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Abstract

Despite Al’s impressive achievements, including recent advances in generative and
large language models, there remains a significant gap in the ability of Al systems
to handle uncertainty and generalize beyond their training data. AI models consis-
tently fail to make robust enough predictions when facing unfamiliar or adversarial
data. Traditional machine learning approaches struggle to address this issue, due to
an overemphasis on data fitting, while current uncertainty quantification approaches
suffer from serious limitations. This position paper posits a paradigm shift towards
epistemic artificial intelligence, emphasizing the need for models to learn from
what they know while at the same time acknowledging their ignorance, using
the mathematics of second-order uncertainty measures. This approach, which
leverages the expressive power of such measures to efficiently manage uncertainty,
offers an effective way to improve the resilience and robustness of Al systems,
allowing them to better handle unpredictable real-world environments.

1 Introduction

The success of artificial intelligence, especially deep learning [135]], is indisputable. Al systems now
perform many tasks at or above human levels, with generative models advancing into creativity [[192],
large language models (LLMs) [24] excelling in language manipulation, and significant advancements
in multimodal AI [191]. However, this has also led to inflated expectations. For instance, autonomous
vehicles have been touted as imminent breakthroughs for over a decade but technological challenges
still remain a barrier to worldwide deployment [[7,1248]]. While generative models like ChatGPT create
remarkable outputs, there is an increasing acknowledgment of the need to reassess Al’s development
path fundamentally [16]. Speculation about uncontrolled Al evolution and debates around artificial
general intelligence (AGI) often overshadow pressing challenges Al must address today [202].

A significant limitation of current machine learning (ML) systems is their lack of robustness. Neural
networks frequently make inaccurate and overconfident predictions when faced with uncertainties,
such as out-of-distribution (OoD) samples, natural fluctuations, or adversarial disruptions [181}
103l 265]]. These issues become safety-critical in autonomous vehicles due to models struggling
to generalize across the diverse scenarios [86, 22] the vehicle may encounter. While efforts in
overfitting mitigation [221} [165] and domain adaptation [89] are ongoing, these approaches are

*Corresponding author: smanchingal @brookes.ac.uk

Preprint. Under review.


https://arxiv.org/abs/2505.04950v2

arguably insufficient to address the fundamental challenges of robustness in a meaningful manner
(94 184} 231 270].

There is a growing consensus that the accurate estimation of uncertainty [34] is vital to improve
machine learning models’ reliability [208) [120], with key applications to safety-critical areas such
as autonomous driving [229], medical diagnosis [133]], flood risk estimation [33]], and structural
health monitoring [242]]. To fully capture the uncertainty in a system or process, it is necessary
to recognize two main sources: aleatoric (predictable, irreducible) and epistemic (unpredictable,
reducible) uncertainty. The former arises from randomness in the data; a simple example of this is
the coin-toss, where the data generating process has a stochastic component that cannot be reduced
by any additional source of information [[109]. The latter, instead, arises from a lack of knowledge
about the system. For example, the odds of drawing the Ace of spades at random from a deck of
cards might be assumed to be 1/52. However, this is based upon a prior assumption that this is a
complete, standard deck. An ‘unknown’ deck, however, may contain duplicates or missing cards,
include jokers, or comprise multiple packs. Without this prior knowledge, the underlying model
inevitably carries some uncertainty, which can be reduced with each subsequent observation. Hence,
an awareness of the Socratic principle, to ‘know that you do not know’, is of paramount importance.
The main source of uncertainty in Al (but also in its science and engineering applications) is indeed
the lack of a sufficient amount of data to train a model, in both quantity and quality (i.e., data fairly
describing all regions of operation, including rare events). This uncertainty is epistemic in nature
[55]], as it concerns the model itself, and can be reduced by collecting more data or information.

While most scientists would agree that this is a profound problem, a defining issue for Al is how
uncertainty should be managed, as existing uncertainty quantification (UQ) methods for Al have key
limitations. Bayesian models are sensitive to prior mis-specification (with the risk of biasing the
whole process) and incur heavy computational overhead [83},129], while Bayesian Model Averaging
(BMA) may dilute useful predictive information [105} 96]]. Ensemble methods are computationally
demanding [[115/[102]]. Conformal predictors primarily capture aleatoric uncertainty in a frequentist
stance [15]]. Evidential approaches violate asymptotic assumptions, struggle with out-of-distribution
data [17} 238 [125/1222]] and exhibit high inference times (§@.

This position paper advocates for a paradigm shift towards an Epistemic Artificial Intelligence
emphasizing the importance of learning while acknowledging ignorance, using second-order
uncertainty measures (§A) capable of overcoming those limitations thanks to their greater expressive
power. Epistemic Al rests on the ‘paradoxical’ principle that one should first and foremost
learn from (or be ready for) the data it cannot see. Prior to observing any data, the task at hand
is thus completely unknown (albeit prior knowledge can be utilized to formalize the task and set
a model space of solutions). The (limited) available evidence should only be used to temper our
ignorance, to avoid ‘catastrophically forgetting’ how much we ignore about the problem.

Epistemic Al is supported by both theoretical arguments and strong empirical evidence (Sec.
M). Firstly, the use of second-order uncertainty measures allows Epistemic Al to explicitly represent
model ignorance and properly account for uncertainty due to lack of knowledge without biasing the
learning process, unlike traditional approaches (Sec. [4.1). Secondly, evidence is recently mounting
that Epistemic Al can predict uncertainty more accurately, at lower inference times (§D)), and more
broadly outperform other UQ methods in terms of accuracy, robustness and calibration (Sec. #.2)).
As aresult, Epistemic Al is capable of reducing the likelihood of Al systems being ‘surprised’ by
unexpected data or incapable to respond to unforeseen situations. This has enormous importance for
mission-critical areas such as autonomous vehicles, or climate change and pandemic prediction, where
long-term uncertainty is paramount as predictions concern the distant future and data is extremely
scarce. Large language models learning ‘epistemically’ from data would be less likely to commit to
false statements. Bias issues could be significantly mitigated, as epistemic models would not simply
mimic the training data but account for possible future data. This paper presents arguments in support
of Epistemic Al, discusses its potential and future challenges, while acknowledging alternative views.

Paper structure. Sec. [2]shows how estimating uncertainty aids robustness and adaptation. Sec. 3|
reviews other models and perspectives. Sec. []introduces Epistemic Al its theoretical {.T)) and
empirical (.2) support. Sec. [5.2] explores its potential future role in generative AL Secs. [6H8|
cover challenges, exciting opportunities in science and conclusions. Appendices §A]and §C]recall
second-order measures and models. §E] further details related work; §@]pr0vides additional results.



2  Why Uncertainty Quantification Matters

Adversarial Robustness. Traditional neural networks often suffer from overconfidence (softmax
outputs reflect relative confidence, not true uncertainty) leading to high-confidence errors on out-of-
distribution (OoD) or adversarially perturbed inputs [99,103]]. Fig. [T[jcompares a standard ResNet50
(Traditional) and an uncertainty-aware ResNet50 (Epistemic) [152] on ImageNet-A [[104]], an adver-
sarially filtered dataset exposing model overconfidence. When both models, trained on ImageNet,
are tested on ImageNet-A, the Traditional model remains highly confident in its misclassifications,
whereas the Epistemic model assigns lower confidence to misclassifications, avoiding overconfidence.

Robustness and Domain Adaptation. Domain adaptation methods such as minimax learning [[13]],
counterfactual error bounding [228]], and custom loss functions use adversarial feature alignment for
unsupervised adaptation [12} 16]. Reinforcement learning robustness employs adversarial strategies
[185] and Bayesian Bellman formulations [72]. Out-of-distribution (OoD) and domain-generalization
research leverages kernel methods [20} 73108} [161]] and H-divergence—based adversarial learning
[4], yet all falter under significant train—test shifts [198]], where uncertainty management can improve
adaptation and OoD detection [98 [124} 216].

Calibration. Neural networks are typically
uncalibrated, i.e., predicted confidence rarely
equals accuracy [99]. Post-hoc techniques such
as histogram and Bayesian binning, Platt scal-
ing [173[186]], and regression extensions [128]]
improve this. Expected Calibration Error (ECE)
[166], Adaptive CE [170], and loss-based ad- True label: 'pelican’  True label: 'pug, pug-dog'

justments [[164} (144, 230] refine calibration but Figure 1: Confidence scores of uncertainty-aware
still overlook deeper uncertainty representation. (Epistemic) and (Traditional) model on ImageNet-
A (adversarial). Unlike the epistemic model, tradi-
tional model is overconfident in misclassifications.

Epistemic : 'walking stick' (3.96%)  'Arctic fox, white fox' (32.93%)
Traditional : 'jeweler's loupe' (86.9%) 'swing' (94.95%)

ImageNet-A

Sequential decision-making must also model
the propagation of uncertainty, especially in
safety-critical domains such as autonomous driving [231], where unmodeled perception or state
uncertainty can cause compound errors and unsafe actions [207]. Effective quantification of epistemic
uncertainty enables the system to detect unreliable predictions and act with ‘human-like’ cautiousness
(120 [71]].

3 Alternative Views

Traditional and Deterministic methods. Traditional models make deterministic predictions and lack
uncertainty modeling, assuming exact input-output relations. Deep Deterministic Uncertainty (DDU)
[163] estimates epistemic uncertainty via latent representation analysis or distance-sensitive functions
rather than softmax probabilities [3) 257, [140L 1163}, [239]. However, regularization techniques like
bi-Lipschitz, commonly used in these models, do not effectively improve OoD detection or calibration
[189]. Unlike other methods, DDU captures uncertainty in the input space by detecting OoD samples
rather than the prediction space. Both DDU and traditional models make point predictions (Fig. [2).

Bayesian Methods. Bayesian Deep Learning (BDL) [27} 145, [168] models network parameters as
distributions using Bayesian neural networks (BNNs) [21} 188, [115], producing predictive distributions
by sampling from an approximated posterior [109]. Despite advances in training via sampling
[107, [169] and variational inference [21. 88 [121 1106} [87, 227, 201}, I87]], and successes in real-
world tasks [242} [129], practical challenges remain. This includes the significant computational
complexity associated with training [115]] and inference (Tab. [T} §D), establishing appropriate prior
distributions before training [255} 183]], handling complex network architectures, and ensuring real-
time applicability [L63]]. Furthermore, several studies have indicated that the use of single probability
distributions to model epistemic lack of knowledge is, in fact, insufficient [29, [109].

Ensemble methods such as Deep Ensembles (DE) [132] and Epistemic Neural Networks (ENN)
[L76] estimate uncertainty by aggregating predictions from multiple models. DEs, in particular,
have demonstrated strong performance in uncertainty estimation [177, 1100, [1]. However, they are
computationally intensive, with training and inference costs increasing linearly with the number of
ensemble members, making them impractical for large models or real-time applications [140} 37, [102].

Conformal prediction [244] is a wrapper method applicable to any model, generating prediction sets
(for accuracy guarantees) by computing empirical cumulative distributions and applying hypothesis
testing to them. Several variants exist, e.g., conditional, full conformal prediction [[179, 1178l [180,
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Figure 2: Major approaches to uncertainty in Al Traditional networks and deterministic uncer-
tainty models [163] (a) have fixed weights and output a deterministic value or probability vector.
Bayesian neural networks [21} 88}, 1201]] (b) estimate predictive distributions by integrating over poste-
rior parameter distributions, often approximated via Bayesian Model Averaging (BMA) [105}96]
which averages predictions from sampled parameters. Similarly, deep ensembles [[132]] (c) average
predictions from independently trained models. Evidential methods [209] (d) predict second-order
Dirichlet parameters instead of softmax probabilities. Epistemic approaches (e) use second-order
probability representations, such as interval probabilities, credal sets, or random-sets [[152], with
pignistic probabilities [218] derived from credal sets for comparison [150].

206, 11711 246, 2431, 245, 28]]. However, as it relies on building cumulative distribution functions of
‘nonconformity scores’ to which it applies classical hypothesis testing [[15], conformal prediction
basically models aleatoric, rather than epistemic uncertainty. Recent advances have been made
towards an epistemic conformal learning, particularly under credal representations [139} [111]].

Evidential Methods. The evidential framework [258]] has been applied to neural networks [[196]],
decision trees [[78]], K-nearest neighbours [66], and evidential deep learning classifiers for uncertainty
quantification [233]]. Sensoy et al. [209] introduced a Dirichlet-based classifier to estimate subjective
opinions. While Dirichlet-based advances exist [[147-149}[32], many loss functions fail to reduce
epistemic uncertainty with more data, violating asymptotic assumptions [17]]. Some methods rely
on OoD training data, which may be unavailable or inadequate for robust detection [238], and even
posterior networks with normalizing flows show limitations [125}, [222]].

Some critics, including ourselves, argue that classical probability theory cannot fully address ‘second-
level” uncertainty [109], suggesting the use of more generalized frameworks (§A), such as possibility
theory [74]], probability intervals [[101], credal sets [[137]] or imprecise probabilities [247]. The way
epistemic uncertainty is managed and data is leveraged is, we feel, a defining issue for AI: with
this position paper, we wish to contribute to this debate and indicate possible solutions through
a paradigm shift which we term epistemic artificial intelligence.

4 Epistemic Artificial Intelligence

Epistemic prediction
(e.g. a credal set)

Simplex of distributions over
target or parameter space

Probabilistic
prediction

Epistemic |
Learning Learning [/ ——
V A Epistemic model
A (second-order uncertainty)
|

Training set
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Figure 3: Epistemic Learning. Contrary to a traditional learning process in which a single model is
learned from a training set to map new data to predictions, e.g. in the form of a probability distribution
over the target space (left), epistemic learning outputs a second-order uncertainty measure (right).

As mentioned in Sec. (1} the core idea of Epistemic Al hinges on a paradox: the system must be
designed not only to learn from the data it observes, but also to be prepared for data it has not yet
encountered. The problem can be formalized as one of learning a mapping (epistemic model) from



input data points to predictions in the form of a second-order uncertainty measure (§A)), either on
the target space or on the parameter space of the model itself (Fig. [3). Later, this prediction may be
updated in the light of new data. When the epistemic prediction is a credal set, as in most cases [150]],
a probability (‘pignistic’) estimate [218] can be computed as its center of mass (Fig. [2).

4.1 Why Epistemic Al is Essential

In addition to the limitations discussed in Sec. [3] existing models fundamentally struggle to capture
epistemic uncertainty, primarily because a single probability distribution cannot fully express
ignorance about the data-generating process [51]. Bayesian methods, in particular, though widely
used, particularly falter in data-sparse or ambiguous settings because they must assign fixed belief
mass even when knowledge is lacking. Uninformative priors such as Jeffreys’ [112] are not invariant
under reparameterization and can be improper, violating objectivity and the strong likelihood principle
[214]]. Moreover, priors must be specified even for systems without past data, leading to arbitrary
modeling choices that can bias the learning process for a long time (Bernstein-von Mises theorem,
[123]). Bayesian posteriors may appear similar whether we have no knowledge or weak evidence,
conflating ignorance with imprecise belief and potentially causing misleading overconfidence. For
example, as in the ‘unknown’ pack of cards scenario (Sec. [I)), Bayesian inference treats uncertainty
about the deck’s composition as a single posterior distribution, rather than explicitly quantifying our
lack of knowledge. Model selection and prior choice lack objective criteria and prior sensitivity
worsens with scarce data [[119, [18]]. Further, Bayesian models cannot naturally represent set-
valued or propositional evidence, because the additivity of probability forces allocation to individual
outcomes, even when evidence supports sets of hypotheses, in opposition to random-sets which
can naturally model missing data [51]]. Bayes’ rule also assumes that new evidence is sharp and
definitive, which is unrealistic in many real-world cases. Hierarchical Bayesian models, which place
priors over priors, can model epistemic uncertainty and potentially address some of these issues, but
are very computationally expensive in high-dimensional or open-world settings.

Moreover, Bayesian inference tends to smooth out epistemic uncertainty by averaging over models,
collapsing diverse possibilities into a single estimate and failing to distinguish knowns from unknowns
[LOSL 96l [109]. Computationally, Bayesian models also often suffer from slow convergence and
large inference times (Tab. [T} §D), limiting their suitability for real-time safety-critical systems like
autonomous vehicles [[115]. We do not advocate for abandoning Bayesian approaches; rather,
we argue that fully capturing epistemic uncertainty demands a generalization of Bayesian
measures into broader, second-order frameworks (§A), calling for dedicated research and
resource allocation toward these more expressive uncertainty models.

Epistemic Al advocates for the adoption of second-order uncertainty measures, such as probability
intervals, credal sets [[136}44] or random-sets, as they generalise classical probability using set-
based representations and can richly encapsulate imprecision to model the epistemic uncertainty
about an underlying, shifting data distribution, possibly the central challenge in machine learning.

Indeed, most second-order measures contain classical probability as a special case [54]], with random-
set reasoning subsuming Bayesian reasoning as a special case [213]].

4.2 Empirical Support for Epistemic Al

Crucially, recent work on Epistemic AI models using second-order uncertainty measures (Epis-
temic: Credal [249), Epistemic: Wrapper [250], Epistemic: Random-set [152l], Epistemic: Interval
[252]) have demonstrated superior performance over competitor models (Bayesian: Laplace [106],
Bayesian: Function SVI [201]], Ensemble: Deep [132], Ensemble: ENN [176]) in classification
tasks, based on experiments on large-scale benchmarks, including ImageNet, in terms of accuracy,
robustness, uncertainty quantification and out-of-distribution detection [82], enhancing robustness in
identifying novel or anomalous inputs.

In OoD detection, in particular, AUROC measures a model’s ability to rank OoD samples above
in-distribution ones by balancing true and false positive rates across thresholds, while AUPRC focuses
on the scarce OoD class by summarizing precision-recall performance. High AUROC and AUPRC,
respectively, indicate strong separability and reliable detection under class imbalance, making them
complementary. In Fig. f{a), Epistemic AI models (circles) cluster in the top-right on CIFAR-10
[194]], demonstrating superior, consistent OoD detection due to their ability to preserve ignorance. In
contrast, competitor methods (squares) perform worse and less consistently, empirically confirming
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Figure 4: Comparison of Epistemic AI models (circles) and competitor models (squares) on
CIFAR-10. (a) OoD detection performance (AUROC vs. AUPRC). Epistemic Al models cluster
in the top-right (high separability) while competitor methods show a much greater spread (lower
performance. (b) Predictive performance (Accuracy vs. ECE). Epistemic Al models cluster in
the top-left (high accuracy, low calibration error) while competitor methods show poorer trade-offs
(weaker calibration). Training details for all models are given in §@}

the theoretical advantage of Epistemic Al models based on second-order uncertainty measures under
shifting data distributions. Moreover, Epistemic Al models also offer a better trade-off between
accuracy and calibration. In Fig. f[(b), they dominate the top-left region, combining high accuracy
with low Expected Calibration Error (ECE). More details on models, training/inference times (Tab.
[I, and further evaluations (Fig. [8) can be found in §D}

Fig. f[(a) shows that second-order measures yield superior separation between in-distribution and
out-of-distribution data. In Fig. [5] the Epistemic AI model (Epistemic: Random-set) is shown to
exhibit low entropy for in-distribution and high entropy for out-of-distribution samples. This entropy
gap (iD vs OoD entropy), reflected in both CIFAR-10 vs SVHN (left) and ImageNet vs ImageNet-O
(right), demonstrates well-calibrated uncertainty estimates essential for reliable OoD detection and
safer decision-making.
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Figure 5: Mean entropy per model type for in-distribution (iD) and out-of-distribution (OoD)
datasets, with error bars showing entropy standard deviation. The Epistemic Al model demonstrates
better iD vs OoD entropy compared to other models.

5 Taking Epistemic AI Further

5.1 From Target-space to Parameter-space Representations

Epistemic uncertainty can be modelled at two levels: (i) a farget level, where the network outputs an
uncertainty measure on the target space, while its parameters (weights) remain deterministic; (ii) a
parameter level, where uncertainty is modelled on the parameter space (i.e., weights and biases).

The Epistemic Al models considered above are all target-space models. Credal-Set Interval Neu-
ral Networks (Epistemic:Interval) [252], based on Interval Neural Networks [[172], predict prob-
ability intervals for classes. Credal Deep Ensembles (Epistemic:Credal) [249] use ensembles of
credal networks to provide upper and lower probability bounds forming a credal set; trained with a
distributionally-robust optimization (DRO)-inspired loss [[131, 1167, 1203]], CreDEs outperform DEs
[132]). Credal Wrapper [250] (Epistemic:Wrapper) improves uncertainty estimation by ‘wrapping’
Bayesian and ensemble predictions as credal sets with upper/lower bounds per class, using the



‘intersection probability’ [43} 45| |53]] to map a credal set to a single distribution. Random-Set Neural
Networks (Epistemic:Random-set) [152] efficiently predict belief values for sets of classes, addressing
ambiguity and incomplete data, using a budgeting method to reduce complexity.

A key future research direction is thus extending Epistemic AI from target-level to parameter-
level uncertainty representations, with the aim to fully generalize Bayesian (deep) learning.
One potential approach consists of transforming Bayesian Neural Network (BNN) posteriors into
random-set posteriors without retraining. Using a transform proposed by Shafer [211]], any likelihood
or distribution can be converted into a random-set, efficiently represented as a Dirichlet distribution
over parameter intervals [226]. Credal Bayesian Deep Learning [30]], in opposition, introduces sets
of posteriors over parameters, deriving predictive distributions at inference time that distinguish and
quantify aleatoric and epistemic uncertainty, yielding either a set of outputs with guarantees or a
single best prediction. Another promising direction is to employ Smets’ Generalized Bayes Theorem
(GBT) [217]] (which produces belief functions [49], i.e., finite random-sets, over parameters from a
generalized likelihood and observations), under conditional cognitive independence (a generalization
of i.i.d.), to directly learn random-set parametric representations from a training set.

Natural extensions to regression can also be envisaged. Credal Deep Ensembles (Epistemic:Credal)
[249] may be applied to an ensemble of Bayesian regressors, each predicting a vertex of a
credal prediction, with the final credal set as their convex hull. Random-Set Neural Networks
(Epistemic:Random-set) [[152]] may also support regression, e.g., for object detection, by predicting
Dirichlet distributions over Borel closed intervals [224] for bounding box coordinates. Class labels
can be modeled as sets, enabling robust uncertainty in both spatial and categorical outputs.

5.2 An Epistemic Generative Al

An all-important effort is ongoing to extend the epistemic paradigm to generative Al.

Large Language Models (LLMs) [2, 8, [234] have shown strong performance in NLP tasks such
as answering questions [118]], reasoning [254], mathematical problem-solving [138]], and code
generation [[200]. Pre-trained on large text corpora via next-token prediction, LLMs are fine-tuned
for specific applications [38]]. Despite their success, they face challenges like hallucinations [[159].
Mechanisms to enhance their truthfulness (calibration) and quantify uncertainty could improve
their reliability. Bayesian approaches such as Laplace-LORA [259], BLoB [253]], and Monte-
Carlo Dropout (MCD) [88]], along with techniques like Bayes by Backprop (BBB) [21] and LORA
Ensembles [14]], have been applied to LLMs for uncertainty quantification. ENN-LLM [175]] uses
Epinet-inspired ensembles, while others leverage hidden states [34], softmax entropy [187] or
semantic entropy [79]. These methods, however, often trade performance for inference efficiency.

An important challenge, both in the context of LLMs and beyond, is how to elicit second-order
representations from ‘traditional’ ground truth datasets, such as question-answer pairs. How do we
teach a model that the examples it sees are only samples from an incredibly rich set of possibilities?
Developing appropriate evaluation methods for uncertainty-aware LLMs is another challenge that
needs to be addressed before such models can be effectively trained and deployed. In the context
of GenAl, Epistemic AI can teach generative models the range of possible outputs they could
produce from a limited training set, capturing the epistemic uncertainty of the generative process
itself. Our hypothesis is that modeling second-order uncertainty should enable generative models to
better represent the diversity of outputs, particularly when training data is scarce or unrepresentative.
For instance, allowing LLMs to predict probabilities for sets of tokens in a random-set framework,
rather than single tokens, may allow them to capture a broader range of plausible outputs and improve
overall accuracy. This could be especially useful for languages like Japanese or Arabic, where
synonyms are prevalent and capturing a range of possible outputs is key to accurate predictions.
Indeed, the random-set approach [152] to classification can be directly applied to Random-Set LLMs
(RS-LLMs) [[L62]], where belief functions over the vocabulary are predicted at each step instead of
probability distributions, allowing language models to express ignorance. Hierarchical embedding
can be used to cluster similar tokens into semantically-meaningful focal sets; sentence uncertainty
can then be calculated as the mean credal width of its tokens. Random-set methods can also extend to
generative Al via inferential models [155| [156], rooted in Dempster’s belief-function theory [61]] and
Fisher’s fiducial inference [[L83]. These models can infer belief functions over neural network weights,
treating generative models like GANS as auxiliary equations. Gaussian noise can be transformed into
a predictive random-set, generating output variability beyond traditional methods.



6 Challenges

Epistemic Al is effective and a potential key to addressing fundamental issues in machine learning.
Still, challenges that are shared across uncertainty quantification may be exacerbated when using
second-order uncertainty measures, owing to their higher expressiveness and complexity.

Applying second-order uncertainty measures to machine learning. Working with sets of distribu-
tions (e.g., credal or random-sets) may involve costly sampling and inference procedures, particularly
for decision-making [[11}[10]. Recent work has addressed this by employing set budgeting techniques
to efficiently constrain the complexity of using random-sets [[152]. However, further research is
needed to expand this to other second-order representations. Evaluation is an outstanding problem, as
standard metrics do not apply directly to epistemic predictions. To address this, a unified framework
to compare predictions across Bayesian, credal, random-set, ensemble, and evidential models was re-
cently introduced in [150]. Nevertheless, an accepted global metric for comparing uncertainty-aware
predictions is still wanting.

Scaling up. Most evidential approaches [209] struggle with scalability beyond medium-sized datasets.
The clustering approach in the random-set approach [[152]] has unlocked the potential of random-set
representations to large datasets like ImageNet and architectures like Vision Transformers, with future
extensions possibly incorporating Dirichlet mixture models [260]] and dynamic clustering [210] for
continual learning. A key challenge remains: can epistemic representations scale to foundation
models and massive datasets? While efficient belief function/random-set representations have been
explored [193]], further work is needed. Quantum approaches show some promise, with recent work
on belief representation [269], combination [268]], and integration into quantum circuits [256].

From one-off to continual learning. Continual learning is a more faithful representation of life-long
real-world learning processes, especially in contexts in which models are continually updated in the
light of streaming data whose distribution, however, may vary over time in unknown ways. Most
research has focused on supervised learning and preventing models from ‘forgetting” [122], using
priors, task-specific parameters, or replay buffers [197]. Recently, unsupervised and semi-supervised
settings, such as domain-incremental learning [240], have gained attention. Online learning and
convex optimization [56] offer robustness guarantees by minimizing regret. Despite recent efforts
[266 [113], a unified framework linking uncertainty modeling and continual learning remains an
entirely open challenge, not just for Epistemic Al but for uncertainty quantification in general.

Learning and symbolic reasoning under uncertainty. Epistemic uncertainty can be reduced by
collecting more data or incorporating prior knowledge, such as symbolic information (e.g., Snorkel
[193])), but data alone does not guarantee better performance, as seen in autonomous vehicle failures.
Neurosymbolic Al integrates symbolic reasoning with deep learning to regularize predictions and
enable knowledge transfer across domains [[77,154]]. Current NeurAl frameworks enforce symbolic
constraints but struggle with assessing output frequency or scaling to large knowledge bases [3].
Approaches like DeepProbLog [153] and DL2 [81]] leverage fuzzy and probabilistic semantics but
lack epistemic uncertainty modeling. Potential solutions include designing epistemic semantic losses
or using logical circuits like trigger graphs [237] to extend DeepProbLog-style reasoning.

Statistical guarantees. Most current Epistemic Al methods do not provide statistical coverage
guarantees on their predictions, albeit they can do so in combination with classical conformal learning
[151]. Already mentioned efforts to generalise conformal learning certainly go in this direction.
Recent studies have been looking at extending the notion of confidence interval to belief functions,
under the name of confidence structures [69], which generalise standard confidence distributions and
generate ‘frequency-calibrated’ belief functions. Also in the random-set setting, Inferential Models
(IMs) can produce belief functions with well-defined frequentist properties [[156]. An alternative
approach relies on the notion of ‘predictive’ belief function [65]], which, under repeated sampling, is
less commiitted than the true probability distribution of interest with some prescribed probability.

7 Opportunities: Epistemic Al for Science and Engineering

Alongside challenges, Epistemic Al also presents a golden opportunity to enhance the Al-driven
revolution in fields such as drug discovery, materials science, and astronomy. For example, Deep-
Mind’s Alphafold [[L16]] revolutionized protein structure prediction, impacting molecular biology.
Still, models like Alphafold and those used in weather forecasting often fail to model uncertainty
in their predictions, which is crucial in real-world applications such as climate change, additive
manufacturing or modeling of nuclear fusion plasma. The recently open-sourced Alphafoldv3 and



neural operator (NO) models [[146] 90, [271]], such as those used in nuclear fusion and climate pre-
diction, show promise but need better uncertainty quantification to improve accuracy and efficiency,
particularly in complex systems like differential equations.

The potential of neural operators in Epistemic Al, as powerful surrogate models for solving PDE-
governed systems across science and engineering, is significant. However, despite recent work on
Bayesian [146] and conformal prediction (CP) [97], NOs struggle with uncertainty due to limited data
or PDE misspecification. CP provides calibrated uncertainty but needs additional calibration data,
which can be costly. As neural operators learn from data a functional mapping between input and
output functions (e.g., the boundary conditions and the solutions of a system of differential equations),
applying epistemic learning to them involves solving the problem of quantifying uncertainty in
functional spaces, generalising the classical neural network treatment. Epistemic Al can help model
uncertainty in the gap between low- and high-fidelity simulations, as shown in fusion plasma edge
modeling [80]. It can also enable the robust treatment of parameter uncertainty: for instance, finite
element method (FEM) simulations often estimate physical parameters within confidence bounds.
Given the breadth of NO applications, from climate to materials science, the impact of epistemic
methods is potentially profound.

A paramount use case scenario is climate change, which is altering the weather cycle at global
scale, amplifying extreme events like floods and droughts at continental scale [205]]. Trends in the
likelihood of extreme events, such as floods or droughts, are of particular interest to our society. An
accurate prediction of climate change requires a correct representation of different compartments of
the Earth system (e.g. atmosphere, ocean, and land) and the interactions between them. Each of these
compartments is evolving and the interaction between them is highly dynamic. Some limited work
exists on the possible use of Al for climate change, including prediction [223]], mitigation [117] and
adaptation [36} 35]. Interesting position papers and surveys on this have been published in recent
years [41} [110]. Further, reliable long-term predictions require more than simple adaptation to a
time series of data made available over time, highlighting the importance of quantifying epistemic
uncertainty in the prediction of machine learning models trained on insufficient, sparse data to avoid
forecasting errors and improve decision-making, with significant societal and scientific impact.

8 Conclusions

This position paper highlights the fact that existing methods for uncertainty quantification in
Al fail to efficiently model second-order uncertainty, which is critical for epistemic uncertainty
quantification and to give models the ability to ‘truly’ know when they do not know. We argued that
there is a need for much further research in this area, not only in core machine learning but also in the
context of generative Al and Al for science, highlighting the need for further research and testing
to further develop this promising approach. We also pointed out that significant evidence is indeed
starting to support the advantage of second-order uncertainty methods in machine learning.

Our position is two-fold: (a) We argue for the need to establish a concept we call Epistemic
Al according to which second-order uncertainty measures [52]] (§A) are used to model epistemic
uncertainty. The key argument is that ignorance is better represented through second-order uncertainty
measures, which capture the inherent uncertainty about unknowns. (b) While the computational
challenges of Bayesian and Ensemble models have been widely recognized, the AI community has
yet to fully explore alternative models that can efficiently estimate second-order uncertainty. We also
note that while there has been some progress in areas like classification and regression, significant
gaps remain in more complex tasks like GenAl and Al4Science. Moreover, critical questions remain
about selecting the most appropriate model for second-order uncertainty estimation and understanding
the broader challenges in scaling these methods for practical applications.

The recent breakthroughs in this area were made possible by realizing that it is not necessary to
exploit the full expressive power of second-order uncertainty measures (§A) to achieve significant
improvements. Effective scalability can be attained by designing structures rich enough to harness
the representational potential of second-order uncertainty measures while remaining computationally
feasible. This can be achieved, e.g., through a suitable collection of focal sets [152]], lower/upper
probability structures [251]], or a fixed budget of vertices for credal representations. Building on these
results, a more principled and systematic exploration of these structures is now necessary to fully
realize the vision of this paper.

An exciting future research direction would be the formal definition and study of specific families of
random-sets, analogous to the families of probability distributions in classical probability (Gamma,



exponential, etc.), leading to more efficient and scalable computational models and driving further
Al advances. The integration of Epistemic Al with continual, neurosymbolic and neural operator
learning poses a set of exciting challenges moving forward.
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A Theories of uncertainty

Uncertainty theory (UT) is an array of theories devised to encode ‘second-order’, ‘epistemic’ un-
certainty, i.e., uncertainty about what probabilistic process actually generates the data, can provide
a principled solution to this conundrum [11} 247]]. This is the situation ML is in, for we usually
ignore the form of the data-generating process at hand, even accepting that it should be modelled
by a probability distribution. Many (but not all) uncertainty measures amount to convex sets of
distributions or ‘credal sets’ (e.g., p-boxes) [235], while random-sets and belief functions directly
assign probability values to sets of outcomes [211]], modeling the fact that observations often come in
the form of sets. The paramount principle in UT is to continually refine one’s degree of uncertainty
(measured, e.g., by how wide a convex set of models is) in the light of new evidence. All uncertainty
theories are equipped with operators (playing the role of Bayes’ rule in classical probability) allowing
one to reason with such measures (e.g. Dempster’s combination for belief functions) [62} 220].
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Figure 6: Clusters of uncertainty theories. Uncertainty theories can be arranged into various
clusters based on the objects they quantify and their rationale. Arrows indicate the level of generality,
with more general theories encompassing less general ones. Note that the quality and rigour of
different approaches can vary significantly.

The various theories of uncertainty form ‘clusters’ characterised by a common rationale [51] (see
Fig.[6). A first set of methods can be seen as ways of ‘robustifying’ classical probability: The most
general such approach is Walley’s theory of imprecise probability [247], a behavioural approach
whose roots can be found in the ground-breaking work of de Finetti [58]]. In behavioural probability,
the latter is a measure of an agent’s propensity to gamble on the uncertain outcomes. A different
cluster of approaches hinges on generalising the very notion of set: these include, for instance,
the theory of rough sets [182], possibility theory [75]], and Dempster-Shafer theory [211]. More
general still are frameworks generalising measure theory, e.g. the theory of monotone capacities or
‘fuzzy measures’ [95]. Some proposals (including Popper’s propensity) aim at generalising Bayesian
reasoning [[188]] in terms of either the measures used or the inference mechanisms. The theory of
set-valued random variable or ‘random-sets’ extends the notion of set [160] and generalises Bayesian
reasoning. Frameworks which completely replace events by scoring functions [244] in a functional
space form arguably the most general class of methods. The diagram also illustrates the relationships
between different theories, indicating which are more general and which are more specific. An arrow
from formalism 1 to formalism 2 suggests that the former is a less general case of the latter.
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Credal sets. In decision theory and probabilistic reasoning, credal sets provide a robust approach
to modeling epistemic uncertainty by generalizing the traditional Bayesian framework. Unlike
standard probabilistic models that assign precise probabilities to events, credal sets represent convex
sets of probability distributions, allowing for a more flexible and cautious representation of
uncertainty [247].

A credal set is a closed and convex set of probability distributions over a finite space 2. This
formulation allows one to express imprecise probabilities, where instead of a single probability value
P(A), we consider a range [P~ (A), PT(A)] that characterizes the lower and upper bounds of belief
for an event A. This approach is particularly useful in settings where data is scarce or conflicting,
making precise probability assignments unreliable [[11].

Credal sets have been extensively used in robust Bayesian inference, classification, and decision-
making under ambiguity. In machine learning, credal classifiers [261]] extend Bayesian classifiers
by considering sets of posterior probabilities rather than single estimates, improving robustness to
small-sample uncertainties.

Moreover, credal networks (generalizations of Bayesian networks) allow for imprecise conditional
probability tables, leading to more cautious yet reliable inferences in high-stakes applications such as
medical diagnosis and risk assessment [42]. By accounting for multiple possible distributions, credal
sets reduce overconfidence in decision-making. Unlike Bayesian models that rely on precise priors,
credal sets allow a more agnostic approach. It is particularly useful when probability estimates come
from conflicting or incomplete sources. Several credal set computation techniques are discussed in
[150,[109].

Challenges in credal set computations. Credal sets, representing convex sets of probability distribu-
tions to model uncertainty, can be handled through various computational methods. One approach
involves representing a credal set by its extremal points (vertices), forming a convex polytope in the
probability space. These vertices can be computed using linear programming techniques [250]], such
as the simplex method, which navigates between vertices to find optimal solutions [S7]. Alternatively,
the double description method can enumerate all vertices of a convex polytope given its defining in-
equalities [85]. However, as the complexity of the network increases, the number of vertices can grow
exponentially, leading to computational challenges. To address this, constraint-based representations
define the credal set by a set of linear inequalities, offering computational efficiency, especially when
the number of constraints is limited [236]].

In the context of belief functions, credal sets can be derived through permutations of focal elements,
but the combinatorial explosion necessitates optimization methods to manage computational load
[152]. Additionally, dual representations utilize lower and upper probabilities to perform computa-
tions without explicitly considering all extreme points [249]. The choice of method depends on the
specific application and the trade-off between computational efficiency and the precision required in
representing uncertainty. A study [204] found that while this volume correlates with epistemic uncer-
tainty in binary classification, its effectiveness diminishes in multi-class classification scenarios. In
contrast, more recent research [111]] indicates that the size of the credal set remains a reliable measure
of epistemic uncertainty, even in multi-class settings, including complex datasets like ImageNet.

However, this paper does not simply advocate for credal sets, but for the adoption of second-order
uncertainty measures.

B Related Epistemic AI work

Credal inference 39,109, |204] is gradually gaining popularity as it predicts convex sets of probability
distributions, known as credal sets [[136]], providing an alternative method for efficiently quantifying
epistemic uncertainty. Credal representations [48]] have been widely explored in machine learning,
including the naive credal classifier [40]], credal network [39], and credal random forest classification
[215]]. Random-sets [S1] can naturally model missing data. Belief function models [49, 47], in
particular, have been used for ensemble classification [[142]], regression [93] or to generalise max-
entropy classification [50]], among others.

B.1 Epistemic learning theory

Epistemic statistical learning theory, based on a ‘credal’ framework [31]], models data-generating
variability via convex sets of probabilities (credal sets) inferred from finite samples. It derives bounds
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for finite hypothesis spaces (with or without realizability) and infinite model spaces, generalizing
classical results. Data-dependent uniform PAC generalization bounds are also established using a
random-set formulation [76]].

B.2 Unsupervised learning

Unsupervised clustering is central to epistemic uncertainty research. Hard methods like c-means
assign objects to single clusters, while soft methods model uncertainty, including fuzzy sets [[19],
possibility theory [[127], rough sets [184], and evidential clustering 68} [70]. Rough sets use ap-
proximations, while evidential clustering, based on Dempster-Shafer theory [62} [211]], represents
uncertainty via mass functions, forming credal partitions. The ECM algorithm [[157] introduced mass-
based uncertainty modeling, refined by RECM [158]] for dissimilarity data. BCM [141] and CCM
[143] addressed meta-cluster prototype issues, while BPEC [225], MECM [267]], and EGMM [114]
integrated evidential reasoning. EK-NN [64], EK-NNclus [68]], and EVCLUS [70] tackled clustering
ambiguity, with NN-EVCLUS [67] reducing parameter dependence and enabling classification via
neural networks. Key challenges include scalability, handling high-dimensional data, and ensuring
robustness in uncertain environments.

B.3 Reinforcement learning

Uncertainty quantification in reinforcement learning (RL) remains challenging, with existing methods
showing practical success but lacking theoretical soundness and convergence guarantees. Diverse
Projection Ensembles [263]] extend distributional RL by using ensemble diversity to capture epistemic
uncertainty, while still modeling aleatoric uncertainty through the distribution of returns. Methods like
SMC-DQN [241] combine Sequential Monte Carlo with Deep Q Networks to train model ensembles
for Bayesian posterior approximation of the value function. In model-based RL, Monte Carlo Tree
Search (MCTS) [25], used in AlphaZero and MuZero, is augmented with epistemic uncertainty
estimates [174]] to enhance strategic exploration. Research on Partially Observed Markov Decision
Processes (POMDPs) [126] under epistemic uncertainty includes approaches such as Bayesian
POMDPs [199]] and set-valued transitions [26, 59} [60]. However, comprehensive extensions to
emission probabilities and reward functions under various epistemic uncertainty types (intervals,
credal/random-sets) are still lacking.

C Uncertainty estimation in uncertainty-aware models

The predictions of a classifier can be plotted in the simplex (convex hull) P of the one-hot probability
vectors assigning probability 1 to a particular class. For instance, in a 3-class classification scenario
(Y ={a, b, c}), the simplex would be a 2D simplex (triangle) connecting three points, each repre-
senting one of the classes, as shown in Fig. [2|(right), which depicts all types of model predictions
considered here.

C.1 Traditional Neural Networks

Traditional neural networks (NNs) predict a vector of IV scores, one for each class, duly calibrated
to a probability vector representing a (discrete, categorical) probability distribution over the list of
classes Y, pyn(y | x,1D), which represents the probability of observing class y given the input x
and training data D.

C.2 Bayesian Neural Networks

Bayesian Neural Networks (BNNs) [134} 232} 92| [106] compute a predictive distribution p,(y | x, D)
by integrating over a learnt posterior distribution of model parameters 6 given training data ID. This
is often infeasible due to the complexity of the posterior, leading to the use of Bayesian Model
Averaging (BMA), which approximates the predictive distribution by averaging over predictions from
multiple samples. When applied to classification, BMA yields point-wise predictions.

Bayesian inference integrates over the posterior distribution p(6 | D) over model parameters 6 given
training data D to compute the predictive distribution p,(y | x, D), reflecting updated beliefs after
observing the data:

Po(y | x,D) = / Py | x,0)p(0 | D)do, ()
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where p(y | x, 0) represents the likelihood function of observing label y given « and 6. To overcome
the infeasibility of this integral, direct sampling from p,(y | x, D) using methods such as Monte-Carlo
are applied to obtain a large set of sample weight vectors, {0y, k}, from the posterior distribution.
These sample weight vectors are then used to compute a set of possible outputs y;, namely:

1
Py | % D) = o > @0, (%), ©)

0,€0

where © is the set of sampled weights, @y, (x) is the prediction made by the model with weights 6y,
for input x, and ® is the function for the model. This process is called Bayesian Model Averaging
(BMA). BMA may inadvertently smooth out predictive distributions, diluting the inherent uncertainty
present in individual models [105] 96] as shown in Fig. [7] When applied to classification, BMA
yields point-wise predictions. For fair comparison and to overcome BMA’s limitations, in this paper
we also use sets of prediction samples obtained from the different posterior weights before averaging.

100 Bayesian Prediction Samples (True Class: airplane) Bayesian Model Averaged Prediction (True Class: airplane)
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Figure 7: Visualizations of 100 prediction samples obtained prior to Bayesian Model Averaging and
corresponding Bayesian Model Averaged prediction in two real scenarios from CIFAR-10.

In BNNSs, aleatoric uncertainty is measured by the predictive entropy, while epistemic uncertainty is
represented by mutual information [109]], M1, which measures the difference between the entropy
of the predictive distribution and the expected entropy of the individual predictions. To compute
both mutual information and predictive entropy in Bayesian Neural Networks (BNNs), one utilises
the predictive distributions of the model. MI quantifies the amount of information gained about the
label y given the input x and the observed data D, while the predictive entropy (H) measures the
uncertainty associated with the predictions:

MI(ps(y | x,D)) = H(pu(y | x,D)) — Ep[H (p(y | x,0))], 3)

where H (py(y | x,D)) is the entropy of the predictive distribution obtained from BMA, and
Ep[H (p(y | x,0))] represents the expected entropy of the individual predictive distributions sam-
pled from the posterior distribution of the parameters p( | D). H(-) denotes the Shannon entropy
function.

The predictive entropy can be calculated as:

H(poly | x,D)) = — / Po(y | x, D) log py(y | x, D)dy, 4
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where p(y | x,D) is the predictive distribution. This equation represents the average uncertainty
associated with the predictions across different possible values of ¥y, considering the variability
introduced by the parameter uncertainty captured in the posterior distribution p(6 | D).

C.3 Deep Ensembles

In Deep Ensembles (DEs) [132]], a prediction p4.(y | x,1D) for an input x is obtained by averaging

the predictions of K individual models: pgc(y | x,D) = + Zle Pr(y | x,D), where pj, represents
the prediction of the k-th model, trained independently with different initialisations or architectures.

In Deep Ensembles, aleatoric uncertainty is assessed via the predictive entropy, averaged entropy of
each ensemble’s prediction, while epistemic uncertainty is encoded by the predictive variance, the
difference between the entropy of all ensembles and the averaged entropy of each ensemble.

Let M = {M;, Ms, ..., Mg} denote the ensemble of K neural network models for k = 1,2, ..., K.
Given an input x, the prediction ¢4 is obtained by averaging the predictions of individual models.
The predictive entropy represents the averaged entropy of each ensemble’s prediction y; given the
input x and the observed data D:

K

Hpaely | %)) = 72 37 Hpaclun | %)), ©
k=1

where yy, represents the prediction of the k-th model Mj.

The predictive variance is measured as the difference between the entropy of all the ensembles,
H(pae(ym | x,D)), and the averaged entropy of each ensemble, H (pae(y | x,D)).

H(yrm) = H(pac(yrm | X, D)) = H(pac(y | x,D)). ©)

The predictive variance in DEs is considered an approximation of mutual information [109]. This for-
mulation captures both the model uncertainty inherent in the ensemble predictions and the uncertainty
due to the variance among individual model predictions. While DEs have proven as a good baseline
method for uncertainty quantification in practice, they remain computationally expensive with several
recent methods aiming to approximate ensemble uncertainties with single models [239, 130,91} 264].

C4 Evidential Deep Learning

Evidential Deep Learning (EDL) models [209] make predictions p.(y | x,1D) as parameters of
a second-order Dirichlet distribution on the class space, instead of softmax probabilities. EDL
uses these parameters to obtain a pointwise prediction. Similar to BNNs, averaged DE and EDL
predictions are point-wise predictions and averaging may not always be optimal.

C.5 Deep Deterministic Uncertainty

Deep Deterministic Uncertainty (DDU) [[163] models differ from other uncertainty-aware baselines
as they do not represent uncertainty in the prediction space, but do so in the input space by identifying
whether an input sample is in-distribution (iD) or out-of-distribution (OoD). As a result, DDU
provides predictions Pgqy(y | x,D) in the form of softmax probabilities akin to traditional neural
networks (NNs).

C.6 Credal Models

Models that generate credal sets [137,1262,146, 19, 44] represent uncertainty in predictions by providing
a set of plausible outcomes, rather than a single point estimate. A credal set 137,262, 46, 9l 144]]
is a convex set of probability distributions on the target (class) space. Credal sets can be elicited,
for instance, from predicted probability intervals [252, 29]] [p(y), p(v)], encoding lower and upper
bounds, respectively, to the probabilities of each of the classes:

Cr(y | x,D) = {p € P|ply) < ply) <By), Yy € Y}. @

A credal set is efficiently represented by its extremal points; their number can vary, depending on the
size of the class set and the complexity of the network prediction the credal set represents.
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C.7 Belief Function Models

Belief functions [212]] are non-additive measures independently assigning a degree of belief to each
subset A of their sample space, indicating the support for that subset.

A predicted belief function Bel on Y is mathematically equivalent to the credal set
Crg,(y|x,D)={peP|p(A) > Bel(A)}. (8)

Its center of mass, termed pignistic probability [219] B etP[BAel], assumes the role of the predictive
distribution for belief function models [233 152]]: ppei(y | x,D) = Bet P[Bel].

Belief functions can be derived from mass functions through a normalization process, where the
belief assigned to a hypothesis is the sum of the masses of all subsets of the frame of discernment
that include the hypothesis. A mass function [212] is a set function [63] m : 20 [0, 1] such that
m(0) = 0and >, g m(A) = 1. In classification, 2° is the set of all subsets of classes C, the
powerset P(C). Subsets of © = C whose mass values are non-zero are called focal elements of m.
The belief function associated with m is given by: Bel(A) = " 5 , m(B). The redistribution of
mass values back to singletons from focal sets is achieved through the concept of pignistic probability
[219]. Pignistic probability (BetP), also known as Smets’ pignistic transform, is a method used to
assign precise probability values to individual events based on the belief function’s output.

Aleatoric uncertainty in such models is represented as the pignistic entropy of predictions Hp.ip,
whereas epistemic uncertainty can be modelled by the ‘size’ of the credal set (Eq. [g).

D A comparison of uncertainty estimation models

In Tab. [T} we present the training and inference times (computational costs) for the uncertainty
methods discussed in Sec. [3|and Fig. [2} Two examples of each model type are shown, all trained on
the ResNet50 backbone. More training details are given below.

The models evaluated include a range of uncertainty estimation frameworks: traditional model
(ResNet50), Bayesian approximations such as Laplace [106] and function-space variational inference
[201]], ensemble methods including deep ensembles [132] and epistemic neural networks (ENN)
[[L76], evidential approaches [209,190]], and Epistemic Al frameworks based on credal sets [249]
and random-set theory [152]]. These models differ not only in their uncertainty modeling principles
but also in computational costs (see Tab. [T)), reflecting a spectrum of trade-offs between performance
and efficiency. For instance, function-space Bayesian methods provide uncertainty but at a high
computational cost [201]], while epistemic random-set models offer competitive accuracy with
efficient inference [152]].

Table 1: Training (in minutes; per 100 epochs) and inference time (in milliseconds; per sample)
comparison of uncertainty estimation methods on the CIFAR-10 dataset.

MODEL TRAINING TIME (100 EPOCHS) (MIN) INFERENCE TIME (MS/SAMPLE)
TRADITIONAL 85.33 1.91+0.7
DETERMINISTIC (DDU) [163] 243.85 59.35 4+ 0.40
BAYESIAN (LAPLACE) [106] 107.90 7.11 £0.89
BAYESIAN (FUNCTION SVTI) [201] 1518.35 340.25 £ 0.76
ENSEMBLE (DEEP ENSEMBLES) [132] 426.66 13163.50 + 3.37
ENSEMBLE (ENN) [176] 712.30 3.10 £ 0.03
EVIDENTIAL (EDL) [209] 188.57 6.12 £ 0.01
EVIDENTIAL (HYPER-OPINION EDL) [[190] 186.56 23.01 £0.15
EPISTEMIC Al (CREDAL) [249] 122.95 63.0+ 1.1
EPISTEMIC AT (RANDOM-SET) [[152] 113.23 1.91 +£0.02

Training details. All models were trained using a ResNet50 backbone (excluding the final classi-
fication layer), followed by two additional dense layers with 1024 and 512 neurons, respectively,
using ReLU activation. For the Epistemic: Random-set [[152] model, the output layer used a sigmoid
activation function to support multi-label classification, while all other models, Epistemic: Interval
[252], Epistemic: Credal [249), Epistemic: Wrapper [250], Bayesian: Laplace [106], Bayesian:
Function SVI [201]], Ensemble: Deep [132]], and Ensemble: ENN [176], used a softmax output for
multi-class classification. The initial learning rate was set to le-3, with a scheduler that reduced the
rate by a factor of 0.1 at epochs 80, 120, 160, and 180. Models were trained for 200 epochs using
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a batch size of 128. The optimizer varied by model: Adam was used for Epistemic: Random-set,
Epistemic: Wrapper, Ensemble: ENN, and Ensemble: Deep, while Bayesian: Function SVI used
SGD. Training dataset sizes were as follows: CIFAR-10 used 40,000 samples and ImageNet used
1,172,498 samples. Test datasets contained 10,000 samples for CIFAR-10 and 2,000 for ImageNet.
For out-of-distribution (OoD) evaluation, 10,000 test samples were used. All models were trained and
evaluated using 224x224 input image size with data augmentation including random horizontal/verti-
cal shifts (magnitude 0.1) and horizontal flips. Experiments were conducted using an NVIDIA A100
80GB GPU.

The pairwise plots in Fig. [§]illustrate the relationships between key uncertainty and performance
metrics: Entropy, Expected Calibration Error (ECE), Area Under the Receiver Operating Charac-
teristic curve (AUROC), and Area Under the Precision-Recall Curve (AUPRC), across different
uncertainty estimation methods. These methods are categorized into Epistemic Al and competitor
types, revealing distinct clusters and trends. Notably, Epistemic Al models show higher entropy
values and competitive AUROC/AUPRC scores, indicating richer uncertainty quantification alongside
robust out-of-distribution (OoD) detection. In contrast, the competitor generally exhibit lower entropy
and slightly varied calibration performance. The correlations visible in the plots reflect inherent
trade-offs: higher uncertainty often aligns with better OoD detection but may impact calibration,
which is crucial for reliable decision-making.
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Figure 8: Pairwise comparison of uncertainty and performance metrics for various uncertainty
estimation methods on CIFAR-10. Metrics include Entropy, Expected Calibration Error (ECE),
AUROC, and AUPRC (OoD Detection).

Impact Statement

This work advances Epistemic Al, offering a more reliable and interpretable approach to uncertainty
quantification in machine learning. By improving AI’s ability to distinguish between known and
unknown uncertainties, this research enhances robustness in critical applications such as healthcare,
autonomous systems, climate modeling, and scientific discovery. A key ethical advantage is its
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potential to mitigate overconfidence in Al predictions, reducing risks in safety-critical domains like
medical diagnosis and autonomous decision-making.

Future societal impacts include more trustworthy Al systems that can adapt to novel and evolving
situations, fostering responsible deployment in high-stakes environments. Furthermore, integrating
epistemic uncertainty into Al could bridge gaps between symbolic reasoning and deep learning,
advancing neurosymbolic Al and promoting generalizable, human-aligned decision-making. However,
ethical considerations only arise in the potential misuse of uncertainty-aware Al, such as adversarial
exploitation or biased decision-making if epistemic uncertainty is misinterpreted. Addressing these
risks requires transparent Al models, regulatory oversight, and interdisciplinary collaboration.
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