proposed proxies.

The remainder of this paper is organized as follows. We first provide more background on DFL. In Sect. 3 we provide
intuition and theory on when a deterministic proxy is sub-optimal. Then we present alternative approaches for when
this occurs in Sect. 4, followed by an empirical analysis in Sect. 5.

2 Problem formulation

The aim in a contextual optimization setting is to go from context z to optimal decision x∗(z), by finding some
mapping, or policy π : Z → X . Due to the structure of the (potentially combinatorial) optimization problem x∗(·),
it is challenging to learn this complete end-to-end mapping directly Bengio et al. (2021). Considering it as separate
prediction and optimization problems (predict-then-optimize) is practical, as both types of problems have been studied
extensively Sadana et al. (2025). From the prediction problem perspective, assuming data with feature-label pairs z, c
available, a typical learning approach would be to train predictor ϕθ : Z → C by minimizing the predictive error in the
data (e.g., mean squared error). We will refer to this approach as prediction-focused learning (PFL). By contrast, DFL
aims at learning a predictive model that minimizes decision error, taking the downstream optimization problem into
account. Decision error is considered some measure of the difference between empirical optimal decision xD(c) and the
obtained decision based on the prediction xD(ĉ) (e.g., regret (Teso et al., 2022)). Here xD : C → X is the deterministic
proxy of the stochastic optimization problem x∗(·) from (1):

xD(c) = argmin
x∈X

f(c, x).

Both learning methods lead to a policy πD = xD ◦ ϕθ. It is natural to consider this deterministic proxy, since in practice
we only have data available and therefore do not have Cz to compute x∗(z) directly. We observe realized pairs z, c, that
have an accompanied empirical optimal xD(c). However, at inference time x∗(z) is the optimal decision, and there is no
guarantee that xD(·) is able to equal x∗(z). Proxy xD(·) can be limited to a subset of the feasible space XD ⊂ X due to
its structure, which means that x∗(z) is unattainable if it lies outside XD. Fig. 1 shows a schematic representation of
this potential problem. We give an illustrative example.
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Figure 2: True objective function Ec∼U[−1,1.7]f(c, x) compared to deterministic proxy objectives f(ĉ, x) for Example 1. ∗ denote
different function maxima.

Example 1. (Based on the stock-exchange paradox by Kibzun and Kan (1997)). Assume we have some capital that we
want to grow in the coming t years. Every year, we can deposit capital in a bank with fixed rate of return β = 0.05 and
we can purchase shares with an uncertain rate of return c ∼ U [−1, α = 1.7] (continuous uniformly distributed). If
our aim is to maximize the next period’s return, we will invest our whole capital in shares, since E[c] = 0.35 > 0.05.
However, this leads to a negative expected growth rate:

E[ln(1 + c)] = ln(α+ 1)− 1 = ln(2.7)− 1 < 0,

Because of this, investing all capital in shares every period will make the probability of ruin, i.e., losing all capital at
some point, converge to 1.

This is considered the stock-exchange paradox, where the Kelly strategy (Kelly, 1956) is being considered as solving:

x∗ = argmax
0≤x≤1

E[ln(1 + βx+ c(1− x))].

Given α = 1.7 and β = 0.05, we get x∗ ≈ 0.465.

Now, if we look at the deterministic proxy of the problem, it will soon become clear that we cannot find the optimal
decision:

xD(ĉ) = argmax
0≤x≤1

ln(1 + βx+ ĉ(1− x))].

Since ln(·) is a monotonically increasing function, we get xD(ĉ) = 1 when ĉ < β, xD(ĉ) = 0 when ĉ > β, and
xD(ĉ) = [0, 1] when ĉ = β). Hence ∀ĉ : xD(ĉ) ∈ {0, 1} almost surely, and true optimal decision x∗ cannot be obtained.
Fig. 2 shows a visual representation of this example.

2.1 The contextual value of the stochastic solution

Before we provide proofs for sub-optimality of deterministic proxies, we introduce the concept of value of the stochastic
solution Birge (1982) in a contextual optimization setting. This concept is introduced as a measure for the value of
solving the true stochastic optimization problem compared to solving the deterministic version with the uncertain
variables replaced by their expectation. This is useful because in practice it is both harder to estimate the uncertain
variables distribution (compared to its expectation) and more complex to solve a stochastic optimization problem. In
this setting it gives us some clear structure to prove strict differences between solving a deterministic or stochastic
contextual optimization problem.

First, let us define the value of the true optimal decision based on Equation 1:

V∗ = min
x∈X

Ec∼Cz
[f(c, x)|z] = Ec∼Cz

[f(c, x∗(z))|z]

3
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Now we look at the value of a decision obtained by using PFL. The predictive error is minimized in PFL if we are able
to exactly estimate c̄z = Ec∼Cz [c|z], and obtain:

VPFL = Ec∼Cz
[f(c, xD(c̄z), )|z]

The value of the stochastic solution as defined by Birge (1982) is VPFL − V∗, with the only difference being the added
context z. Taking a DFL perspective, we aim to find predictions that minimize decision error. This means that we aim
to find the following value:

VDFL = min
ĉz∈C

Ec∼Cz
[f(c, xD(ĉz))|z]

We have V∗ ≤ VDFL ≤ VPFL. The first inequality holds because in V∗ we directly minimize over the input of f(c, ·),
x ∈ X , compared to minimizing over the argument of a function with codomain X , resulting into the same input
of f(c, ·). The second inequality holds because we take minimizer ĉz ∈ C instead of c̄z ∈ C . The value of using
DFL over PFL VPFL − VDFL is highly relevant for predict-then-optimize problems. A general consensus is that this
value increases with predictive error Mandi et al. (2024), as the higher the predictive error the more important it is to
learn such that decision quality is least affected. Additionally, Cameron et al. (2022) show that VPFL − VDFL is also
dependent on dependencies between multiple uncertain variables: Predicting marginal expectations using PFL can
cause theoretically unbounded worse performance compared to DFL.

In this work we are interested in the difference between the value of using DFL with a deterministic proxy VDFL and
true optimal value V∗: VDFL − V∗. This difference has not been studied in literature. Due to DFL’s end-to-end learning
approach, proxy xD(·) has not been considered as limiting in its performance even in more complex stochastic settings
Silvestri et al. (2023); van den Houten et al. (2024). In the following we will identify cases when VDFL − V∗ > 0.

3 Sub-optimality of the deterministic decision proxy

This section presents cases where one can prove that VDFL > V∗, i.e., DFL with a deterministic proxy is sub-optimal.
We first present theorems for the cases when V∗ = VDFL = VPFL and V∗ = VDFL < VPFL. Proofs are presented in the
Appendix.
Theorem 1. There exists at least one optimal single-scenario w.r.t. Equation 1 if ∀z ∈ Rn, Ec∼Cz [f(c, x)|z] =
f(Ec∼Cz [c|z], x). An optimal single-scenario is c̄z = Ec∼Cz [c|z]. We have V∗ = VDFL = VPFL.

Theorem 1 shows that V∗ = VDFL = VPFL when Jensen’s inequality renders an equality, for example when f(c, x) is
linear in c, ∀x ∈ X . PFL becomes sub-optimal if Jensen’s inequality is strict such that both function have different
minimizers:
Theorem 2. If argminx∈X Ec∼Cz

[f(c, x)|z] ̸= argminx∈X f(Ec∼Cz
[c|z], x), we have V∗ < VPFL

1.

We now present a sufficient condition for when an optimal single-scenario exists.
Theorem 3. Given x, there exists an optimal single-scenario w.r.t. Equation 1 if xD(·) : C → X is surjective, i.e.,
∀x ∈ X,∃ĉ ∈ C : xD(ĉ) = x. We have V∗ = VDFL.

In other words: When xD is surjective, it is flexible enough to attain any feasible decision x ∈ X , so also optimal x∗(z).
Theorem 2 and Theorem 3 demonstrate a theoretical case where PFL is inferior to DFL. The result that V∗ = VDFL,
based on xD(·) being surjective, shows the flexibility of DFL: it allows for learning predictions that work well w.r.t.
the true optimization problem. On the other hand, if the deterministic proxy is not able to reach stochastically optimal
decisions, using this proxy is sub-optimal. This is the main intuition behind sub-optimality of the deterministic proxy,
and occurs when we have decision dominance:
Definition 1. Decision x ∈ X is dominated by x̂ ∈ X if ∀c ∈ C : f(c, x̂) < f(c, x).

Note that this definition is based on the objective function f(·), which means that this property does not relate decisions
w.r.t. the true stochastic problem in Equation 1.
Lemma 1. If there exists a dominated decision x ∈ X , xD : C → X,xD(c) = argminx∈X f(c, x) is not surjective.

Lemma 1 holds because dominated decisions can not be reached, violating the property of surjectivity. Based on this, we
cannot apply Theorem 3 if there exists a dominated decision. However, non-surjectivity is not a sufficient condition for
a proxy to be sub-optimal. A true optimal decision x∗(z) being dominated is sufficient, as the next theorem expresses.

1With abuse of nation, as the arguments of the minima are not necessarily unique. Technically these have to be disjoint sets.
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Theorem 4. If there exists a decision x̂ ∈ X and a feature value z ∈ Z for which x̂ dominates true optimal x∗(z),
deterministic proxy xD(·) is sub-optimal. We have V∗ < VDFL.

Now the question arises in what cases this dominance occurs. In the following section we present cases where this
occurs for continuous optimization/decision problems, i.e., when the feasibility set is compact (closed and bounded)
and objective function f is continuous. After this we present a class of discrete optimization problems where it is more
natural to occur, in Section 3.2.

3.1 Continuous optimization

The main result for continuous optimization problems is the following: Depending on the shape of objective function
f(c, x) and expected objective function g(x) := Ec∼Cz

[f(c, x)|z], it can occur that ∀c ∈ C the minimizer of f(c, x)
lies on the boundary of X , while the minimizer of g(x) lies in the interior of X . In this case, all interior decisions are
dominated by boundary decisions. In Example 1, we observe that the true objective function is convex non-monotonic
in x, while the deterministic proxy objective function is strictly monotonic in x. A monotonic function ensures that
optimal decision lies on the boundary of the feasibility space, while we see the true optimal decision laying in the
interior. Because of this, the optimal decision of the deterministic proxy never coincides with the optimal decision of the
true optimization problem. This reasoning holds for single variable functions. Since we are working with multivariate
functions in general, we first give a monotonicity definition for multivariate functions.

Definition 2. Let f : X → R, X ⊂ Rn be a multivariate function. f is (strictly) coordinate-wise (non-)monotonic if
∀i ∈ {1, . . . , n} we have that for any fixed variables {x̄1, . . . , x̄i−1, x̄i+1, . . . x̄n} ∈ Rn−1, f(x̄1, . . . , xi, . . . , x̄n) is
(strictly) (non-)monotonic in xi.

Note that coordinate-wise monotonicity allows the function to be decreasing in some variables while increasing in
others.

Theorem 5. Given two continuous (objective) functions f : C,X → R, g : X → R, with g(x) := Ec∼Cz [f(c, x)|z],
and (feasibility set) X is compact (closed and bounded) and has a nonempty interior. If f(c, x) is strictly coordinate-wise
monotonic in x for all c ∈ C, and g(x) is convex and coordinate-wise non-monotonic, then V∗ < VDFL.

In practice the constraints that define X can lead it to have a lower intrinsic dimension and therefore an empty interior.
However the same result holds, we refer to the Appendix for further details and the proof.

Example 2. Continuous objective functions with no/an optimal deterministic proxy. (Assuming X is compact.)
Objective f(c, x) = cTx does not satisfy the conditions of Theorem 5, since g(x) = Ec∼Cz [c

Tx|z] = Ec∼Cz [c|z]Tx is
linear in x for any distribution Cz and therefore not coordinate-wise non-monotonic. Similarly 1

cT x
and (cTx)n with

even n’s do not satisfy the conditions of Theorem 5 as they are also not coordinate-wise non-monotonic.
Objective f(c, x) = − log(cTx) does satisfy the conditions of Theorem 5 for at least some distributions Cz . This is
because − log(cTx) is strictly coordinate-wise monotonic ∀c ∈ C, because for any ci > 0, increasing xi increases
log(cTx), and for any ci < 0, decreasing xi decreases log(cTx). On the other hand, g(x) can be strictly convex with a
minimum in the interior, depending on the distribution Cz (see Example 1). Similarly

√
cTx, ec

T x and (cx)n with odd
n’s satisfy the conditions of Theorem 5.

Theorem 5 demonstrates when a deterministic proxy can be sub-optimal. The intuition here is that functions that are
monotonic lead to decisions on the boundary of the feasibility set, instead of the interior. Referring back to Example 1:
The deterministic model leads to one of two decisions: if we expect our return is positive we invest everything, if we
expect it is negative we invest nothing. Reality however is that we are uncertain, and investing partially in multiple
shares is less risky and more profitable long-term.

So far we have derived properties for the structure of the optimization problem to show sub-optimality. Based on the
function examples, one could argue that the types of functions for which this occurs are not common. However, there is
an important class of practical optimization problem that typically have complex, non-smooth objective functions.

3.2 Two-stage stochastic optimization problems

A practical class of optimization problems where a deterministic proxy can be sub-optimal is the class of two-stage
stochastic optimization problems. This two-stage formulation is of particular interest in optimization literature Birge
and Louveaux (2011), as it is effective in modeling real-world problems under uncertainty. These problems consist of
making first-stage decisions x that are taken before uncertain parameters c are realized and second-stage decisions y
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that denote some recourse action after uncertain parameters c are realized. The general formulation is:

min
x∈X

f(x) + Ec[Q(c, x)]

with Q(c, x) = min
y∈Y (c,x)

g(c, x, y)

The practicality of this formulation comes from the fact that in practice the realization of uncertainty leads to some
action: if we forgot an umbrella, we can buy a new one. These recourse actions include additional costs compared to
what was initially decided. One can model the problem in a way it has relatively complete recourse, i.e., the second stage
is feasible for any feasible first-stage decision. This is one of the main benefits of two-stage stochastic optimization, as
other uncertain problem formulations like (distributionally) robust optimization or chance constraints (Charnes and
Cooper, 1962) can only ensure feasibility for a certain set of uncertain value realizations or with a certain probability.
Specifically, models with a linear second stage are commonly used, i.e.,

Q(c, x) = min
y∈Y (c,x)

q(c)T y

s.t. T (c)x+ U(c)y = h(c).

Homem-de-Mello et al. (2024) showed that for these problems with fixed costs and fixed recourse, i.e., q(c) = q and
U(c) = U being independent of c, an optimal single-scenario exists. In this work we show that there are problems
with fixed costs and fixed recourse for which an optimal scenario does not exist. The proof by Homem-de-Mello et al.
(2024) is based on the assumption that h(c) is completely stochastic, but when it is partly deterministic an optimal
scenario does not necessarily exist. We demonstrate this with an example based on the weighted-set multi-cover problem
(WSMC).

In the WSMC problem, we have some items that have a coverage requirement, which is attained by choosing sets that
each cover a subset of these items. The goal is to minimize the total costs of the chosen sets. A stochastic version is
presented in Silvestri et al. (2023), where the coverage requirements are uncertain. When a number of sets is chosen,
and the coverage requirements are unmet, an additional cost is paid in the second stage to cover the unmet requirement
by adding sets. In the formulation we present here, we allow removing single-item sets in the case of excess coverage.
This makes the recourse similar to the common formulation of the two-stage knapsack problem with uncertain weights
(Kosuch and Lisser, 2011). Below is the formulation of WSMC with n items and m sets, m > n.

For i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}:
xj ∈ N : Number of set j chosen
cj ∈ N : Cost for set j
ξi ∈ N : Coverage requirement for item i

aij ∈ {0, 1} : If item i is covered by set j, A = (aij), with
aii = 1, aji = 0 for i, j ∈ {1, ..., n}, i ̸= j

y+
i , y−

i ∈ N : Unmet/excess coverage item i

c+i , c
−
i ∈ N : Unmet/excess coverage cost item i

min
x

cTx+ Eξ[Q(ξ, x)]

Q(ξ, x) = min
y+,y−

c+T y+ − c−T y−

Ax+ y+ − y− ≥ ξ

y−i ≤ xi, i ∈ {1, . . . , n}

Example 3. Given the WSMC problem above, with n = 2 items, m = 3 sets, costs c = (4, 4, 7), A =
[
1 0 1
0 1 1

]
and,

recourse costs c+ = (7, 7), c− = (3, 3). First of all, we note that the optimal decision to the deterministic equivalent
of this problem has no recourse, i.e., y+ = y− = 0, because given ξ̂, we select x such that it is exactly met and
c+ > (c1, c2) > c−. Therefore, it simply reduces to minx:Ax≥ξ̂ c

Tx. minx:
∑

j∈M aijxj≥ξ̂i

∑
j∈M cjxj Secondly, we

note that decision x = (1, 1, 0) is dominated by x̂ = (0, 0, 1), because x̂ results into the same exact coverage as x, but
with lower objective f(x̂) = 7 < 8 = f(x). However, the optimal decision to the original problem can very well be x.
Take for example ξ distributed s.t. P(ξ = (1, 1)) = 0.5 = P(ξ = (0, 0)), now let g(x) = cTx + Eξ[Q(ξ, x)], we get
g((1, 1, 0)) = 5 < g((1, 0, 0)) = 6 < g((0, 0, 1)) = 7 = g((0, 0, 0)).

Section 3 highlighted the shape of a decision problem’s objective function being the culprit in making the deterministic
proxy sub-optimal. In two-stage stochastic problems, the second stage problem is a term on the objective function
and has potentially complex and non-smooth behaviour – especially because practical problems often include integer
decisions.

In the next section, we propose efficient alternative proxies.
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4 Sufficient decision proxies

In the previous section we saw that a sufficient condition for a proxy to be able to lead to an optimal decision x∗(z) ∀z
is that it is expressive enough. In this section we present proxies that can adhere to this condition, when a deterministic
proxy does not. We also discuss why an intuitive choice, using a (parameterized) distribution proxy, is most often not
effective. Recall that in a contextual optimization problem, the input to the chosen proxy problem x(·) is the output of
the predictive model ϕθ(·), so they go hand in hand. We train our predictive model to get a decision quality maximizing
policy π : Z → X,π = x ◦ ϕθ w.r.t. problem 1.

4.1 Scenario-based

Based on Theorem 4 we know that in certain cases proxy xD(·) is not sufficient. Since this deterministic variant is
introduced to approximate decision problem of interest in Equation 1, we consider an alternative approximation based
on the principle of sample average approximation (SAA) (Kleywegt et al., 2002):

xSA
n (c1, . . . , cn) = argmin

x∈X

n∑
i=1

f(ci, x).

SAA is used in stochastic optimization to approximately solve a stochastic optimization problem. When the uncertain
parameter distribution is known but does not lead to a solvable optimization problem (non closed-form objective), SAA
approximates the stochastic optimization problem. To solve this problem scenarios can be sampled from the uncertain
distribution to subsequently solve the SAA. The SAA converges to the true stochastic optimization problem as the
samples go to infinity. In the contextual optimization setting this results into the following theorem:
Theorem 6 (Kim et al. (2015)). Suppose A ⊂ X be nonempty and compact, such that (i) x∗(z) ∈ A, (ii) for sufficiently
large n, xSA

n ∈ A and (iii) suppose that f(c, ·) is continuous at x a.s. for any x ∈ X , and that there exists δ > 0 such
that the family of random variables {f(c, y) : ||y − x|| < δ} is uniformly integrable. Then xS

n(·) → x∗(z)

The difference with the traditional SAA setting is that here we use a predictive model to obtain the scenarios, instead of
sampling them. Theoretically one could predict a distribution and sample from it, however this would require a high
value of n and/or significantly increases variance during training by introducing randomness. Instead, we predict the
scenarios directly, i.e., a discrete distribution with equal probabilities.

This means use a predictive model that predicts scenarios ϕS
θ,n : Z → Cn, and we get scenario-based policy

πS
n = xSA

n ◦ ϕS
θ,n. This means that as long as we pick a high enough value of n such that we have a theoretically optimal

predictor, the DFL pipeline could learn to find the right scenarios that lead to optimal decisions. One drawback of this
approach is that it requires a high number of parameters to closely approximate continuous probability distributions.
However, experimental results in Section 5 that with values of n as low as 2 the model is able to learn strong performing
predictors. This is because of one of the main principles of DFL: We do not learn to predict accurately, we learn to
predict such that we get high quality decisions.

4.2 Quadratic

Instead of trying to approximate Equation 1 better, we can also look at the problem from the other perspective. Based
on the earlier-developed theory on necessary conditions for a predictor to be theoretically optimal, we can design a
proxy that adheres to the required properties. We can do this by altering the objective function f(·). First, we generalize
the first part of Theorem 3:
Theorem 7. Consider a function x(·) : Ξ → X . An optimal prediction w.r.t. Equation 1 exists if x(·) is surjective, i.e.,
∀x ∈ X,∃ξ ∈ Ξ : x(ξ) = x.

Proof. Take an arbitrary z, with optimal decision x∗(z). Given that x(·) is surjective, ∃ξ ∈ Ξ s.t. x(ξ) = x∗(z).

We now introduce a surjective function for this setting, which coincides with the quadratic approximation proposed
recently by Veviurko et al. (2024).

xQ(ξ) = argmin
x∈X

||ξ − x||22.

This proxy is surjective by design, as for arbitrary x ∈ X , taking ξ = x leads to xQ(ξ) = x. This leads us to using
predictive model ϕQ

θ : Z → Ξ, where Ξ = Rdim(X), and quadratic policy πQ = xQ ◦ ϕQ
θ .

7
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Let us elaborate more on the rationale of this proxy xQ(·), originally introduced in the context of dealing with zero-
gradient problem: it is a function that has a strictly convex objective function, while adhering to the constraints of the
problem (feasibility set X). There is no reason to believe this is a reasonable approximation to Equation 1, but this is
not necessary. Given the same feasibility set, we will still reach feasible decisions. Based on the assumption of the
predictive model being flexible, the objective function being different does not have to be a problem. This is because an
optimal decision always lies in some minimum, thus why not approximate this minimum by a quadratic function? The
DFL pipeline will ensure the predictor learns to predict in the right area.

4.3 Parameterized distribution

Since we argue that deterministic proxies and therefore single-valued predictions are not always sufficient, an intuitive
approach would be to predict a distribution and use this to approximate Equation 1. Donti et al. (2017) assume a
Gaussian distribution in one of their experiments, since the problem they present has a closed-form objective if the
underlying distribution is Gaussian. This is exactly the use-case where this is helpful. In a general sense this leads to
the following decision function, with β ∈ B the parameters of the chosen distribution P and pβ(·) its density function:

xP(β) = argmin
x∈X

∫
C

f(c, x)pβ(c)dc.

Leading to using predictive model ϕP
θ : Z → B and policy πP = xP ◦ ϕP

θ . In practice however, the named class of
two-stage stochastic optimization problems is unlikely to have a parameterized distribution that leads to a closed-form
objective. If no closed-form exists for a certain distribution, it is still possible to consider the following proxy: Let
F−1
β (·) be the β-parameterized inverse cumulative probability density function for distribution P:

xP,SA
n (β) = argmin

x∈X

n∑
i=1

f
(
F−1
β

( i

n+ 1

)
, x

)
.

Leading to policy πP,S
n = xP,SA

n ◦ ϕP
θ . The benefit of this approach over πS

n is that even with high n, the number of
learnable parameters stays equal to the number of parameters of the predetermined distribution. Additionally, the
chosen distribution imposed some structure, which could make the learning easier if this structure is present in the true
underlying distribution. However, this is also its main drawback. The approach is less flexible than directly predicting
the scenarios. Given some policy π̂P,S

n , there always exists a π̂S
n such that π̂S

n = π̂P,S
n , because the image of F−1

β is
a subset of C. The reverse is most often not true, as any π̂P,S

n is restricted by its distribution. In the experiments we
present there is no commonly used parameterized distribution such that a closed-form objective exists. We ran some
preliminary experiments using πP,S

n , but these were always outperformed by πS
n and therefore omitted them.

4.4 Complexity of policies

All presented policies have a different combination of distributional predictors and decision proxies. Table 1 summarizes
the policies by denoting the prediction space and the number of decision variables in a two-stage stochastic optimization
setting. This number correlates highly with the number of constraints of the problem, as any constraint involving a
second-stage decision variable is multiplied by the number of scenarios. Learning with DFL, the complexity of the
decision proxy is highly relevant as it is solved for each data point for each epoch. In general more decision variables
and constraints increase the complexity of the decision proxy.

The prediction space has less impact. The size of the prediction space impacts the number of parameters of the predictive
model. Since in general we (can) use neural networks with a lot more parameters than the dimension of the prediction
space, this does not change the learning problem much. What is more of an open question is if the prediction space
influences the complexity of learning a high quality policy. In some problems dim(X) is significantly different from
dim(C), which leads to the question if a high quality πQ is harder/easier to learn than πD. The experiments we present
give some insights regarding this.

5 Experimental evaluation

To experimentally evaluate the proposed approaches as alternatives to a deterministic proxy, we consider three problems.
We consider one continuous problem and two discrete two-stage problems. In all cases we use three baselines:
deterministic proxy learned using DFL πD, deterministic proxy learned using PFL πD

PFL and a PFL learned model
using SAA at inference πS

PFL. In the PFL approaches we train on mean squared error, where πS
n,PFL uses the same

learned predictive model as PFL ϕθ, but evaluates based on an SAA approximation (xSA
n ). This is done by using a

8
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policy prediction space decision var. #

πD C dy + dx
πS
n Cn ndy + dx

πQ Rdim(X) dy + dx
πP B dy + dx
πP,S
n B ndy + dx

Table 1: Summary of different policies and the output space of the predictor. The last column denotes the number of decision
variables when the problem is two-stage, with dx and dy denoting number of first- and second-stage variables respectively.

residual-based distribution (Sadana et al., 2025), using empirical additive errors (Deng and Sen, 2022): taking the
predictions as mean, and adding samples from the observed residuals (in the validation set). We use n = 16, so πS

16,PFL

in all problems. We compare the baselines with our proposed approaches: πQ, πS
2 and πS

8 (except for WSMC, as there
πS
2 is already best performing). For the continuous problem we use DFL with exact gradients, using differentiable

convex layer from Agrawal et al. (2019). For the other problems we use score function gradient-estimation as proposed
by Silvestri et al. (2023). Regarding the predictors we always use neural networks with 2 hidden layers of size 256
and LeakyReLU activation functions. Adam optimizer is used for the gradient descent of the predictive models and
Gurobi version 10.0.1 (Gurobi Optimization, 2025) as the optimization problem solver. We give each approach the
same number of epochs, which we consider enough to converge. In all problems we evaluate on absolute regret at
validation and test-time. The best performing model on validation is used for test. For further technical details please
refer to the Appendix. Code can be found at placeholder link Git.

Portfolio As considered in earlier work on DFL (Wang et al., 2020; Veviurko et al., 2024), we consider a portfolio
problem based on data from Quandl (2016). Instead of adding a penalized covariance term to minimize risk, we do this
by maximizing the long-term expected value of the portfolio using the Kelly strategy Kelly (1956). This makes the
problem a multivariate version of Example 1. We use a fixed rate of return β = 0.08. Since data is limited (2898 data
points) we do not use different data splits, instead we randomly pick 10 different securities for each seed, running 5
different seeds. We use a train, validation, test split of 70%, 15%, 15%.

Weighted-set multi-cover We test on the WSMC problem as introduced in Section 3.2. Contextual data is randomly
generated as done by Silvestri et al. (2023) for 7 seeds. For train, validation and test sizes, we use 1000, 250 and 1250.

Figure 3: Absolute regret mean on the test set, normalized by πD.
Error bars denote one standard deviation. πD

PFL bars for WSMC
1.80 (0.21) and PTSP 2.35 (0.35) were cut off for visibility.

portfolio WSMC PTSP

πD
PFL 2.4 (0.3) 551.1 (79.3) 127.9 (20.4)

πS
16,PFL 2.3 (0.3) 300.5 (53.0) 26.9 (4.5)

πD 3.0 (0.1) 309.6 (50.0) 55.2 (9.6)
πS
2 2.1 (0.2) 216.8 (37.1) 34.0 (11.2)

πS
8 1.9 (0.2) - 12.6 (2.6)

πQ 1.7 (0.3) 251.1 (47.3) 17.0 (8.8)

Table 2: Absolute regret mean (standard deviation) on the test
set. Best values per problem in bold. Portfolio values are in
percentages. First 3 policies are baselines, last 3 are proposed.

Probabilistic traveling salesperson Finally we test on a two-stage probabilistic traveling salesperson (PTSP).
Probabilistic vehicle routing problems have been studied since Tillman (1969), with PTSP specifically introduced by
(Jaillet, 1985), and are still highly relevant (Oyola et al., 2018). The goal of the PTSP is to plan a route along a known
set of customers while minimizing transportation costs, but it is uncertain which customers require service. Missing a

9



Sufficient Decision Proxies for Decision-Focused Learning A PREPRINT

(a) Portfolio (b) Weighted-set multi-cover (c) Probabilistic traveling salesperson
Figure 4: Validation learning curves per epoch (x-axis). The average of approaches minimum validation absolute regret was used to
scale the absolute regret for each seed. Error bars denote one standard deviation.

customer who requires service incurs a penalty (based on going back-and-forth to the depot, which is a typical recourse
choice Oyola et al. (2018)), while visiting a customer that does not require service does nothing out. In this two-stage
version, one is allowed to add direct trips to customers, similar to allowing crowdsourcing Santini et al. (2022). After
it becomes known which customers require service (second stage), these direct trips can be canceled if they are not
required. This makes the problem such that in a given (deterministic) scenario, direct trips are always sub-optimal, but
given uncertainty they have have the benefit of incurring low costs when no service is required. We run 10 seeds and for
train, validation and test sizes, we use 1000, 250 and 1250.

The problem instances are generated by putting the customers equally spaced on a circle with fixed diameter and then
perturbed with a normal distribution. Contextual data is generated similar to (Elmachtoub and Grigas, 2022), but since
we are dealing with binary uncertain parameters, we clip generated values and replace a percentage of values with a
Bernoulli distribution based on the noise width parameter.

5.1 Results

Figure 3 shows the final results, while Figure 4 visualizes the learning. We use a paired t-test (5% significance level)
to compare our proposed methods with the PFL, PFL with SAA and deterministic proxy baselines, and in all but one
case the proposed approaches performed significantly better (PTSP, πS

2 compared to πS
16,PFL being the exception). We

see that in xQ performs best or second best in all problems, which shows that using an accurate approximation of the
objective function is not necessary for DFL. For portfolio and PTSP, we see xSA

8 outperforming xSA
2 , suggesting more

predicted points could lead to better results. For PTSP this behavior can be explained by the fact that the uncertain
parameters can only attain 0 or 1. In this case, the 2-scenario proxy only has a probability of 0, 0.5 or 1 of requiring a
visit per customer, which might be insufficient. For portfolio, Figure 4a shows that xD is not able to learn at all. This is
primarily caused by having zero-gradients, a common issue in DFL, which goes hand in hand with our argument that
deterministic proxies can be limiting. A higher number of scenarios here is more likely to result in a non-zero gradient.
The most notable part about the WSMC is that the learning curves have high variance. This is inherent to the used score
function gradient estimation approach. For PTSP this is not as pronounced, due to the small problem size and therefore
less existing high-quality decisions.

6 Discussion and related work

We formally showed cases when deterministic proxies are sub-optimal, even in a DFL setting, and introduce effective
alternative predictors and decision proxies. This is another step in understanding the applicability of DFL, after Cameron
et al. (2022) consider when PFL is worse compared to DFL and Homem-de-Mello et al. (2024) show for a certain class
of problems that an optimal single-scenario exists. Both works discuss the importance of the decision proxy, which is
similarly discussed by Schutte et al. (2024), highlighting the difference between the empirical problem (deterministic
proxy) and the true stochastic problem with as main aim to introduce loss functions that are able to generalize better

10
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when few training data is available. Earlier work by (Wilder et al., 2019) introduced a continuous proxy to speed up
DFL when the decision problem is discrete.

There are several existing works that do consider the true problem as stochastic and use distribution-based decision
proxies. These works differ from our work in that we provide theoretical backing on when a deterministic proxy is
non-sufficient, as well as propose methods based on this theory that are efficient, i.e., keep complexity as low as possible
while having the guarantee that there exist a predictive model that leads to an optimal solution. Donti et al. (2017)
tackle a problem that has a differentiable formulation when assuming the uncertainty is Gaussian. Alternatively they
assume the uncertain parameter has finite discrete support, having the predictive model output probabilities for these
discrete scenarios. This is a similar assumption as done by Grigas et al. (2021), which is quite limiting as uncertain
parameters are often continuous and multi-dimensional, requiring to decide on some discretization that is representative
without having too many scenarios. Our scenario-based approach learns representative scenarios and only requires to
decide the number of scenarios up front. Elmachtoub et al. (2023) also include a distribution-based approach, assuming
a parameterized family of distributions. They show that when the distribution is misspecified, distributional DFL
(contextual integrated-estimation-optimization) outperforms distributional PFL (estimate-then-optimize), while in a
well-specified distribution case the result is opposite (given enough data).

Another way that stochasticity is considered is when it is used to obtain gradients when they do no exist or are zero, but
in these cases the deterministic approximation is used at inference time Berthet et al. (2020); Silvestri et al. (2023).
Furthermore, Hu et al. (2023) consider uncertainty in the constraints, modelling infeasibility using penalties. This is
similar to a two-stage formulation as presented here, but again a deterministic approximation is considered. We refer
the reader to Qi and Shen (2022) for an operations management perspective on DFL, and Mandi et al. (2024) for a
general survey on DFL.

7 Conclusions

The prevailing assumption in decision-focused learning is that there exists a single-scenario problem approximation
that is sufficient to obtain an optimal decision. While this is a valid assumption in a wide class of problems, this
paper investigates for the first time theoretical properties of problems for which this assumption is violated. Based on
these properties we derive requirements for problem approximations and predictive models that are sufficient to obtain
optimal decisions. On three problems, we demonstrated that the assumption does not hold and empirically showed
the value of the proposed approaches. Future work includes studying problems where parameterized distributions can
easily be assumed, as well as problems with (highly) dependent uncertain variables. Given the strong performance of
the quadratic proxy, it opens the question what the relevance is of the true objective in the training pipeline. With this
we are moving a step closer in the direction of direct feature to decision mappings.
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Appendix

A Proofs

Proof for Theorem 1.

V∗ = min
x∈X

Ec∼Cz
[f(c, x)|z]

= min
x∈X

f(c̄z, x)

= f(c̄z, x
D(c̄z))

= Ec∼Cz [f(c, x
D(c̄z))|z] = VPFL

Proof for Theorem 2.

xD(c̄z) = argmin
x∈X

f(c̄z, x)

̸= argmin
x∈X

Ec∼Cz
[f(c, x)|z] = x∗(z)

=⇒
V∗ = Ec∼Cz [f(c, x

∗(z))|z]
< Ec∼Cz

[f(c, xD(c̄z)|z] = VPFL

Proof for Theorem 3. Due to xD(·) being surjective, for every x∗(z) there exists ĉz ∈ C such that xD(ĉz) = x∗(z). We
get:

V∗ = min
x∈X

Ec∼Cz
[f(c, x)|z]

= Ec∼Cz [f(c, x
∗(z))|z]

= min
ĉz

Ec∼Cz [f(c, x
D(ĉz))|z] = VDFL

Proof for Lemma 1. Let x ∈ X be dominated by x̂ ∈ X .

min
x∈X

f(c, x) ≤ f(c, x̂) < f(c, x) ∀c

=⇒
xD(c) ̸= x ∀c

Proof for Theorem 4. Take z ∈ Z and x̂ ∈ X such that x∗(z) is dominated by x̂. We have that:

xD(c) ̸= x∗(z) ∀c
=⇒

V∗ = min
x∈X

Ec∼Cz [f(c, x)|z]

= Ec∼Cz
[f(c, x∗(z))|z]

< min
ĉz

Ec∼Cz
[f(c, xD(ĉz))|z] = VDFL

Proof for Theorem 5. Given that for arbitrary c ∈ C, f(c, x) is continuous and strictly coordinate-wise monotone, with
X closed and bounded, it attains its minimum on the boundary of X for all c ∈ C.

We use proof by contradiction to show that g(x) does not attain its minimum on the boundary. Assume that minimum
of g(x) lies on the boundary: x∗ ∈ ∂X . Since g(x) is single coordinate non-monotonic, we know that ∃i such that
gi(xi) := g(x∗

1, . . . , xi, . . . , x
∗
n) is non-monotonic. Assume that x∗

i is on the right boundary, i.e., x∗
i ≥ xi, ∀xi ∈ Xi,

with Xi ⊂ R the allowed range for the i-th coordinate. Non-monotonicity means that ∃x, x′ : x < x′, gi(x) < gi(x
′).

If g(x∗
i ) ≤ g(x) this violates the convexity of g(x), if g(x∗

i ) ≥ g(x′) > g(x) this violates optimality. Flipping
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inequalities the same exact argument can be made for the left boundary. So we have that xD(c) ∈ ∂X for all c ∈ C and
x∗(z) /∈ ∂X and therefore the value at minimum x∗(z) of Equation 1 cannot be attained by xD(c) for any c, so:

V∗︷ ︸︸ ︷
Ec∼Cz [f(c, x

∗(z))|z] <
VDFL︷ ︸︸ ︷

min
ĉ

Ec∼Cz [f(c, x
D(ĉ))]

In Section 3, after presenting Theorem 5, we note that X can have a lower intrinsic dimension and therefore an empty
interior due to its constraints. If we can reduce to this lower dimension and we have functions with the same properties,
the same result holds.
Corollary 8. If there exists a projection P ∈ Rm×n, m < n such that PX , f(c, Px) and g(Px) have the same
properties as X , f(c, x) and g(x) in Theorem 5, then V∗ < VDFL.

This corollary simply holds because we obtain a set and two functions with the required properties to apply Theorem 5.

B Experimental details

B.1 Score function gradient estimation

For two of the experimental problems we use score function gradient estimation as propose by Silvestri et al. (2023).
In this approach stochasticity is used to estimate gradients, making it possible to have the optimization model as a
complete black box. We use normal distributions in all cases, initializing sigma to be the predictive error we observe
obtained from the initialized predictive model. The sigma parameter is also update during back-propagation, but feature
independent. Initializing sigma to close to zero does not give any gradients, while initializing it too big will cause a lot
of variance and therefore slow convergence.

B.2 Initialization

Initialization of the predictive model is in general important, as it can have significant impact on the results in both
quality and convergence time. Another example is that in DFL it is not uncommon to initialize the predictive model as a
PFL trained model. We do not do this, as we do not want our models to be biased towards a PFL model, only learning to
improve relative to it. However, we do initialize the bias of the predictive model to the mean of the uncertain parameter
in the training data, such that predictions are at least in the range of actual realizations. For the scenario-based approach
πS
n, we apply the same idea but use quantiles i

n+1 , i ∈ {1, . . . , n}. For the quadratic proxy we similarly take the mean
of empirical optimal decisions in the training data as bias for Portfolio and WSMC. For PTSP we take a bias of 0, as the
other approach sometimes get the model stuck in a minima based on empirically optimal decisions.

C Experimental problem details

For completeness a mathematical formulation of each of the experimental problems is presented in this section.

C.1 Portfolio

For clarity the full problem formulation is shown below, given n securities:

For i ∈ {1, . . . , n}:
xi ∈ [0, 1] : Percentage investment in security i

x0 ∈ [0, 1] : Percentage investment in the bank
ci ∈ R : Return on investment for security i

β ∈ R : Return on investment for the bank

max
x

ln(1 + βx0 + cTx)

n∑
i=0

xi = 1
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C.2 Weighted-set multi-cover

For i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}:
xj ∈ N : Number of set j chosen
cj ∈ N : Cost for set j
ξi ∈ N : Coverage requirement for item i

aij ∈ {0, 1} : If item i is covered by set j, A = (aij), with
aii = 1, aji = 0 for i, j ∈ {1, ..., n}, i ̸= j

y+
i , y−

i ∈ N : Unmet/excess coverage item i

c+i , c
−
i ∈ N : Unmet/excess coverage cost item i

min
x

cTx+ Eξ[Q(ξ, x)]

Q(ξ, x) = min
y+,y−

c+T y+ − c−T y−

Ax+ y+ − y− ≥ ξ

y−i ≤ xi, i ∈ {1, . . . , n}

C.3 Probabilistic traveling salesperson

Below is a mathematical formulation for the PTSP with set of nodes N = {0, 1, . . . , n} (depot represented by 0), set of
customers N ′ = N \ {0}.

For i, j ∈ N , k ∈ M , i′ ∈ N ′:

xij ∈ {0, 1} : When arc (i, j) is traversed

xd
i ∈ {0, 1} When there is a direct trip to i

yi ∈ {0, 1} : If direct trip to i is canceled
dij ∈ R : Distance between i and j

ξi′ ∈ {0, 1} : Customer i′ requires service

xv
i = xd

i +
∑
j∈N

xji When i is visited

min
x

∑
i∈N

∑
j∈N

dijxij +
∑
i∈N ′

2d0ix
d
i + Eξ[Q(ξ, x)]

∑
j∈N

xij = xv
i − xd

i∑
i∈N

xij = xv
j − xd

j∑
i∈N

∑
j∈S

xij = |S| − 1,

∀S ⊊ {i ∈ N ′ : xv
i = 1, xd

i = 0}

Q(ξ, x) = min
y

∑
i∈N ′

2d0i(ρξi(1− xv
i )− yi)

yi ≤ xd
i (1− ξi)
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