
Modelling Program Spaces in Program Synthesis with
Constraints
TILMAN HINNERICHS∗, TU Delft, Netherlands

BART SWINKELS∗, TU Delft, Netherlands

JAAP DE JONG, TU Delft, Netherlands

REUBEN GARDOS REID, TU Delft, Netherlands

TUDOR MAGIRESCU, TU Delft, Netherlands

NEIL YORKE-SMITH, TU Delft, Netherlands

SEBASTIJAN DUMANCIC, TU Delft, Netherlands

A core challenge in program synthesis is taming the large space of possible programs. Since program synthesis

is essentially a combinatorial search, the community has sought to leverage powerful combinatorial constraint

solvers. Here, constraints are used to express the program semantics, but not as a potentially potent tool

to remove unwanted programs. Recent inductive logic programming approaches introduce constraints on

the program’s syntax to be synthesized. These syntactic constraints allow for checking and propagating a

constraint without executing the program, and thus for arbitrary operators. In this work, we leverage syntactic

constraints to model program spaces, defining not just solutions that are feasible, but also ones that are

likely useful. To demonstrate this idea, we introduce BART, a solver that efficiently propagates and solves

these constraints. We evaluate BART on program space enumeration tasks, finding that, on the one hand, the

constraints eliminate up to 99% of program space, and that, on the other hand, investing in modelling program

spaces pays off, reducing enumeration time significantly.

CCS Concepts: • Software and its engineering→ Programming by example.

Additional Key Words and Phrases: Program Synthesis, Constraints, Automated Programming

1 Introduction
The goal of program synthesis is simple: Let computers write their own code. Given the user’s intent

and a target language, a program synthesis algorithm returns the target program. Here, the intent

is formalized by a specification and language described by a grammar. Program synthesis is often

framed as a combinatorial search: To find a solution, the synthesizer has to enumerate (possibly

all) programs that follow the grammar. Unfortunately, even with a relatively simple grammar, the

spanned space of possible programs usually grows exponentially [17]. Hence, a core challenge in

program synthesis is taming and restricting the large space of possible programs. Even modelling

the program space is a challenge: On one hand, we want the program space to be expressive enough

to tackle real-world problems, but on the other, also small enough so it can be searched effectively.

Combinatorial constraint solvers are a natural and common choice to approach program synthesis:

They are efficient at combinatorial search, and constraints can easily express specifications and

help to restrict program spaces by, e.g., removing redundancies. Thus, the community has sought to

leverage powerful constraint solving paradigms, such as Satisfiability (SAT), Satisfiability Modulo

Theory (SMT), and Answer Set Programming (ASP) solvers [2, 4, 11, 16].

However, the expressivity and current usage of constraints in program synthesis are limited. In

Syntax-Guided Synthesis (SyGuS) [2], a common program synthesis paradigm, constraints express

∗
Both authors contributed equally to this research.

Authors’ Contact Information: Tilman Hinnerichs, t.r.hinnerichs@tudelft.nl, TU Delft, Delft, Netherlands; Bart Swinkels,

b.j.a.swinkels@student.tudelft.nl, TU Delft, Delft, Netherlands; Jaap de Jong, j.dejong-18@student.tudelft.nl, TU Delft, Delft,

Netherlands; Reuben Gardos Reid, r.j.gardosreid@tudelft.nl, TU Delft, Delft, Netherlands; Tudor Magirescu, magirescu@

student.tudelft.nl, TU Delft, Delft, Netherlands; Neil Yorke-Smith, n.yorke-smith@tudelft.nl, TU Delft, Delft, Netherlands;

Sebastijan Dumancic, s.dumancic@tudelft.nl, TU Delft, Delft, Netherlands.

ar
X

iv
:2

50
8.

00
00

5v
1

 [
cs

.P
L

]
 1

0
Ju

l 2
02

5

HTTPS://ORCID.ORG/1234-5678-9012
https://orcid.org/1234-5678-9012
https://arxiv.org/abs/2508.00005v1

2 Hinnerichs et al.

the program semantics and thus allow the solvers to execute programs. This, however, requires

knowing every operator’s semantics. Adapting to a new domain – by adding a new operator

or a new type of constraint, for instance – thus depends on defining an entire theory and the

operator’s behaviour. For example, defining the semantics of every operator of the programming

language Julia into SMT is infeasible, due to loops, meta-programming, and others, which have no

equivalent in SMT. One can argue that this non-trivial step, namely encoding an entire programming

language’s semantics into constraints, prevented the community from moving beyond standard

benchmarks [20] such as Linear Integer Arithmetic and String Theory [6]. Yet, it is intuitive

to formulate useful constraints when synthesizing loops in Julia: For example, the expression

after while true should contain a break statement. While we will not go beyond common

synthesis benchmarks in this paper, we aim to provide a framework that allows us to formulate

such constraints.

A second use of constraints in program synthesis is as a potentially potent tool to remove

unwanted programs, also called ‘pruning’ in constraint-solving. In other fields, such as constraint

satisfaction problem (CSP) solving [27] or inductive logic programming (ILP) [8], constraints are

used to induce a language bias [10, 23]. That is, to guide the search – defining not just solutions

that are feasible, but also ones that are likely useful. Specifically, in CVC [4] and other SyGuS

synthesizers, constraints are not used beyond expressing semantics and specification of a program

synthesis problem. We aim to extend the benefits of this idea in program synthesis.

Syntactic constraints. ILP, i.e., program synthesis for logic programs, has considered syntactic
constraints, a new type of constraint. Recent ILP approaches, like Popper [9], introduce constraints

on the program’s syntax to be synthesized [8, 24]. Popper uses constraint solvers (namely ASP) to

represent and enumerate program space, but does not leverage constraints to describe a program’s
semantics. For logic programs, the notion of constraints can be checked on a syntactical level,

without executing the program. We aim to generalize syntactic constraints for general program

synthesis.

Using syntactic constraints has several advantages. First, it allows us to treat operators as black

boxes and formulate constraints over them; adding or changing operators becomes straightforward.

ILP and Popper thus allow us to tackle amuchwider variety of domains. A second advantage of using

syntactic constraints is: not having to evaluate programs to test constraints accelerates propagation

– a core of constraint-solving algorithms. A third advantage is that many such constraints, such as

breaking symmetries or forbidding a certain program structure, directly follow from the domain,

are straightforward to derive, and are valid across problems.

Generalizing syntactic constraints beyond logic programs, and how to best use solvers to express

and iterate programs that do not violate them, is not obvious. Firstly, common SyGuS solvers

like CVC5 are neither suitable to represent nor to efficiently propagate syntactic constraints.

These solvers are tailored to efficiently represent semantically-related programs, e.g., evaluating to

the same output. Contrary, a syntactical constraint prevents programs with similar syntax from

being generated. For example, preventing the redundant addition of 0 removes the syntactically

overlapping programs 𝑥+0, 1+0, and (𝑥+1)+0. To efficiently propagate these syntactic constraints, a

solver requires an efficient representation of syntactically similar programs, which common SyGuS

solvers do not provide. Further, expressing and representing syntactic constraints in existing SyGuS

solvers is hard. For example, CVC5 is built around decision variables, which dictate the choice

of constraints, but does not provide explicit access to them. Thus, formulating purely syntactic

constraints is challenging, if not impossible.

Secondly, approaches like Popper, too, fall short when applied to program synthesis directly.

First, Popper is limited to ILP and hence only synthesizes logic programs. Moreover, constraints in

Modelling Program Spaces in Program Synthesis with Constraints 3

Popper and other synthesizers [1, 24] are encoded at the propositional level, each removing a single

or only a few programs. Indeed, this is feasible for ILP, but not for general program synthesis, where

many more constraints must be derived and each propagated individually. We observe, however,

that many discovered constraints are similar to each other in form and operators used. If they were

expressed on a first-order level, constraints could be represented more compactly and propagated

more efficiently.

This paper. This paper uses syntactic constraints to model program spaces. We aim to invest in

defining the syntactic space of programs, beyond formulating a context-free grammar. That is, we

use syntactic constraints to prune the search space before (and during) the search. We follow a

central claim of ILP approaches: Many useful and highly impactful constraints can be expressed

purely syntactically, also in general program synthesis. To express these constraints, this paper

contributes an extensible language of constraints that allows us to express syntactic constraints.

In line with this goal, this paper contributes to the literature a new constraint solver, named

BART, tailored towards efficiently solving syntactical constraints in program synthesis. Crucially,

BART leverages the inference strength of syntactic constraints to remove invalid programs before
they are enumerated. Based on solvers in the constraint-solving community, we carefully choose

the abstractions to make syntactic constraints easier to express.

Altogether, the novel solver holds three noteworthy innovations:

(1) BART uses abstract syntax trees (ASTs) as its core abstraction to express constraints. By

having the constraints and the internal data structures of BART represented as ASTs, it is

easier to represent and propagate syntactical constraints. Our constraints are first-order,
meaning that nodes in the ASTs can be a range of values or variables. Thus, a single first-

order AST can represent a set of grounded ASTs, allowing for a compact representation.

The representational choice of first-order ASTs hence overcomes Popper’s.

(2) BART builds upon ASTs to define simple program spaces: a sub-space in which syntactic

constraints are easier to enforce. The power of constraint solving comes from working

with problems of fixed structure (in terms of variables and constraints). We innovate by

introducing a key notion of what constitutes a fixed-structure problem in synthesis: a set

of all programs represented with the AST of the same shape and with a type associated

with every node. We term this structure uniform tree. BART lazily constructs uniform trees
of increasing complexity as needed and actively discards the ones that are no longer needed.

(3) BART introduces a set of concrete syntactic constraints together with their propagators.

This set is fully extendable and provides basic functionality such as forbidding or enforcing

certain sub-programs, as well as symmetry breaking. We further support the conjunction

of arbitrary constraints. Note that our ambition does not include introducing a standard

constraint library for program synthesis, akin to the MiniZinc language or SMT-LIB. Instead,

our work presents several constraints that we found useful for pruning symmetries and

provides a general framework for integrating new constraints so that the community can

build upon them. While limited, this set already allows for the expression of a large portion

of relevant syntactic constraints, as shown in the experiments. We eventually provide proofs

for the soundness and correctness of our propagators, i.e., we prove arc consistency [27].

To demonstrate the benefits of using syntactic constraints for modelling program spaces and

of a dedicated constraint solver, we evaluate our contribution on six program space enumeration

tasks. Specifically, we impose a set of intuitive syntactic constraints, such as those generated by

Ruler [25], that eliminate redundant programs, e.g., sorting a list twice is equivalent to sorting it

once. We then compare (i) how many programs the constraints eliminate, and (ii) how long it takes

to enumerate all valid programs. We demonstrate that syntactic constraints eliminate a significant

4 Hinnerichs et al.

𝐼𝑛𝑝𝑢𝑡 𝑂𝑢𝑡𝑝𝑢𝑡

𝑥 = 2 5

𝑥 = 4 17

𝑥 = 6 37

(a) Input-output examples

Int := 𝑥 |1
Int := − Int
Int := Int + Int | Int × Int
Int := if Bool then Int else Int

Bool := Int == Int

. . .

(b) A simple arithmetic grammar

×
+

1 1

×
×

1 𝑥

𝑥

(c) An AST representing 2𝑥2

Fig. 1. A simple arithmetic program synthesis problem (LIA) and an example of a complete program. Figure
(a) shows a specification by input-output examples, with Figure (b) describing the context-free grammar
of possible programs. Figure (c) shows a valid yet semantically redundant candidate program, as 1 × 𝑥 is
equivalent to 𝑥 .

part of program space on standard benchmarks (eliminating up to 99% of programs). Indeed,

because its constraint propagation avoids ever enumerating programs that violate constraints,

BART enumerates program spaces between two and three magnitudes faster. We further show the

speed-up through first-order constraints, and how syntactic constraints can be utilized to guide

existing state-of-the-art synthesizers, namely Probe [5] and EUSolver [29].

Contributions and organisation. In summary, the contributions of this paper to the literature are:

• a definition of a constrained program space which incorporates constraints over program

structure into grammars;

• a set of constraints that help eliminate unwanted programs from program spaces;

• a constraint solver tailored towards program synthesis problems; and

• an integration of the solver into two common families of search procedures, top-down and

bottom-up search;

The remainder of the paper is structured as follows. We first introduce a motivating example

(Section 2) and revisit concepts in program synthesis and constraint programming, upon which we

aim to build BART (Section 3). In Section 4, we concretely define the term constrained program space
and formally state the problem we aim to solve. Section 5 provides an overview of and intuitions for

our solver. Sections 6 to 8 are structured as follows: We start by defining a language of constraints

we want to express in Section 6. Second, we define the architecture and interface of BART and

how to concretely propagate the constraints within simple program spaces in Section 7. Third, we

describe how to concretely implement top-down and bottom-up iterators using BART in Section 8.

We evaluate our method experimentally in Section 9. In Section 10, we consider related work and

conclude with a summary and potential future work in Section 11.

2 Motivating Example
In this section, we present a motivating example of how constraints can be a powerful tool to model

program spaces. We highlight constraints for effectively removing redundant programs and how to

use them to guide the search.

Test-driven programming. Suppose that we are given a list of unit tests and need to find a function

that passes them. The unit tests define a list of integer inputs and test whether the function returns

the desired integer outputs when executed on the respective input (Figure 1a). The programming

Modelling Program Spaces in Program Synthesis with Constraints 5

language is rather simple and defines a range of operations over integers (Figure 1b). This language

is also called a linear-integer arithmetic (LIA) grammar.

2.1 Using Syntactic Constraints to Remove Redundant Programs
Given the seemingly simple problem, we want to quickly find a solution. However, the search

space grows exponentially with the depth of the program. Further, as the grammar contains many

operators, the search space becomes quickly infeasibly large. Fortunately, there are many redundant

programs and symmetries. For example, Figure 1c contains the valid but redundant sub-program

1×𝑥 . Similarly, the operators Int+ Int and Int× Int are commutative, and thus a source of symmetry

in the program space. While holding semantic information, both symmetries can be enforced

entirely on the syntactic level. These syntactic constraints are easily discovered or given for many

synthesizers, and straightforward to check on a syntactic level.

Simple search spaces. Notably, + and × share a similar shape: Both operate over integers and

take two arguments. From a syntactic view, they behave exactly the same. Hence, constraints

enforced on the integer arguments of the addition are likely also applicable to the arguments of

the multiplication. We exploit this principle with the notion of simple search spaces, that is, search
spaces where, no matter the choice of operators, the shape of the program does not change.

Simple search spaces make it easier to remove programs like 1× 𝑥 , 1× (𝑥 + 1), . . . ; programs that

all follow a similar syntactic template 1 × Int. Notably, we do not have to enforce this constraint

everywhere, but only at the nodes in the AST where this template can occur, i.e., they match.
Matching template to AST nodes, our constraint system is centered around the speed and correctness

of the matching function.

Constraints over shapes. Instead of expressing a constraint on every program individually, we

can express constraints over shapes, like 1 × Int. We express these tree-like shapes using template
trees, which allow for two special types of first-order nodes.

First, we want to break the commutative symmetry for both + and ×. We observe that many

constraints apply on the same template or shape, just like for + and ×. Nodes in template trees

can thus be a range of possible values they match. The template thus becomes Int{+,×}Int. This
increases inference strength in our simple program spaces: Given + and × are both possible at a

node, we only have to break the symmetry once, not twice.

Second, the if-then-else statement holds a different type of symmetry: Here, we want the then
and else branches of the statement to be different, but for any possible assignment. In other words,

we want to match a wide range of possible programs and conditionally enforce a constraint. That

is, we only care about the sub-program in the then sub-branch if it matches the else branch.
Formulating and enforcing these types of constraints for all possible programs is not easy. Our

language thus introduces a higher-order type of constraint, introducing variables to constraints that

match a sub-tree within an AST. First, this allows us to describe constraints over partial programs:

We can easily formulate and propagate constraints like Forbid (1 × Int) by using a variable :A.
Second, we can easily express the constraint on the if-then-else statement above, removing all

programs that follow the shape if Bool then :A else :A with variable :A.

A(n) (extendable) language for constraints. In the unit-test example, wewant to forbid some shapes,

like 1 + Int, and enforce others, like “the program must contain the input-symbol”. We thus provide

a range of standard operators for syntactic constraints we think are useful in practice. Beyond

Contains and Forbid, i.e., a program must or must not contain this shape, many more operators

are possible. We express two more constraint operators: Ordered, used to break commutative

symmetries, and Unique, expressing that the shape can occur at most once.

6 Hinnerichs et al.

This constraint language is not a standard language, like MiniZinc. BART allows the formulation

and description of additional constraints and their propagators. Again, the notion of shape makes

checking and propagating many constraints a lot easier.

Enforcing constraints on new operators. Assume that we have not found a solution program yet

that passes all the unit tests. We assume that this is due to the simplicity of the grammar. Thus,

we add another operator to the grammar: min(Int, Int) and max(Int, Int), which are, like the

if-then-else statement, not given in the standard LIA formulation. Similar to × and +,𝑚𝑖𝑛 and𝑚𝑎𝑥

are commutative, and𝑚𝑖𝑛(𝑥,𝑦) and𝑚𝑎𝑥 (−𝑥,−𝑦) are the same. Though the concrete semantics of

the operators are not defined in this SMT theory, we can easily come up with redundant programs

and symmetries.

2.2 Using Syntactic Constraints to Guide the Search
The second use of constraints we want to highlight is the modelling power they provide, beyond

describing only feasible programs.

Defining useful programs. We are not restricted to formulating constraints that remove redun-

dancy, but can describe constraints that are useful. For example, a useful syntactic constraint is that
every program should depend on the input. A program that does not contain the input is valid but

likely useless.

Further in our example, we can directly see that the solution should be ‘simple’ in nature. Hence,

we can choose to restrict the program space to simpler programs, introducing a language bias. For
example, we can enforce that at most one if-then-else statement is contained in the target program,

as we likely do not need that many conditionals. While both constraints do not remove redundant
programs, we can force the search to a useful sub-space.

Better search. Moreover, we argue that constraints are a useful tool for directing search. Again,

assume the case where we didn’t find a solution and added the operators 𝑚𝑖𝑛 and 𝑚𝑎𝑥 to the

grammar. We ideally want to avoid re-exploring previously explored programs by ensuring that

the new operators are present.

This resembles a crucial step in deploying program synthesizers: Finding the right domain-

specific language (DSL), which involves adding and removing functionality from the grammar. Our

solver makes it possible to impose a constraint stating that every explored program should contain
a new primitive. This way, our solver BART only explores programs that have not been explored

before.

3 Background
To explain our contribution in detail, we start by introducing both program synthesis and the

fundamentals of constraint programming.

3.1 Program Synthesis
Program synthesis (PS) is the task of deriving satisfying programs from (1) a specification, describing

user intent, and (2) a program space, describing the space of possible programs. One way to express

the user intent is through a set of input-output (IO) examples that should all be satisfied by the

target program. The space of feasible programs is usually expressed by a context-free grammar,

comprised of a set of derivation rules.

Example 1. For the LIA domain, Figure 1 shows a specification by example and a context-free

grammar (CFG) describing the program space.

Modelling Program Spaces in Program Synthesis with Constraints 7

Solving a program synthesis task is an enumerative search through the search space spanned

by possible grammar rules. There exist multiple search strategies to find solution programs. We

briefly introduce common terminology used for search.

Here, a program is described by its abstract syntax tree (AST). Top-down search starts by taking

the starting symbol of the grammar as the root. Nodes corresponding to non-terminal symbols are

called holes. Any program tree with one or more holes is called a partial program and needs to be

repeatedly expanded until there are no holes left, making it a complete program. Holes are filled

using production rules, making it a concrete value node.

Example 2. The program
if Bool then x+1 else Int

is partial, with two holes described by the non-terminals {Bool, Int}.

Repeatedly applying derivation rules describes the search tree, with program trees as nodes and

connections between (partial) programs and their respective refinements. Note that the search tree

is usually infinite and pruned by setting a maximum program depth and/or size.

3.2 Constraint Programming
Constraint Programming (CP) concerns formulating and solving Constraint Satisfaction Problems

(CSP) or their optimisation variants [22, 35]. Given a CSP, we try to find an assignment for a given

set of variables that satisfies a given set of constraints. In the upcoming sections, we will review

constraint programming techniques, so we can reapply them for the purpose of solving simple
program spaces in program synthesis.

Formulating CSPs. A Constraint Satisfaction Problem consists of three components: a set of

decision variables 𝑋 , a set of their respective initial domains 𝐷 , and a set of constraints C.
A decision variable 𝑥 ∈ 𝑋 is a variable that can take values in its corresponding domain𝐷 (𝑥) ∈ 𝐷 .

Whenever there is only 1 value a variable can take, that is |𝐷 (𝑥) | = 1, we say a variable is fixed. A
CSP is considered solved if all variables are fixed and all constraints are satisfied.

A constraint 𝑐 ∈ C can restrict the feasible combination of variable values. For example, we may

include a constraint 𝑐 = (𝑥 > 𝑦) to enforce that x must always be larger than y.

Example 3.
𝑋 = {𝑥,𝑦, 𝑧}
𝐷 = {𝐷 (𝑥), 𝐷 (𝑦), 𝐷 (𝑧)} = {{1, 5, 7}, {2, 3, 5}, {−1, 1, 3, 5}}
C = {𝑥 ≥ 𝑦, 𝑧 = 𝑥 − 𝑦}

We can solve this example upon inspection and find a solution: (𝑥,𝑦, 𝑧) = (5, 2, 3). Note that in
this case, the solution is not unique.

Solving CSPs. Solving a given CSP consists of reasoning (propagation) and search (branching);

some solvers also use clause learning and relaxations:

(1) Propagation: Check for constraint violations and filter out impossible values from domains.

(2) Branching: When no solutions can be filtered, split the problem into multiple sub-problems

with smaller domains, such that any solution of the original problem can be found in the

union of the sub-problems.

We describe how constraint propagation is implemented in Mini-CP [22], a CP solver for educa-

tion purposes. Propagation is responsible for removing impossible values from domains according

to the constraints. This process will continue until the constraints are unable to further reduce any

of the domains. This is called a fixed point: applying any propagation has no effect.

8 Hinnerichs et al.

To handle constraints, constraint-satisfaction solvers provide two functions:

(1) Post constraint is executed whenever the constraint is first imposed. This is where the

initial propagation of a constraint takes place. Variables, that occur in the constraint, add

this constraint to their list of active constraints.

(2) Propagate constraint tries to shrink the domains of its related decision variables using

a constraint type-specific filtering algorithm. Propagation gets triggered, e.g., on variable

domain changes, and may trigger the propagation of other constraints.

After executing the fix-point algorithm, wemay not have found a solution yet. That is, there exists

some variable 𝑥 ∈ 𝑋 with |𝐷 (𝑥) | ≥ 2, and none of the constraint propagators can further reduce

the domain size. In that case, we branch and divide the problem into two or more sub-problems

such that all solutions of the original problem can be found in the union of the solutions of the

sub-problems. Figure 2 demonstrates how a solver may branch on the domain of 𝑥 .

The repeated application of the branching scheme forms a tree structure. The nodes of this

tree are called states. Exploring new states in the search tree is typically done using a depth-first

traversal. This search strategy is memory efficient since only a single state needs to be maintained

at a time [22]. Should a state (search node) be reached where one or more variables have an empty

domain, then the solver backtracks to an earlier node in the search tree (e.g., the parent node), and

chooses another sub-problem. Should the whole search tree be fathomed without finding a solution,

then the problem is infeasible, having no solution.

(a) Fix-point in the root (b) Branching

Fig. 2. Solving the CSP from Example 3 branching on the domain of 𝑥 . For the right branch, the constraint
𝑥 ≠ 5 is posted, which triggers the propagation and the fix-point algorithm, leading to no feasible solution.

4 Problem Statement
In this section, we formally define the general problem of program synthesis and the specific

problem of searching over a constrained program space.

Definition 1 (Program Synthesis). Given a context-free grammar G that specifies the syntax of the

programming language and program space PG , and a specification of user intent S : P → {0, 1},
find a program 𝑝 ∈ PG derived from G such that S(𝑝) = 1.

We further define a constrained program space as:

Definition 2 (Constrained Program Space). Given a context-free grammar G, the original program
space PG and a set of constraints C, the constrained program space PG,C is the set of all programs

𝑝 ∈ PG such that 𝑝 satisfies all 𝑐 ∈ C.

Modelling Program Spaces in Program Synthesis with Constraints 9

We call a (partial) program 𝑝 inconsistent w.r.t. C, if
(1) 𝑝 violates any of the constraints C, or
(2) all possible completions of 𝑝 violate any of the constraints C.
A context-free grammar (CFG) with rules dependent on their context in the form of constraints

is called a context-sensitive grammar (CSG).

Definition 3 (Program Synthesis with Constraints). Given a context-sensitive grammar G with

constraints C and specification S : P → {0, 1}, find a program 𝑝 ∈ PG,C derived from G such that

S(𝑝) = 1.

5 Method Overview
Given a program space and a set of constraints on that space, the main goal of our solver BART
is to enumerate programs from the provided space such that no program violates the constraints.

The key conceptual idea is to iteratively and lazily construct simple program spaces in which

constraint propagation is efficient (Figure 4). We formally define what a simple program space is

later; intuitively, a simple program space consists of programs represented with an AST of the same

shape and type. In this context we use constraint solving and program enumeration as synonyms:

we think of constraint problems as representations of program spaces such that every valid solution

to the problem constitutes a program from that space.

Our synthesis framework effectively acts as a meta-solver coordinating two solvers: a decom-
position solver formulating simple program spaces and a uniform solver enumerating programs

from the simple space. The decomposition solver constructs problems and proactively propagates

constraints that can be propagated early. It also proactively detects when simple program spaces

are invalid, i.e., all programs violate constraints. The uniform solver iterates over all programs with

the identical AST shape and makes sure that all returned programs satisfy constraints. BART thus

combines these two sub-solvers together with a search procedure, in order to achieve effective

program synthesis.

6 Modelling the Program Space (be)for(e) Synthesis
In this section, we describe how to shape the search space. We first introduce a language to express

constraints over ASTs, i.e., a language to constrain shapes. For our set of basic constraints, we

define the syntax and interpretation. Second, we formally introduce the notion of simple program

spaces, that is, shapes in which constraints are easy to propagate and enforce. Third, we intersect

the two notions using local constraints: constraints that hold for a certain simple shape.

6.1 The Language of Constraints
We define a canonical language to describe syntactic constraints over ASTs, that is, the syntactic

representation of a program. Our constraint system is centred around the matching of (sub-)trees.

We start by introducing the different node types and defining matching. Second, we introduce the

different constraint operators, also called constraint types.

All constraints have the following shape.

Definition 4. Given a constraint operator 𝑂𝑝 and a template tree 𝑡 a constraint has the form

𝑂𝑝 𝑡

A template tree denotes all programs that fit this syntactic template.

The values of nodes in the template trees refer to the derivation rules in the grammar, used to

derive a program. To make sure the derivation rules are referred to unambiguously, we use the

10 Hinnerichs et al.

{+, ×}

: 𝑎 : 𝑎

(a) A template tree 𝑡

+

1 1

×
+

1 𝑥

+

1 𝑥

(b) Concrete trees matching with 𝑡

+

1 𝑥

(c) Concrete tree not matching with 𝑡

Fig. 3. Example for matches and non-matches for template tree𝑇 . The template tree in (a) enforces that both
children are the same. Thus the tree in (c) does not match 𝑡 .

indices of the derivation rules as the values. We use the grammar in Figure 1b to illustrate the

constraints.

The template trees are built from three types of nodes, which differ in the values they take.

Definition 5 (Value node). A value node is a node with a value assigned to an index of a derivation
rule from the given grammar G.
Definition 6 (Domain node). A domain node is a node with a value assigned to a set of indices
from the given grammar G.
Definition 7 (Variable node). A variable node is a node with a name assigned to it.

The domain node allows us to compactly represent a class of template trees. The variable nodes

allow us to unify/match a subtree and refer to it within a template tree.

Example 4. We use curly braces to denote domain nodes and a starting colon to denote variable

nodes. The template tree in Figure 3a contains domain node {+,×} and variable nodes : 𝑎.

Definition 8. Given a set of derivation rule indices 𝐷 , the set of template trees T is recursively

defined as:

• a value, domain, and variable nodes are template trees and in T
• if children 𝑐1, . . . , 𝑐𝑛 are template trees, i.e. are in T , then (𝑑, (𝑐1, . . . , 𝑐𝑛)) is also in T where

𝑑 ∈ 𝐷 and 𝑛 is the arity of 𝑑

• nothing else is in T .
The constraints effectively forbid or require the presence of a template tree in the AST of

programs. We therefore define a matching operator between an AST and a template tree, which, in

turn, depends on a matching operator between their nodes. The constraint checking algorithms

use the same matching operator to propagate the constraints.

Definition 9 (Node match). A node 𝑛𝑝 from an AST matches a node 𝑛𝑡 from a template tree

• if 𝑛𝑡 is a value node, then 𝑛𝑝 and 𝑛𝑡 match if they have the same value

• if 𝑛𝑡 is a domain node, then 𝑛𝑝 and 𝑛𝑡 match if 𝑛𝑝 ∈ 𝑛𝑡
• if 𝑛𝑡 is a variable node, then 𝑛𝑝 and 𝑛𝑡 match and, additionally, 𝑛𝑡 unifies with the tree

rooted at 𝑛𝑝

Definition 10 (Tree match). An AST (𝑎, (𝑎𝑐1, ..., 𝑎𝑐𝑛)) matches a template tree (𝑡, (𝑡𝑐1, ..., 𝑡𝑐𝑚)) iff
𝑛 =𝑚 and

• the root nodes 𝑎 and 𝑡 match, and

• for all 𝑖 such that 1 ≤ 𝑖 ≤ 𝑛, the subtree rooted at 𝑎𝑐𝑖 matches the subtree rooted at 𝑡𝑐𝑖 .

Example 5. The template tree 𝑡 in Figure 3a matches with the trees in Figure 3b but not with the

tree in Figure 3c.

Modelling Program Spaces in Program Synthesis with Constraints 11

Now that we have defined template trees and how to match them to ASTs, we introduce the

set of constraint operators that can be applied to template trees. The operators come from the

following set of basic operators: Unique, Contains, Forbid, Ordered. This is not an exhaustive list

of all operators that might be useful for synthesis, but the ones that we have identified as useful for

removing redundant programs. Our solver provides interfaces to easily add new operators.

We now define the constraints and their semantics. First, the Forbid constraint can be used

to forbid syntactically valid, yet semantically redundant sub-programs from the grammar. For

example, the arithmetic grammar (see Figure 1) has a rule 𝐼𝑛𝑡 := −𝐼𝑛𝑡 . A forbid constraint could

be used to prevent −(−(𝑎)) from appearing anywhere in the program tree. We do not lose the

target program by eliminating such sub-programs, because −(−(𝑎)) is represented by 𝑎 in another

program.

Definition 11 (Forbid). Given a program 𝑝 represented as AST and a template tree 𝑡 , the program

𝑝 satisfies the constraint Forbid 𝑡 if there is no subtree 𝑠 of 𝑝 such that 𝑠 and 𝑡 match.

The Contains constraint enforces that the provided template tree appears somewhere at or

below the root. Within the arithmetic grammar, we could enforce that the program always contains

𝑥 , actually depends on the input.

Definition 12 (Contains). Given a program 𝑝 represented as AST and a template tree 𝑡 , the program

𝑝 satisfies the constraint Contains 𝑡 if there is a subtree 𝑠 of 𝑝 such that 𝑠 and 𝑡 match.

The Unique constraint can be used to enforce that a certain grammar rule cannot appear more

than once. In the LIA environment (see Figure 1), this can be used to enforce that if-then-else is

used only once to only search for simpler programs.

Definition 13 (Unique). Given a program 𝑝 represented as AST and a template tree 𝑡 , the program

𝑝 satisfies the constraint Unique 𝑡 if there is a subtree 𝑠 of 𝑝 such that 𝑠 and 𝑡 match and there is no

other subtree 𝑠′ of 𝑝 , 𝑠 ≠ 𝑠′, such that 𝑠′ matches 𝑡 .

The Ordered constraint ensures that if the program tree contains the specified template tree,

the matched variable nodes in the tree are ordered; by default, we use lexicographical order. This

constraint is particularly useful for breaking commutative properties. For example, in the arithmetic

grammar, an ordered constraint can be used to ensure that only one of 𝑎 ×𝑏 and 𝑏 ×𝑎 is valid. Since

they are semantically equivalent, we will not lose the target program by eliminating either one

the two programs. The ordering we use is not important, as long as it is consistent throughout the

search. We will use an ascending ordering in the rule index and tie break in a depth-first manner in

case of equality.

Definition 14 (Ordered). Given a program 𝑝 represented as AST, a template tree 𝑡 with variable

nodes 𝑎, 𝑏, . . . and an ordering over trees ≤𝑇 , the program 𝑝 satisfies the constraint Ordered 𝑡 with
respect to ≤𝑇 if 𝑡 and 𝑝 match and the bound variable nodes in the tree follow ≤𝑇 , i.e., 𝑎 ≤𝑇 𝑏 ≤𝑇

By default, we set ≤𝑇 to be the lexicographical order over trees, but any total order comparing

program trees is applicable.

Definition 15 (Conjunction of Constraints). The program 𝑝 satisfies the set of constraints C =

{𝑂𝑝𝑖 𝑡𝑖 } if 𝑝 satisfies all 𝑂𝑝𝑖 𝑡𝑖 ∈ C.
Example 6. In the arithmetic grammar, the ordered constraint

Ordered
©­«

{+, ×}

: 𝑎 : 𝑏

ª®¬
can be used to ensure that only 𝑎 × 𝑏 and 𝑎 + 𝑏 are explored, but 𝑏 × 𝑎 and 𝑏 + 𝑎 are not.

12 Hinnerichs et al.

Example 7. The set of constraints{
Forbid

(
×

1 : 𝑎

)
, Contains (𝑥)

}
allows program 𝑝1 but eliminates program 𝑝2 and 𝑝3 of

𝑝1 =

+

1 ×
𝑥 𝑥

, 𝑝2 =
×

1 𝑥
, 𝑝3 =

+

1 1

6.2 Simple Program Spaces
So far, we have left the notion of a simple program space intuitive; we now precisely define it.

With simple program spaces, we want to represent a class of programs whose ASTs have the

same shape. Looking at it from a constraint-solving perspective, the nodes in the AST are the choice

variables, where choices correspond to functions and arguments to be placed at the nodes, and no

matter which choice we make at any of the nodes, the shape of the AST does not change. If this is

the case, constraint propagation can be done efficiently.

Consider how choices change the AST shape.

Example 8. Consider the grammar from Figure 1b. The addition rule 4 has a different shape than

the negation rule 3, due to the different number of children. Rule 4 has a different shape to the

made-up rule

Int := negate_on_condition(Bool, Int)
as the child’s types are different. The addition rule 4 has the same shape as the multiplication rule

5. Hence, choosing between 4 and 5 leads to no changes in the shape of the AST.

We call the structure representing all programs with an identically shaped AST a uniform tree. A
uniform tree can contain two types of nodes: value nodes and holes. Value nodes are identical to

definition 5.

Definition 16 (Hole). A hole is a node such that

• the value of a hole is a range of derivation indices of a grammar G, and
• the children are holes or value nodes, or an empty set (indicating a leaf node).

Note that our notion of holes is different from the standard notion in the literature, where a hole

is simply an unfilled part of an AST [2, 17, 30]. In our interpretation, a hole is every node for which

we did not make a final decision about its value. Importantly, a hole can have children, which can

also be holes or value nodes.

Now we introduce a special version of a hole: No matter the choice we make for the holes in a

tree, the shape always stays the same. We call these uniform holes.

Definition 17 (Uniform holes). A uniform hole is a node such that

• its value is a range of derivation indices of a grammar G,
• every value assignment from the range results in the same number of children

• its children are uniform holes or value nodes, and

• each child has at most one type.

The types of a hole are described by the types of its possible values. To keep its shape, we require

holes to have at most one type, i.e., the same type of continuation.

Finally, we give a definition of a uniform tree.

Modelling Program Spaces in Program Synthesis with Constraints 13

Definition 18 (Uniform tree). A uniform tree is a tree such that

• The root is either a value node or a uniform hole, and

• All children of the root are uniform trees.

Example 9. Consider

𝑝1 =

{+, ×}

{1, 𝑥 } −

{1, 𝑥 }

, 𝑝2 =

{+, ×}

{+, 𝑥 } −

{1, 𝑥 }

𝑝1 is uniform. 𝑝2 is not uniform due to the hole on the left not being uniform, allowing for different

shapes.

The uniform tree now represents a simple program space. The goal for our solver is now to

enumerate this program space and ensure that every program is valid, given constraints.

To accommodate that AST nodes are now a range of possible values, we update the definition of

the matching function from Definition 9:

Definition 19 (Node match for uniform trees). A node 𝑛𝑝 from a uniform tree, given by its domain,

matches a node 𝑛𝑡 from a template tree

• if 𝑛𝑡 is a value node, then 𝑛𝑝 and 𝑛𝑡 match if |𝑛𝑝 | = 1 and 𝑛𝑡 ∈ 𝑛𝑝
• if 𝑛𝑡 is a domain node, then 𝑛𝑝 and 𝑛𝑡 match if 𝑛𝑝 ⊆ 𝑛𝑡
• if 𝑛𝑡 is a variable node, then 𝑛𝑝 and 𝑛𝑡 match and, additionally, 𝑛𝑡 unifies with the tree

rooted at 𝑛𝑝

The tree match for uniform trees remains the same.

6.3 Local Constraints
The constraints we introduced so far, such as Forbid 𝑡 , hold for programs globally. This is easy to

check once a program has been generated. However, when we actively try to propagate constraints,

the solver might need to track several instances of the same global constraint at different parts of a

uniform tree. We call such constraints local constraints.

Definition 20 (Local constraints). The local constraint of a constraint 𝑐 is a rooted version of 𝑐 .

That is, local constraint holds a path pointing to a location in the tree where 𝑐 applies.

Example 10. Consider the uniform tree

𝑝1 =

{+, ×}

{1, 𝑥 } {+, ×}

{1, 𝑥 } {1, 𝑥 }

The local constraint Forbid 1 × Int rooted at path [2], i.e., the right child of the root node, only

propagates when any changes are made to the right sub-tree.

7 Efficiently Propagating Syntactic Constraints in Program Spaces
Having introduced the constraint language, program spaces, and local constraints, we are now

ready to introduce our solver BART. The design is comprised of two parts, the

• decomposition solver, decomposing the program space into simple sub-spaces, and the

• uniform solver, that propagates and iterates simple, or uniform, program spaces.

14 Hinnerichs et al.

Uniform Solver
Uniform Solver

Sketch Program Synthesizer

Partition into Uniform Holes

Grammar

Constraints

Decomposition Solver

Propagate Constraints

Repeat until
no left

Constraints
violated

Evaluator

Specification

Uniform Solver

x=2 5

x=5 17

x=6 37

Propagate Local
Constraints

1. Tree Manipulation

2. Init Uniform
Solvers

3. Return
Solutions

4. Return next
solution

Target
Program

Value node
Non-uniform hole

 Uniform hole

Fig. 4. Overview of constrained program synthesis using BART. (1) The synthesizer operates on the decompo-
sition solver using tree manipulations. (2) The solver then propagates these changes and tries to iteratively
construct uniform trees, i.e., simple program spaces. (3) For each uniform tree, a uniform solver is initialized,
which propagates constraints and iterates solutions. (4) The decomposition solver forwards the solutions
back to the synthesizer, where the solution is tested against the specification. If satisfied, the target program
is returned.

We describe how to use this architecture to effectively propagate syntactic constraints. Sub-

sequently, we introduce the specific propagation procedures for the constraints introduced in

Section 6.1 and prove their correctness. Together with propagation, BART uses search, which is

described in Section 8.

7.1 Solver Architecture
7.1.1 Decomposition solver. The decomposition solver has a range of responsibilities. Its primary

task is to break down the program space into simple program spaces, i.e., uniform trees. The second

task is to maintain a valid state with which the search method interacts. Note that the decomposition

solver is not responsible for iterating over the program space; it only reacts to the command from a

search procedure. Thus, it is responsible for posting and propagating local constraints during the

search.

We first describe the two decomposition algorithms: 1. how to partition a hole, and 2. how to

decompose constraints into more powerful, local constraints. Second, we describe how to keep

track of validity using the solver state. Third, we describe the interface with the solver state, i.e., the

current program, limited to just three kinds of tree manipulations.

Decomposing program spaces. Given a hole (see Definition 16), the solver tries to simplify its

program space. When called, the solver takes the hole and partitions it into the possible shapes it

can derive to, i.e., uniform holes. Once a tree is uniform, i.e., all holes are uniform, a uniform solver

is initialized to solve the simplified problem, or simple program space.

Modelling Program Spaces in Program Synthesis with Constraints 15

×

1 𝑎

(a) Forbidden Tree. Vari-
able node𝑎matches any
sub-tree.

{+, ×}

{1, 𝑥 , −} {+, ×}

1 {1, +, ×}

*

* *

*
*

(b) Local constraints are posted

{+, ×}

{1, 𝑥 , −} +

1 {1, +, ×}

*

*

(c) After propagation

Fig. 5. Forbid constraint (a) is imposed on tree (b) by posting a local constraint (*) at each location. After
propagating, one hole was filled. Only 2 of the local constraints remain active. The other 3 constraints are
satisfied and thus deleted. Here, borders of uniform holes are orange, non-uniform holes are red and dashed,
and variable nodes are green and diamond-shaped.

Decomposing constraints. Every global constraint has a corresponding local constraint. The de-
composition solver triggers whenever a new node (usually a hole) appears in the program tree.

The solver will then post a local variant of the global constraint, propagating the constraint at that

particular location.

Splitting up global constraints into local constraints has two main advantages:

(1) Local constraints can be temporarily deactivated. By deactivating satisfied local constraints,

we prevent checking these satisfied parts of a global constraint over and over again.

(2) We can reduce the frequency of unnecessary propagation. On each tree manipulation, we

can carefully choose for each active local constraint to either schedule it for propagation or

ignore it. Thus, we do not need to check active constraints local to other branches in the

program tree.

To illustrate how global constraints are split up into local constraints, consider the grammar

constraint Forbid (1 × 𝑎) represented as a tree in Figure 5a. All nodes in this tree are new; thus,

the solver posts a local constraint at each of the nodes in the tree. In the figure, each * represents a

local variant of the forbid constraint at a particular node. During the fix point algorithm, all newly

posted constraints are propagated to their respective location. Figure 5c represents the state after

propagation. 3 out of the 5 local constraints are now satisfied and deleted. The other 2 constraints

cannot deduce anything at this point and remain active. This means that if a tree manipulation

occurs at or below their path, they are scheduled for (re-)propagation.

Solver state. A solver state is a 3-tuple that fully describes the state of the solver. It holds a (1)

a partial program, (2) the list of active constraints that could still be violated, and (3) a feasibility

flag that indicates if the program still satisfies the constraints. Note that the activation of local

constraints is independent of any other solver state. Local constraints are only valid for the current

uniform tree and, thus, the current state.

After each tree manipulation, the solver will choose which constraints to schedule for propagation

to ensure that the state satisfies all constraints. The constraints that need to be propagated depend

on both the location of the hole and the type of constraint. On each tree manipulation, we will only

schedule constraints that can potentially make any deductions.

Tree manipulations. To be able to propagate constraints regardless of the type of search used, we

make sure that all manipulations of the current state are made through the solver. Therefore, all
search strategies manipulate the current state using a combination of primitive tree manipulations.

16 Hinnerichs et al.

• remove!(solver, path, rule). Remove a rule from the domain of a hole at the given

path. If the remaining rules have the same shape, this hole will be converted to a uniform

hole, and its children will be instantiated.

• remove_all_but!(solver, path, rules). Remove all rules from the domain of the hole

at the given path, except for the specified remaining rules. If possible, the hole will be

converted to a uniform hole.

• substitute!(solver, path, new_node). Substitute an existing node at the given path

with a new node.

The solver is responsible for propagating relevant constraints after each of these tree manipulations.

7.1.2 Uniform Solver. The uniform solver is for propagating constraints in a uniform tree and

enumerating all valid programs. Note that no new local constraints are posted, but only existing

ones are propagated.

We describe our custom implementation of a uniform solver, supporting our custom constraint

propagators. Due to the nature of the simple program space, any existing solver can be used in its

place. Specifically, we implement an ASP version for our experiments.

The uniform solver closely follows the design of existing constraint solvers. It performs a depth-

first search over the assignments to the uniform holes of the provided uniform tree. The solver uses

a hole selection heuristic to pick a uniform hole, saves its state, and chooses a temporary value

from the domain of the uniform hole. Assigning a temporary value to one uniform hole triggers the

fix-point constraint propagation algorithm. This removes assignments from other holes that would

result in an infeasible program. The uniform solver then picks the next uniform hole until no more

choices are left. This yields a complete program, and the solver backtracks to the last saved state,

i.e., the last chosen uniform hole, and picks another value from its domain. If no more values are

left, then it backtracks to another uniform hole. This exhaustively iterates all possible solutions of

the uniform tree.

The program enumeration becomes memory-efficient by tracking changes since a saved state

and reverting these changes to restore it. We use state sparse sets [22] to describe domains, which

allows us to easily revert to the previous state.

7.2 Propagating Constraints
In this section, we describe concretely how the constraints introduced in Section 6.1 are imple-

mented and propagated. Note that we do not check constraints on complete programs, which is

straightforward to do, but wasteful. Instead, we aim to propagate the constraints to remove invalid

programs before they are generated. We provide pseudo-code in the supplementary material.

Our propagators closely follow the design principles of constraint programming, which we

tailor to our tree-shaped domain, i.e., uniform trees. A core concept for efficient propagation is

the notion of triggers, which start a propagation and which we seek to minimize. Here, the solver

keeps track of triggers, i.e., the nodes relevant for a specific local constraint. A local constraint is

thus only propagated when a relevant node is updated. Further, we want to minimize the number

of constraints propagated by using the deactivation mechanism of local constraints. Second, to

maximize the inference strength of propagators, we aim to ‘localize’ constraints as much as possible.

Thus, we want (1) constraints only to hold at a specific location, given by a path, and (2) to minimize

the dependencies between sub-trees, as these dependencies must also be propagated.

7.2.1 Forbid. Propagating a Forbid constraint is straightforward with our notion of local con-

straints. First, the decomposition solver posts local versions of the constraint at all uniform holes

that have the same shape, and thus could match the tree.

Modelling Program Spaces in Program Synthesis with Constraints 17

To propagate a local forbid constraint, given by a template tree and a path, the solver uses the

pattern match function to match the forbidden tree with the node located at the path. The match

describes whether the forbidden tree is in the set of programs, represented by the uniform tree.

If the match fails, the local constraint is already satisfied and can be deactivated. If the match is

successful, the forbidden tree is present in the program, so the state must be set to infeasible. If a

match can be prevented by removing a rule from a hole, the constraint does so and then deactivates

itself. It is also possible that multiple holes are involved, and no deduction can be made. In that

case, the constraint remains active and will be re-propagated whenever one of the holes involved is

updated.

7.2.2 Contains. The Contains constraint enforces that the program must contain a template tree.

Unfortunately, propagation is very expensive, as it requires pattern matching all nodes in the

program tree with the template. However, in a uniform tree, we can deduce which nodes can match

the shape of the template tree, having to match type and children. Thus, we only keep track of all

potential matches, called candidates.
Hence, we only need to match and update the candidates. If a candidate matches the template,

the constraint is satisfied and deactivated. If a candidate fails to match the template, it will be

removed as a candidate. Finally, if there is only a single candidate remaining, it will be enforced to

equal the template, and the constraint can be deactivated.

7.2.3 Unique. The Unique constraint is related to the Contains constraint, but enforces a deriva-

tion rule to appear at most once. Again, we only need to consider a list of candidates, i.e., nodes

that match the shape. When the local version is posted and propagated, we count the number of

matches over candidates within the sub-tree. If that number is > 2, the current state is inconsistent.

If that count is 1, we post a local Forbid constraint to prevent it from occurring in any other branch.

If the unique template tree only consists of a single node, we can directly remove that rule from

any other domain.

7.2.4 Ordered. An Ordered constraint is defined by a template tree with variable nodes and an

order of these variable nodes. Again, the decomposition solver posts a local Ordered constraint,
rooted at a path, when the template tree matches the uniform tree. This binds all variable nodes to

node instances in the tree. The matched nodes are the triggers for this constraint.

Assume that we want to enforce 𝑜𝑝 (𝑎, 𝑏) for variable nodes 𝑎, 𝑏 and order 𝑎 ≤ 𝑏 at a given path.

The constraint is enforced by iteratively comparing the rule indices of the nodes. In case of equality,

the tie is broken by comparing the children in a depth-first manner.

After the deductions, a result flag is returned that describes the current state of the ≤ inequality.

There are three possible results:

• Success. 𝑎 ≤ 𝑏 is guaranteed under all possible assignments of the holes involved. This

means that the constraint is always satisfied and can be deactivated.

• Hard Fail. 𝑎 > 𝑏 is guaranteed under all possible assignments of the holes involved. In this

case, the constraint is violated, so the solver state must be set to infeasible.

• Soft Fail. In this case, 𝑎 ≤ 𝑏 and 𝑎 > 𝑏 are still possible depending on how the holes

involved are filled. We cannot make a deduction at this point, and the constraint needs to

be re-propagated if one of the trigger nodes involved is updated.

Longer order chains, e.g., enforcing 𝑜𝑝 (𝑎, 𝑏, 𝑐) with order 𝑎 ≤ 𝑏 ≤ 𝑐 can be reduced to two

separate Ordered constraints, with 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐 .

18 Hinnerichs et al.

7.2.5 Conjunction of Constraints. As BART is invariant to the order in which constraints are

propagated (see Proofs in Section 7.3), the conjunction of constraints is propagated by propagating

each conjunct individually.

7.3 Proving Correctness
We aim to prove the correctness of our constraint system. Specifically, we first show that our

shape-based constraint formulation indeed captures and removes all unwanted solutions. Second,

we will use this result to prove the correctness of our propagators.

For this proof, we build upon two core properties of our constraint system. First, our constraint

system is itself centred around the matching function for shapes. If a program matches the shape or

potentially completes a match, the constraint is triggered. Second, within a simple program space,

i.e., uniform trees, our constraint system is monotonic, that is, it only removes but does not add

solutions to domains.

Given a template tree 𝑡 ∈ T , a matching function𝑚 : T → 2
P
defines the subset of programs to

which it matches. We show the correctness of our recursive definition of the matching function

(see Definition 10 and Definition 19) and that the function𝑚 matches exactly the programs we

want. Note that the programs P do not need to be complete, but can have holes (see Definition 16).

Further, we do not assume the programs P to be uniform.

Lemma 1 (Correctness of the Matching Function). Given a template tree 𝑡 , a matching function

𝑚 : T → 2
P
, and a set of programs P: A program 𝑝 ∈ P matches template 𝑡 iff 𝑝 ∈𝑚(𝑡).

Proof. Let 𝑡 be a template rooted at node 𝑟𝑡 , and 𝑝 be a program rooted at node 𝑟𝑝 . We prove by

structural induction, i.e., 𝑟𝑝 matches the template 𝑟𝑡 iff 𝑟𝑝 ∈𝑚(𝑟𝑡).
Case 1: 𝑟𝑡 is a value node. 𝑟𝑝 ∈ 𝑚(𝑟𝑡) if and only if 𝑟𝑡 = 𝑟𝑝 by definition. Then 𝑟𝑝 matches the

template 𝑟𝑡 .

Case 2: 𝑟𝑡 is a domain node. We prove by case for the domain compatibility of 𝑟𝑝 and 𝑟𝑡 . If 𝑟𝑝 and

𝑟𝑡 are disjoint, then 𝑟𝑝 ∉𝑚(𝑟𝑡) and 𝑟𝑝 does not match the template. If 𝑟𝑝 ⊆ 𝑟𝑡 , then 𝑟𝑝 ∈𝑚(𝑟𝑡), and
all possible values match the template. Otherwise, there are elements in 𝑟𝑝 that are not in 𝑟𝑡 , i.e.,

𝑟𝑝 − 𝑟𝑡 ≠ ∅. Then by definition 𝑟𝑝 ∉𝑚(𝑟𝑡) and we need to remove elements from 𝑟𝑝 for a match.

Thus, 𝑟𝑝 does not match the template.

Case 3: 𝑟𝑡 is a variable node. If the variable name of 𝑟𝑡 is not assigned, we assign 𝑟𝑝 to it. If the

variable name 𝑣 of 𝑟𝑡 is assigned to a tree 𝑡𝑣 , then we try to match 𝑡𝑣 with 𝑟𝑝 . If 𝑟𝑝 ∈𝑚(𝑡𝑣), then 𝑟𝑝
matches the template.

By the inductive hypothesis, if all children match recursively, then 𝑝 matches 𝑡 at the root as

well.

Thus, 𝑝 ∈𝑚(𝑡) if and only if 𝑝 matches the template 𝑡 . □

Second, we prove the soundness of our constraint system with respect to a matching function.

Here, we call a solution to the constraint problem, i.e., a program, invalid if it violates any of the

constraints.

Lemma 2 (Correctness of all Singular Constraints). Given a constraint 𝐶 = 𝑂𝑝 𝑡 for any

𝑂𝑝 ∈ {𝐹𝑜𝑟𝑏𝑖𝑑,𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠,𝑈𝑛𝑖𝑞𝑢𝑒,𝑂𝑟𝑑𝑒𝑟𝑒𝑑},
a template tree 𝑡 , and a program 𝑝 ∈ P: 𝑝 ∈ P is removed by the solver iff 𝑝 violates 𝐶 .

Proof. We proceed by cases over the types of constraints. By Lemma 1, we can use𝑚(𝑡) to
express the matches we want.

Case 1: 𝐶 = 𝐹𝑜𝑟𝑏𝑖𝑑 𝑡 : 𝐶 is violated if and only if there exists a sub-tree 𝑝𝑖 of 𝑝 that matches 𝑡 , i.e.,

𝑝𝑖 ∈𝑚(𝑡). 𝑝𝑖 matches iff the constraint is triggered at a possible occurrence. Thus, 𝑝 is removed.

Modelling Program Spaces in Program Synthesis with Constraints 19

Case 2:𝐶 = 𝑂𝑝 𝑡 with𝑂𝑝 ∈ {𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠,𝑈𝑛𝑖𝑞𝑢𝑒}:𝐶 is satisfied if and only if there exist 𝑛 sub-trees

𝑝𝑖 of 𝑝 that matches 𝑡 , i.e. 𝑝𝑖 ∈ 𝑚(𝑡), where 𝑛 ≥ 1 for 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 and 𝑛 ≤ 1 for 𝑈𝑛𝑖𝑞𝑢𝑒 . As the

shape has to match, any match must be at a candidate location (see Section 7.2.2). The constraint is

triggered if and only if a match happens at one of the candidate sites and the number of matches

changes. 𝑝 is removed if and only if 𝑛 is violated.

Case 3: 𝐶 = 𝑂𝑟𝑑𝑒𝑟𝑒𝑑 𝑡 , 𝑡 contains variables 𝑎, 𝑏 and enforces 𝑎 ≤𝑡 𝑏 for some tree ordering ≤𝑡 :
Assume that 𝑎, 𝑏 were matched to sub-trees 𝑡𝑎, 𝑡𝑏 . By definition, 𝐶 is violated if and only if 𝑡𝑎 ≰𝑡 𝑡𝑏 ,
i.e., any possible complete program within 𝑡𝑎, 𝑡𝑏 violates the constraint. 𝑝 is removed if and only

if 𝑡𝑎 ≰𝑡 𝑡𝑏 . The 𝑂𝑟𝑑𝑒𝑟𝑒𝑑 constraint is triggered at initialization of the trees, and if 𝑡𝑎, 𝑡𝑏 change

through any tree manipulation. Thus, at all times, 𝑝 is removed iff 𝑝 violates 𝐶 . □

This proves the arc-consistency [27] of the individual constraints. Together, the lemmas let us

prove our main theorem, proving arc-consistency for a set of constraints:

Theorem 1 (Correctness Theorem). Given a conjunction of constraintsC = {𝐶1,𝐶2, . . . }, a template

tree 𝑡 , and a program 𝑝 ∈ P: 𝑝 ∈ P is removed by the solver iff 𝑝 violates C.

Proof. It suffices to show that the order of propagation does not influence the set of eventual

solutions. C is violated if and only if any of its conjuncts are violated. Assume 𝑝 violates constraints

𝐶1,𝐶2, . . . , and 𝑝 is correctly removed by enforcing 𝐶1 using Lemma 2. By the monotonicity of the

constraint system, 𝑝 is not added back to the set of possible solutions. Thus, 𝑝 cannot violate any

other constraint. □

8 Searching Shaped Program Spaces
BART only describes the space of possible programs, but relies on a search method to define how

to iterate over it. Our solver easily integrates into existing search procedures in program synthesis.

We demonstrate how this can be done for the families of top-down and bottom-up search. In both

cases, the concept is the same: both search procedures use the decomposition solver to construct

uniform trees instead of individual ASTs.

Top-down search maintains a priority queue of programs explored so far. Initially, it contains

only a decomposition solver state made up of a uniform hole containing the starting symbol and

the global constraints. Top-down search iteratively pops the first element in the priority queue

and processes it. At this point, two things can happen. If the retrieved item is a uniform tree, the
search procedure retrieves the next complete program from it using the uniform solver and its hole

heuristic, and enqueues the uniform tree back to the priority queue. Note that, depending on a

priority function, the uniform tree can take arbitrary places in the priority queue. If the retrieved

item is a decomposition solver state, then the search procedure finds a non-uniform hole and refines

it into uniform holes. For each uniform hole, it creates a new state and enqueues it back into the

priority queue. At this point, constraint propagation is triggered, and all constraints that could be

propagated are propagated. If there are no more non-uniform holes, the search procedure enqueues

a uniform tree.

The choice of the hole heuristic and priority function defines the type of search. Enqueuing trees

at the top position implements a depth-first search, whereas enqueuing at the bottom implements

breadth-first search.

Bottom-up search iteratively combines programs from a bank of programs to construct bigger

programs. In our case, the bank contains uniform trees. The initial bank contains uniform trees

representing the terminal of a given grammar, i.e., all terminals of the same time end up in the

same uniform tree. Then, to construct bigger programs, the search procedure creates uniform holes

for non-terminal derivation rules, i.e., all non-terminal rules of the same type and the same child

20 Hinnerichs et al.

types end up in the same uniform hole. The search procedure then fills the chosen uniform hole

with the uniform trees from the bank. The resulting trees are, again, uniform trees from which

complete programs can be enumerated. The filling of the holes triggers constraint propagation,

ensuring that every program retrieved from the uniform tree is valid.

9 Experimental Evaluation
We evaluate our proposed solver by answering the following empirical research questions:

RQ1: How much of the program space needs to be pruned to justify the overhead of constraint

propagation in program synthesis?

RQ2: How much do state-of-the-art synthesizers benefit from modelling the program space on

competition benchmarks?

RQ3: Does combining multiple grounded constraints into a single first-order constraint improve

the performance of the search?

Tasks. We experiment over a set of diverse kinds of program synthesis domains:

• Arithmetic: The arithmetic grammar is closely related to the LIA grammar [6]. It is used to

derive simple arithmetic expressions over the input symbol 𝑥 (see Figure 1), but restricted

to simple operations like +,×,−. Constraints are used to break symmetries (see Section 2).

• Robots: The Robots environment [7] consists of an 𝑛 × 𝑛 grid, and positions of the robot,

a ball, and the goal. The task is to learn to move the robot to the goal and let it grab and

drop the ball. Constraints are used to remove the many redundant routes, e.g., moving right

directly after moving left. The grammar consists of 10 rules. Even though this problem

stems from a planning domain, we use it to highlight the power of syntactic constraints

over black-box operators. Being stateful, the Robots domain is much easier to express in,

e.g., Julia, than in SMT.

• Symbolic: This semantics-free problem is used to push the solver to its limits, containing

many operators of the same shape. Semantic grammars can be constrained to prune a large

amount of the program space, but a significant amount of it remains valid. In traditional CP,

often only a few, if any at all, solutions exist. Most of the time is spent finding a solution to

the constraints. To mimic this setting and push constraint propagation to its limit, we will

consider the highly constrained symbolic grammar, in which only a handful of programs

satisfy the constraints.

• Lists: The list grammar is commonly used for benchmarking in program synthesis [3, 12, 25]

and supports basic list operations and can be used to construct a program that takes two

input integers 𝑥 and 𝑦 and returns a list. Constraints are derived from Ruler [25], e.g.,

reversing a list twice.

• SyGuS SLIA and BV: A set of more difficult string-manipulation (SLIA) and bit-value-

manipulation problems from the SyGuS Challenge 2019 [26], commonly used to benchmark

synthesizers.

All concrete grammars and constraints used, are in the Supplementary Material.

Implementation details. All the experiments have been executed on an Intel i7-10750H CPU @

2.60GHz with 16 GB of RAM, and were implemented in Herb.jl v0.6.01.

1
https://github.com/Herb-AI/Herb.jl/releases/tag/v0.6.0

Modelling Program Spaces in Program Synthesis with Constraints 21

9.1 Reducing the Program Space (RQ1)
We study (1) how syntactic constraints help to reduce the search space, and (2) whether syntactic

constraints can remove many programs before exploring them. Note that we do not execute a

single generated program here, but only consider the size of the program space.

We will use top-down search to enumerate all programs in the program space of the Arithmetic,

Robots, Symbolic, and Lists grammar up to a maximum depth. We omit the SyGuS grammars,

SLIA and BV, because they (1) change between problems, and they (2) are too big to enumerate all

possible programs naively. We explore program space reduction on SLIA and BV in Section 9.2. To

measure the correctness and effectiveness of the constraint propagation, we will compare three

variations of enumeration.

(1) Plain Enumeration (+checking). Enumerates all programs, ignoring the constraints.

Then, retrospectively checks the constraints and eliminates all programs that violate any

constraint. This is ‘generate and test’ in CP terminology.

(2) Plain Enumeration. Enumerates all programs, ignoring the constraints.

(3) Constrained Enumeration. Enumerates all programs that satisfy the constraints using

the proposed constraint solvers.

For all experiments and using the exact same constraints, the programs obtained from methods

1 and 3 are exactly the same. This means constraint propagation does not eliminate valid programs,

nor keep any invalid programs. Although this is not a hard proof of correctness, it does increase

the confidence that the propagators are implemented correctly.

In Figure 6a, we compare the program space with and without constraints by dividing the

number of valid programs by the total number of programs using top-down enumeration. We see

that the constraints significantly reduce the program space.
2
With a maximum of 11 nodes, the

imposed constraints can already eliminate roughly 99% of the total program space for the List and

Robots grammar. Further, the runtime of enumeration reduces significantly using constraints: For

enumerating all programs with 12 AST nodes, search time is 3000, 123, 12, and 2.5 times slower for

the Symbolic, Robot, Arithmetic, and Lists grammar, respectively. The full results can be found in

the Supplementary Material.

Figure 6b compares the runtime of enumeration checking constraints in comparison to propagat-

ing constraints. We observe that the runtime of plain enumeration checking retrospectively the

constraint is strictly higher than that of plain enumeration alone.

Propagating the constraints during top-down search outperforms plain enumeration. This is

an expected result, as only a small fraction of the program space needs to be enumerated in

a constrained search. The ratio plot reveals that for all four grammars, the constrained search

performs significantly better as the program space grows larger, but the exact improvement highly

depends on the grammar. An interesting observation is that the plain enumeration outperforms

constrained enumeration for small program spaces. In these cases, the reduced program space

does not justify the overhead of propagating constraints. We conclude that when a relatively large

portion
3
of the program space can be eliminated, constraint propagation outweighs its overhead.

We also compare methods 1 and 3 for the bottom-up search. As the program space is exactly the

same as for top-down enumeration, we compare the bank size during the enumeration of the Lists

grammar. Naturally, we can significantly reduce the bank size by expressing groups of programs as

uniform trees. For example, we require only 1318 uniform trees to represent 45,594 programs in

2
The symbolic grammar is omitted from this graph, since its smallest valid program has 12 nodes.

3
Roughly speaking, 75% or more. This depends on many other factors, such as the grammar and the type and amount of

constraints.

22 Hinnerichs et al.

(a) Program Space (b) Runtime Ratio Checking vs. Propagating

Fig. 6. (a) The remaining portion of the program space after applying the constraints, represented by the
ratio of valid/total programs in the grammar; (b) Runtime ratio of top-down program enumeration checking
retrospectively to our propgation system.We observe that checking is significantly slower than our propagation
of syntactic constraints.

the bank for a program depth of 5. As programs from the bank could satisfy a constraint with an

added parent, our current constraints cannot remove any (partial) solutions from the bank.

9.2 Guiding State-of-the-Art Synthesizers (RQ2)
A core motivation for using syntactic constraints is modelling the program space to guide the search

towards useful programs. Hence, to answer RQ2, we evaluate two state-of-the-art synthesizers,

namely Probe [5] and EUSolver [29], on two common program synthesis benchmarks: The SLIA

and the BV benchmark from the SyGuS challenge [26]. We compare both (1) without constraints, (2)

with constraints removing redundancies, and (3) removing redundancies and with useful constraints.
Not removing redundancies but still useful, we enforce that all programs must contain the input

symbol in steps (2) and (3).

Probe and EUSolver also define a notion for useful programs. Both leverage sub-optimal solutions,

i.e., solutions that solve some but not all given input-output examples. Probe prioritizes grammar

rules that were part of partially successful programs that were found earlier. By contrast, following

a divide-and-conquer approach, EUSolver tries to combine partially successful programs into a

larger successful program.

We use constraints to nudge both synthesizers to find useful programs quicker by constraining

the search space. For SLIA, we follow our motivating example: The grammars are usually built

around a core grammar, adding specific operators for the specific problem. We enforce that the

solution must contain all these added rules. For BV, we follow another idea: We observe that both

approaches benefit from ‘diversity’ in their selection of rules. That is, we want both approaches

not to overuse the same operator. We thus enforce that operators cannot be used twice in a row,

e.g., removing Int + (1 + Int), but not (Int + 𝑥) ∗ (1 + Int). Note that we can choose to remove

constraints during search, for example, whenever a new uniform tree is initialized or between

cycles of synthesizers.

We base EUSolver on a breadth-first search. Further, we enumerate SLIA and BV for 10
6
(3 × 106

for Probe due to multiple cycles) and 10
5
programs.

Modelling Program Spaces in Program Synthesis with Constraints 23

100 101 102 103 104 105 106 107

0

10

20

30

40

Number of Programs Enumerated

C
um

ul
at

iv
e

Pr
ob

le
m

s
So

lv
ed

SLIA

EUSolver: Without Constraints
EUSolver: Removing Redundancies (RR)

EUSolver: RR + Useful Constraints
Probe: Without Constraints

Probe: Removing Redundancies (RR)
Probe: RR + Useful Constraints

(a) String manipulations

100 101 102 103 104 105 106

0

5

10

15

20

Number of Programs Enumerated

C
um

ul
at

iv
e

Pr
ob

le
m

s
So

lv
ed

BV

EUSolver: Without Constraints
EUSolver: Removing Redundancies (RR)

EUSolver: RR + Useful Constraints
Probe: Without Constraints

Probe: Removing Redundancies (RR)
Probe: RR + Useful Constraints

(b) Bit-value manipulations

Fig. 7. Results of the synthesizers Probe and EUSolver on the (a) SLIA and (b) BV benchmark from the SyGuS
challenge using no constraints, with constraints removing redundancies, and adding useful constraints. Useful
constraints can be a tool to nudge synthesizers towards finding solutions faster.

The results are shown in Figure 7. We see that both approaches benefit from the added constraints

and find solutions faster. Further, the simple, useful constraints let both approaches find shallow

solutions even sooner. We conclude two things: First, formulating useful constraints in our language

in real-world competitive program synthesis benchmarks is straightforward. Second, even simple

constraints have large impacts on the program space, and thus a better search.

9.3 First-order Constraints (RQ3)
We introduced two kinds of first-order nodes that can be used to constrain a class of sub-trees:

domain and variable nodes.We analyze the impact of using first-order constraints on the propagation

to answer RQ3.

We first test the effectiveness of combining constraints using domain nodes using the List

grammar, a common program synthesis grammar. Enumerating all programs up until depth 8,

we evaluate two settings: Either using the two first-order constraints or 12 equivalent grounded

constraints. We report the run-time and propagations enumerating the entire program space.

Figure 8 shows that having first-order constraints means fewer constraint propagations need to

run. We also see an improvement in runtime, which indicates that a higher quantity of grounded

propagators is more expensive than a lower quantity of first-order propagators.

Programs Runtime Search Nodes Propagate Calls

First-order Constraints 1 779 631 15.498s 2 263 318 2 626 046

Grounded Constraints 1 779 631 20.187s 2 263 318 3 723 245

Fig. 8. Enumerating programs of the List Grammar with a maximum program size of 15 using first-order and
grounded constraints.

Second, we consider the Symbolic Grammar to measure the effectiveness of domain. Again,

note that this grammar contains no semantics and is used to push the solver to its limits. In two

experiments, we respectively introduce one of the following Forbid constraints:

24 Hinnerichs et al.

Forbid
©­«

{𝑏1, 𝑏2, 𝑏3}

{𝑡1, 𝑡2, 𝑡3, 𝑡4} {𝑡1, 𝑡2, 𝑡3, 𝑡4}
ª®¬

Both constraints eliminate all trees that contain any of the 3 · 4 · 4 = 48 forbidden sub-trees. Alterna-

tively, we can break down the first-order constraint into 48 grounded constraints, each forbidding

a specific sub-tree. Each individual constraint must be propagated and enforced individually.

We run the constrained program enumeration of the Symbolic Grammar up to a maximum of

8 AST nodes, and vary the number of constraints we use. In each run, we will use 1 first-order

constraint and 1 grounded constraint for each missing case. For example, suppose we remove one

of the rules from a domain node. Then, 4 · 4 = 16 grounded constraints must be constructed to

cover the missing cases:

Forbid
©­«

{𝑏1, 𝑏2,��ZZ𝑏3}

{𝑡1, 𝑡2, 𝑡3, 𝑡4} {𝑡1, 𝑡2, 𝑡3, 𝑡4}
ª®¬ −→ Forbid

©­«
{𝑏3}

{𝑡1} {𝑡1}
,

{𝑏3}

{𝑡1} {𝑡2}
,. . .

ª®¬
Note that the number of valid programs remains the same. The difference lies in the number of

propagators and inference strength. Regardless of which combination of constraints is used, we

will always enumerate 1,358,656 out of the 2,355,328 total programs.

However, we see a positive correlation between the number of constraints and propagations.

For example, with 10 constraints, BART requires ≈200,000 propagation calls, whereas with 50

constraints, more than 3,000,000 propagations are required. We observe a similar trend for the

other tested grammars. The full results are shown in the Supplementary Material. We conclude

that a higher quantity of grounded propagators is computationally more expensive than a lower

quantity of first-order propagators.

We also see a positive correlation between the number of constraints and search nodes. This

can be explained by inference strength. When a first-order constraint is split up into grounded

constraints, it can no longer exploit constraint interaction. For example: Forbid({𝑏1, 𝑏2}) is able
to deduce that the domain {𝑏1, 𝑏2} is inconsistent. However, the individual constraints Forbid(𝑏1)
and Forbid(𝑏2) separately cannot make any deductions towards inconsistency. They need to

enumerate the solutions within the tree before they can spot the same inconsistency.

Testing the influence of variable nodes in constraints, we use constraints on the Arithmetic gram-

mar. All constraints for this grammar are formulated using a variable node, e.g., Forbid(0+Int) or

Ordered(:a + :b), [:a,:b]. We see that variable nodes allow for a brief and concise formulation

of many intuitive constraints. Grounding out all constraints is naturally much slower. For example,

enforcing Forbid 0+:a at the root grounds out to 184,632,701 constraints for a maximum size of

12 AST nodes. Each constraint is propagated separately. More interesting is the inference power

we gain over checking, shown in Figure 6b. We see that many programs can be removed early, on

leading to a significantly reduced program enumeration time.

We conclude that bundling grounded constraints into a first-order constraint does increase the

strength of the propagation inference.

10 Related Work
Encoding synthesis into constraints. A range of earlier program synthesizers, such as Sketch

[31], Brahma [16], SyPet [13], and Rosette [33, 34] encode the program synthesis problem in a

constraint satisfaction problem. A constraint solver is then employed directly to find the solution

program. Sketch and Rosette can only make this translation by bounding the program space, and

Modelling Program Spaces in Program Synthesis with Constraints 25

constraining the set of allowed operators. While these approaches encode program spaces defined

by grammar into constraints, we go further and model a program space beyond its grammar. We

further provide a clear interface for developing custom constraint propagators on the level of ASTs,

and in BART demonstrate how it supports better constraint solving tailored towards program

synthesis. Moreover, these earlier approaches require an encoding of programming language

semantics within constraints, whereas our solver does not.

Solving uniform trees with existing constraint solvers. Constraint solving on the level of uniform

trees also makes it easier to deploy existing constraint solvers more effectively. Our goal is to

gradually add support for using existing solvers, so that the users can flexibly switch between

constraint solvers to enumerate uniform trees. We expect that existing SMT-solvers like Z3 [11]

and CVC5 [4], and ASP-solvers like Clingo [15] will be more efficient at certain types of programs

and constraints. However, our solver provides a clear interface for implementing custom constraint

propagators, that makes adding new propagators and constraints straightforward.

Popper and solver-as-program-enumerator. Popper [9] is the closest related work to ours and

gives direct inspiration. Popper uses an ASP solver clingo to enumerate programs from a defined

program space, i.e., it specifies a constraint model such that every solution is a valid program. An

innovative part about Popper is that every explored program, unless it is the solution program,

yields a new constraint that further restricts the program space. Therefore, Popper, like us, models

the program space beyond the grammar restrictions. In contrast to our approach, which supports

defining and constraint propagation over arbitrary program space, Popper only supports the logic
programming family of programming languages. Moreover, the set of constraints Popper induces

while searching for a program is pre-defined; our solver allows users to formulate arbitrary first-

order constraints.

Semantics-guided synthesis. A semantics-guided synthesiser uses constraints in the form of

constrained horn clauses [18] to define the semantics of a programming language and casts the

synthesis problem as a proof search [19, 20]. This line of work has an objective different from

ours, but is highly compatible with our solver. Having the semantics of a programming language

available within BARTwould allow the user to specify more effective constraints over the semantics

of programs.

Counter-example guided synthesis. This family of synthesisers [32] uses constraint solvers to

verify whether a proposed program is a solution to the provided specification. If it is not, then the

verifier provides a counter-example for the synthesiser. In contrast, our approach uses constraints

to aid search by pruning the program space on the program level, not by introducing new examples.

Automated program repair (APR). APR [21] can be formulated as a program synthesis problem

starting from partial programs. Recent approaches like CPR [28] and ExtractFix [14] extract and

propagate constraints to remove concrete subprograms from their search space like Popper. EffFix

[36] uses another notion of constraints, using probabilities to indirectly describe constraints and

guide the search. Having a similar goal of removing unwanted programs as early as possible, we

posit that our constraint formalism could benefit the APR community. Further, APR applications

could help to extend our limited library of constraints.

26 Hinnerichs et al.

11 Conclusion and Future Work
This work takes a new approach to taming the size of the search space in program synthesis.

Specifically, we focused on defining the syntactic space of programs, beyond formulating a context-

free grammar. Such syntactic constraints open the possibility of introducing language biases into

the program space, inspired by Cropper and Morel [9].

The contributions of this paper are made concrete in a novel constraint solver, BART, for
propagating and solving syntactic constraints efficiently. BART adopts a hybrid method of two

sub-solvers: (1) the decomposition solver can be used to construct simple search spaces, represented

by uniform trees, and (2) the uniform solver is restricted to one shape, but can leverage common

CSP techniques.

We compared BART’s constrained program enumeration against plain program enumeration.

Although the effectiveness highly depends on the grammar and its constraints, the results show

that constraint propagation significantly outperforms a retrospective checking the constraints.

Furthermore, we showed that combining grounded constraints into a single first-order constraint

can further reduce the number of search nodes. This is an expected result as a combined constraint

is able to make deductions based on the interaction of the grounded constraints and therefore

has stronger inference. Eventually, we showed that constraints can be used beyond removing

symmetries, guiding state-of-the-art to find solutions quicker.

In future work, we aim to extend the library of constraints presented to other families of

constraints. Second, while for now we have only considered constraining the grammar itself, we did

not take the problem to be solved into account. A constraint extractor could take the input–output

examples of the problem and generate grammar constraints for the specific problem instance. We

also aim to generate new constraints based on failed input–output examples during search.

References
[1] John Ahlgren and Shiu Yin Yuen. 2013. Efficient program synthesis using constraint satisfaction in inductive logic

programming. J. Mach. Learn. Res. 14, 1 (2013), 3649–3682. https://doi.org/10.5555/2567709.2627674

[2] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh

Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Formal Methods
in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013. IEEE, 1–8. https://ieeexplore.ieee.org/

document/6679385/

[3] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder:

Learning to Write Programs. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=ByldLrqlx

[4] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,

Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,

Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms for
the Construction and Analysis of Systems, Dana Fisman and Grigore Rosu (Eds.). Springer International Publishing,

Cham, 415–442.

[5] Shraddha Barke, Hila Peleg, and Nadia Polikarpova. 2020. Just-in-time learning for bottom-up enumerative synthesis.

Proc. ACM Program. Lang. 4, OOPSLA (2020), 227:1–227:29.

[6] Clark W. Barrett, Leonardo Mendonça de Moura, Silvio Ranise, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB

Initiative and the Rise of SMT - (HVC 2010 Award Talk). In Hardware and Software: Verification and Testing - 6th
International Haifa Verification Conference, HVC 2010, Haifa, Israel, October 4-7, 2010. Revised Selected Papers (Lecture
Notes in Computer Science, Vol. 6504), Sharon Barner, Ian G. Harris, Daniel Kroening, and Orna Raz (Eds.). Springer, 3.

https://doi.org/10.1007/978-3-642-19583-9_2

[7] Andrew Cropper and Sebastijan Dumancic. 2020. Learning Large Logic Programs By Going Beyond Entailment. In

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, Christian Bessiere

(Ed.). ijcai.org, 2073–2079. https://doi.org/10.24963/IJCAI.2020/287

[8] Andrew Cropper and Sebastijan Dumancic. 2022. Inductive Logic Programming At 30: A New Introduction. J. Artif.
Intell. Res. 74 (2022), 765–850. https://doi.org/10.1613/JAIR.1.13507

https://doi.org/10.5555/2567709.2627674
https://ieeexplore.ieee.org/document/6679385/
https://ieeexplore.ieee.org/document/6679385/
https://openreview.net/forum?id=ByldLrqlx
https://doi.org/10.1007/978-3-642-19583-9_2
https://doi.org/10.24963/IJCAI.2020/287
https://doi.org/10.1613/JAIR.1.13507

Modelling Program Spaces in Program Synthesis with Constraints 27

[9] Andrew Cropper and Rolf Morel. 2021. Learning programs by learning from failures. Mach. Learn. 110, 4 (2021),
801–856. https://doi.org/10.1007/S10994-020-05934-Z

[10] Andrew Cropper and Sophie Tourret. 2020. Logical reduction of metarules. Mach. Learn. 109, 7 (2020), 1323–1369.
https://doi.org/10.1007/S10994-019-05834-X

[11] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

[12] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program synthesis using conflict-driven learning.

In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2018, Philadelphia, PA, USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 420–435. https:

//doi.org/10.1145/3192366.3192382

[13] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017. Component-based synthesis for

complex APIs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 599–612. https:

//doi.org/10.1145/3009837.3009851

[14] Xiang Gao, Bo Wang, Gregory J. Duck, Ruyi Ji, Yingfei Xiong, and Abhik Roychoudhury. 2021. Beyond Tests: Program

Vulnerability Repair via Crash Constraint Extraction. ACM Trans. Softw. Eng. Methodol. 30, 2 (2021), 14:1–14:27.

https://doi.org/10.1145/3418461

[15] MARTIN GEBSER, ROLAND KAMINSKI, BENJAMIN KAUFMANN, and TORSTEN SCHAUB. 2019. Multi-shot

ASP solving with clingo. Theory and Practice of Logic Programming 19, 1 (2019), 27–82. https://doi.org/10.1017/

S1471068418000054

[16] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011. Synthesis of loop-free programs. In

Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011,
San Jose, CA, USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 62–73. https://doi.org/10.1145/

1993498.1993506

[17] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis. Found. Trends Program. Lang. 4, 1-2
(2017), 1–119. https://doi.org/10.1561/2500000010

[18] Arie Gurfinkel. 2022. Program Verification with Constrained Horn Clauses (Invited Paper). In Computer Aided
Verification, Sharon Shoham and Yakir Vizel (Eds.). Springer International Publishing, Cham, 19–29.

[19] Keith J. C. Johnson, Andrew Reynolds, Thomas W. Reps, and Loris D’Antoni. 2024. The SemGuS Toolkit. In Computer
Aided Verification - 36th International Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings,
Part III (Lecture Notes in Computer Science, Vol. 14683), Arie Gurfinkel and Vijay Ganesh (Eds.). Springer, 27–40.

https://doi.org/10.1007/978-3-031-65633-0_2

[20] Jinwoo Kim, Qinheping Hu, Loris D’Antoni, and Thomas Reps. 2021. Semantics-guided synthesis. Proc. ACM Program.
Lang. 5, POPL, Article 30 (Jan. 2021), 32 pages. https://doi.org/10.1145/3434311

[21] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated program repair. Commun. ACM 62, 12

(2019), 56–65. https://doi.org/10.1145/3318162

[22] L. Michel, P. Schaus, and P. Van Hentenryck. 2021. MiniCP: a lightweight solver for constraint programming.

Mathematical Programming Computation 13, 1 (2021), 133–184. https://doi.org/10.1007/s12532-020-00190-7

[23] Stephen H. Muggleton. 1995. Inverse Entailment and Progol. New Gener. Comput. 13, 3&4 (1995), 245–286. https:

//doi.org/10.1007/BF03037227

[24] Stephen H. Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. 2015. Meta-interpretive learning of higher-order

dyadic datalog: predicate invention revisited. Mach. Learn. 100, 1 (2015), 49–73. https://doi.org/10.1007/S10994-014-

5471-Y

[25] Chandrakana Nandi, Max Willsey, Amy Zhu, Yisu Remy Wang, Brett Saiki, Adam Anderson, Adriana Schulz, Dan

Grossman, and Zachary Tatlock. 2021. Rewrite rule inference using equality saturation. Proc. ACM Program. Lang. 5,
OOPSLA (2021), 1–28. https://doi.org/10.1145/3485496

[26] Saswat Padhi, Udupa Abhishek, Andi Fu, Elizabeth Polgreen, and Andrew Reynolds. 2019. Benchmarks for SyGuS

Competition. https://github.com/SyGuS-Org/benchmarks.

[27] Francesca Rossi, Peter van Beek, and Toby Walsh (Eds.). 2006. Handbook of Constraint Programming. Foundations of
Artificial Intelligence, Vol. 2. Elsevier. https://www.sciencedirect.com/science/bookseries/15746526/2

[28] Ridwan Salihin Shariffdeen, Yannic Noller, Lars Grunske, and Abhik Roychoudhury. 2021. Concolic program repair. In

PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Virtual
Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 390–405. https://doi.org/10.1145/

3453483.3454051

[29] Xujie Si, Yuan Yang, Hanjun Dai, Mayur Naik, and Le Song. 2019. Learning a Meta-Solver for Syntax-Guided Program

Synthesis. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

https://doi.org/10.1007/S10994-020-05934-Z
https://doi.org/10.1007/S10994-019-05834-X
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3418461
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1561/2500000010
https://doi.org/10.1007/978-3-031-65633-0_2
https://doi.org/10.1145/3434311
https://doi.org/10.1145/3318162
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/BF03037227
https://doi.org/10.1007/BF03037227
https://doi.org/10.1007/S10994-014-5471-Y
https://doi.org/10.1007/S10994-014-5471-Y
https://doi.org/10.1145/3485496
https://github.com/SyGuS-Org/benchmarks
https://www.sciencedirect.com/science/bookseries/15746526/2
https://doi.org/10.1145/3453483.3454051
https://doi.org/10.1145/3453483.3454051

28 Hinnerichs et al.

OpenReview.net. https://openreview.net/forum?id=Syl8Sn0cK7

[30] Armando Solar-Lezama. 2008. Program synthesis by sketching. Ph. D. Dissertation. Massachusetts Institute of Technol-

ogy.

[31] Armando Solar-Lezama. 2009. The Sketching Approach to Program Synthesis. In Programming Languages and Systems,
7th Asian Symposium, APLAS 2009, Seoul, Korea, December 14-16, 2009. Proceedings (Lecture Notes in Computer Science,
Vol. 5904), Zhenjiang Hu (Ed.). Springer, 4–13. https://doi.org/10.1007/978-3-642-10672-9_3

[32] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. 2008. Sketching concurrent data structures.

SIGPLAN Not. 43, 6 (June 2008), 136–148. https://doi.org/10.1145/1379022.1375599

[33] Emina Torlak and Rastislav Bodík. 2013. Growing solver-aided languages with rosette. In ACM Symposium on
New Ideas in Programming and Reflections on Software, Onward! 2013, part of SPLASH ’13, Indianapolis, IN, USA,
October 26-31, 2013, Antony L. Hosking, Patrick Th. Eugster, and Robert Hirschfeld (Eds.). ACM, 135–152. https:

//doi.org/10.1145/2509578.2509586

[34] Emina Torlak and Rastislav Bodík. 2014. A lightweight symbolic virtual machine for solver-aided host languages. In

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom
- June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 530–541. https://doi.org/10.1145/2594291.

2594340

[35] Pascal Van Hentenryck. 1989. Constraint Satisfaction in Logic Programming. The MIT Press, Cambridge.

[36] Yuntong Zhang, Andreea Costea, Ridwan Shariffdeen, Davin McCall, and Abhik Roychoudhury. 2025. EffFix: Efficient

and Effective Repair of Pointer Manipulating Programs. ACM Trans. Softw. Eng. Methodol. 34, 3 (2025), 69:1–69:27.
https://doi.org/10.1145/3705310

https://openreview.net/forum?id=Syl8Sn0cK7
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1145/1379022.1375599
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/3705310

Modelling Program Spaces in Program Synthesis with Constraints 29

A Constraint Propagation Algorithms
Concrete implementations of the respective propagation algorithms. A solver state is set to infeasible

if the current tree cannot contain a valid solution.

A.1 Forbid

Algorithm 1 Propagation of a local forbid constraint.

node← get_node_at_location(solver, constraint.path)

match← pattern_match(node, constraint.tree)

if match isa HardFail then
deactivate!(solver, constraint)

else if match isa Success then
set_infeasible!(solver, constraint)

else if match isa SuccessWhenHoleAssignedTo then
remove!(solver, match.hole, match.rule)

deactivate!(solver, constraint)

end if

A.2 Contains
Contains is closely related to the unique constraint.

Algorithm 2 Propagation of a ’contains sub-tree’ constraint.

for 𝑖 ∈ constraint.indices do
candidate← constraint.candidates[𝑖]

match← pattern_match(candidate, constraint.tree)

if match isa HardFail then
remove!(constraint.indices, 𝑖)

else if match isa Success then
deactivate!(solver, constraint)

end if
end for
𝑛 ← length(constraint.indices)

if 𝑛 == 0 then
set_infeasible!(solver, constraint)

else if 𝑛 == 1 then
𝑖 ← minimum(constraint.indices)

candidate← constraint.candidates[𝑖]

result← make_equal!(solver, candidate, constraint.tree)

if result isa HardFail then
set_infeasible!(solver, constraint)

else if result isa Success then
deactivate!(solver, constraint)

end if
end if

30 Hinnerichs et al.

A.3 Ordered Constraint
The Ordered constraint needs to be enforced wherever the shape can match. A local ordered

constraint is posted.

Algorithm 3 Propagation of a local ordered constraint.

node← get_node_at_location(solver, constraint.path)

vars← Dict()

match← pattern_match(node, constraint.tree, vars)

if match isa Fail then
deactivate!(solver, constraint)

else if match isa Success then
should_deactivate← true

𝑛← length(constraint.order)

for name1, name2 ∈ zip(constraint.order[1:𝑛-1], constraint.order[2:𝑛]) do
result← make_less_than_or_equal!(solver, vars[name1], vars[name2])

if result isa HardFail then
set_infeasible!(solver)

else if result isa SoftFail then
should_deactivate← false

end if
end for
if should_deactivate then
deactivate!(solver, constraint)

end if
end if

B Search Algorithms using BART
We describe how to implement two families of search algorithms in our paper. The concrete

algorithms are shown in Algorithm 4 and Algorithm 5.

C Grammars
In this section, we describe all grammars and constraints used in the experiments. We use code as a

more compact representation of constraints. First, note that a RuleNode denotes a value node and is
used to describe all ASTs. Second, we use a special variant of the Forbid constraint for the Robots

domain: ForbiddenSequence. For example, the constraint ForbiddenSequence([+,:a, +]) is

violated if on any path from the root to any leaf the + occurs twice. All proofs and definitions

remain valid for this constraint.

C.1 Arithmetic/LIA Grammar
The arithmetic grammar is closely related to the LIA grammar (Figure 1) can be used to synthesize

simple arithmetic expressions with an input symbol 𝑥 . For example, given the IO examples 1→ 2

and 5→ 6, the synthesizer will return 𝑥 + 1 as the target program.

This variant of the grammar includes 10 terminal rules for constants, instead of 1.

The constraints for the arithmetic grammar (See Figure 10) all break semantic symmetries in integer

arithmetic. They forbid trivial cases like adding 0 and multiplying by 1. The ordered constraints will

be used to break the commutativity of + and ×. This is not an exhaustive list of symmetry-breaking

constraints, and could be extended to break more symmetries.

Modelling Program Spaces in Program Synthesis with Constraints 31

Algorithm 4 Top-Down Iterator algorithm using BART’s interface

solver, pq← init_solver(grammar, starting_symbol)

while len(pq) > 0 do
state← pq.dequeue()

if state isa DecompSolverState then
solver.load_state(state)

hole← hole_heuristic(solver.get_tree())

if !hole then
uniform_solver← UniformSolver(grammar, solver.get_tree())

pq.enqueue(uniform_solver, priority_function(...))

else
for uniform_domain ∈ partition(hole.domain) do
solver.remove_all_but!(hole, uniform_domain)

pq.enqueue(solver.get_state(), priority_function(...))

end for
end if

else if state isa UniformSolver then
program← next_solution(state)

pq.enqueue(state, priority_function(...))

yield program

end if
end while

Algorithm 5 Bottom-Up Iterator algorithm using BART’s interface.

solver← init_solver(grammar)

bank← uniform_tree(terminals(grammar))

uniform_partitions← partition(grammar.rules)

for 𝑛 ∈ 1:max_depth do
uniform_trees← substitute_subtree(uniform_partitions, bank)

pq.enqueue(UniformSolver(grammar, tree)) for tree in uniform_trees

while len(pq) > 0 do
state← pq.dequeue()

program← next_solution(state)

pq.enqueue(state, priority_function(...))

update_bank(bank, program) {Adds program to a uniform tree}

yield program

end while
end for

C.2 Robots Grammar
The robot grammar [7] describes programs in the Robot Environment. This environment consists

of an 𝑛 × 𝑛 grid, a robot and a ball. A state describes the position of the robot and the ball. The task

is to learn to transform the initial state to the final state by moving the robot and letting it grab

and drop the ball.

32 Hinnerichs et al.

grammar = @csgrammar begin

Int = Int + Int

Int = Int * Int

Int = Int - Int

Int = |(0:9)

Int = x

end

Fig. 9. An arithmetic grammar, closely related to LIA.

Forbidden(RuleNode(times , [VarNode (:a), RuleNode(zero)]))

Forbidden(RuleNode(minus , [VarNode (:a), VarNode (:a)]))

Forbidden(RuleNode(minus , [VarNode (:a), RuleNode(zero)]))

Forbidden(RuleNode(plus , [VarNode (:a), RuleNode(zero)]))

Forbidden(RuleNode(times , [VarNode (:a), RuleNode(one)]))

Forbidden(RuleNode(minus , [

RuleNode(times , [VarNode (:a), RuleNode(two)])

VarNode (:a)

]))

Forbidden(RuleNode(plus , [VarNode (:a), VarNode (:a)]))

Forbidden(RuleNode(minus , [

RuleNode(times , [VarNode (:a), RuleNode(three)])

VarNode (:a)

]))

Forbidden(RuleNode(plus , [RuleNode(zero), VarNode (:a)]))

Forbidden(RuleNode(times , [RuleNode(zero), VarNode (:a)]))

Forbidden(RuleNode(times , [RuleNode(one), VarNode (:a)]))

Ordered(RuleNode(plus , [VarNode (:a), VarNode (:b)]), [:a, :b])

Ordered(RuleNode(times , [VarNode (:a), VarNode (:b)]), [:a, :b])

Fig. 10. 13 constraints on the arithmetic grammar defined in Figure 9

We will simplify the robot grammar by omitting conditional statements, as the environment is

too simple for them to be needed. In the upcoming experiments, we will use the robot grammar as

defined in Figure 11, equipped with the grammar constraints in Figure 12.

C.3 Symbolic Grammar
The symbolic grammar (see Figure 13), and its 21 constraints have no semantics and exists solely to

push the constraint solver to its limits.

Semantic grammars can be constrained to prune a large amount of the program space, but a

significant amount of it remains valid. In traditional CP, often only a few, if any at all, solutions

exist. In such cases, most time is spent in finding even a single solution. To mimic this setting and

push constraint propagation to its limit, we will consider the highly constrained symbolic grammar,

in which only a handful of programs satisfy the constraints.

Modelling Program Spaces in Program Synthesis with Constraints 33

grammar = @csgrammar begin

Sequence = (moveRight (); Sequence)

Sequence = (moveDown (); Sequence)

Sequence = (moveLeft (); Sequence)

Sequence = (moveUp (); Sequence)

Sequence = (drop(); Sequence)

Sequence = (grab(); Sequence)

Sequence = return

end

Fig. 11. A simplified grammar for the robot environment.

the robot can drop and grab at most once

Unique(r_drop)

Unique(r_grab)

shortest path constraints

ForbiddenSequence ([r_left , r_right], ignore_if = [r_drop , r_grab

])

ForbiddenSequence ([r_right , r_left], ignore_if = [r_drop , r_grab

])

ForbiddenSequence ([r_up , r_down], ignore_if = [r_drop , r_grab])

ForbiddenSequence ([r_down , r_up], ignore_if = [r_drop , r_grab])

symmetry breaking constraints

ForbiddenSequence ([r_down , r_right], ignore_if = [r_drop , r_grab

])

ForbiddenSequence ([r_down , r_left], ignore_if = [r_drop , r_grab])

ForbiddenSequence ([r_up , r_right], ignore_if = [r_drop , r_grab])

ForbiddenSequence ([r_up , r_left], ignore_if = [r_drop , r_grab])

Fig. 12. 10 constraints on the robot grammar defined in Figure 11

C.4 Lists Grammar
The Lists grammar (see Figure 14) is a semantic grammar that can be used for list manipulations. It

supports basic list operations and can be used to construct a program that takes two input integers

𝑥 and 𝑦 and returns a list.

To illustrate program synthesis using this grammar, consider the following two IO examples:

(𝑥 = 0, 𝑦 = 1) −→ [1, 3],
(𝑥 = 5, 𝑦 = 4) −→ [3, 9] .

The intended behaviour of the program is to return a sorted list of the sum of the input values

and the constant 3:

34 Hinnerichs et al.

grammar = @csgrammar begin

S = t1 #terminals # rule 1

S = t2 # rule 2

S = t3 # rule 3

S = t4 # rule 4

S = u1(S) #unary functions # rule 5

S = u2(S) # rule 6

S = u3(S) # rule 7

S = b1(S, S) #binary functions # rule 8

S = b2(S, S) # rule 9

S = b3(S, S) # rule 10

end

Fig. 13. A symbolic grammar without any semantics.

sort!(push!(push!([], sum(push!(push!([], y), x))), 3))

The constraints for the list grammar (See Figure 15) eliminate semantically redundant programs.

For example, by forbidding sorting a list twice in a row. We also define a domain rule node

representing all unary functions. Two of the constraints use this node to forbid unary functions

on an empty list (line 14) and a singleton list (line 15), respectively. The constraint on line 17

aims to forbid reversing a constant list. For example, reverse!(push!(push!([],2),x)))) can
be forbidden, as it is already represented by push!(push!([],x),2).

Just like for the arithmetic grammar, the provided list of constraints is not exhaustive and could be

further extended. However, they do prune enough of the program space to evaluate the performance

of constraint propagation in the upcoming sections.

grammar = @csgrammar begin

List = []

List = push!(List , Int)

List = reverse !(List)

List = sort!(List)

List = append !(List , List)

Int = maximum(List)

Int = minimum(List)

Int = sum(List)

Int = prod(List)

Int = |(1:3)

Int = x

Int = y

end

Fig. 14. A grammar with basic list operations.

Modelling Program Spaces in Program Synthesis with Constraints 35

A = VarNode (:a)

B = VarNode (:b)

V = VarNode (:v)

unaryfunction(node:: AbstractRuleNode) = DomainRuleNode(grammar ,

[_reverse , _sort , _max , _min , _sum , _prod], [node])

Forbidden(reverse(reverse(A)))

Forbidden(sort(reverse(A)))

Forbidden(sort(sort(A)))

Forbidden(sort(append(A, reverse(B))))

Forbidden(sort(append(A, sort(B))))

Forbidden(sort(push(sort(A), V)))

Forbidden(unaryfunction(empty))

Forbidden(unaryfunction(push(empty , V)))

ForbiddenSequence ([_reverse , _empty], ignore_if =[_sort , _append])

ForbiddenSequence ([_append , _empty], ignore_if =[_reverse , _sort])

Fig. 15. 10 constraints on the list grammar defined in Figure 14

C.5 SLIA and BV
SyGuS SLIA and BV are two program synthesis benchmarks from the SyGuS Challenge 2019[26],

commonly used to benchmark synthesizers. Exploring constraints in real-world program synthesis

benchmarks, we use three sets of constraints.

(1) No constraints: –
(2) Constraints removing redundancies: Programs must contain the input, breaking sym-

metry of equality and other commutative operators. For BV these are bitvector operations

including addition, xor, and, or, nand, and nor.

(3) Removing redundancies +useful constraints: For BV, adding to the previous constraints,
we add the constraint ForbiddenSequence([i,i] for all possible grammar indices of non-

terminal symbols. For SLIA, we add Contains(i) for every rule index i that is terminal,

not an input, not an empty string or space, and that has the String type.

D Ablation Studies and Experiments
D.1 Program Space Reduction
We compare the runtime of enumeration without constraints vs our propagation system. The

results are shown in Figure 16. We see that our propagation is strictly faster than pure enumeration,

removing many programs before they are enumerated.

We further list the concrete reduction of the program spaces:

D.1.1 Arithmetic Grammar. See Table 1.

D.1.2 Robots Grammar. See Table 2.

D.1.3 Symbolic Grammar. See Table 3.

36 Hinnerichs et al.

Fig. 16. Runtime ratio of pure enumeration without constraints to our propagation system on the four
grammars.

Size Without Constraints With Constraints
Program Space Runtime (s) Program Space Runtime (s)

1 11 0.000 11 0.000

2 11 0.000 11 0.000

3 374 0.000 201 0.001

4 374 0.000 201 0.001

5 24 332 0.039 7 798 0.018

6 24 332 0.039 7 798 0.018

7 2 000 867 3.190 383 688 0.814

8 2 000 867 3.852 383 688 0.819

9 184 632 701 361.538 21 192 628 43.842

10 184 632 701 357.280 21 192 628 45.778

11 18 265 184 267 35048.885 1 254 647 849 2592.975

Table 1. Comparison of program space and runtime with and without constraints in the Arithmetic Grammar

D.1.4 Lists Grammar. See Table 4.

D.2 Performance of the Uniform Solver
So far, all experiments have been executed using iterators that use both the decomposition and

uniform solvers. The decomposition solver is used to propagate constraints on non-uniform trees,

which has the potential to eliminate an entire search branch of uniform trees. It also uses memory-

intensive state management to ensure programs are enumerated in increasing order of size. The

uniform solver has efficient state management but is restricted to solving uniform trees and a DFS.

In this section, we conduct an ablation study. Instead of just using the proposed hybrid method,

we measure the performance by enumerating the program space using only one of the implemented

solvers.

More precisely, we will compare the following three methods:

Modelling Program Spaces in Program Synthesis with Constraints 37

Size Without Constraints With Constraints
Program Space Runtime (s) Program Space Runtime (s)

1 1 0.000 1 0.000

2 7 0.000 7 0.000

3 43 0.000 43 0.000

4 259 0.000 133 0.002

5 1 555 0.002 407 0.004

6 9 331 0.017 1 457 0.022

7 55 987 0.093 4 025 0.071

8 335 923 0.492 11 001 0.209

9 2 015 539 3.270 29 666 0.538

10 12 093 923 23.728 67 129 1.306

11 72 559 411 141.965 161 965 2.855

12 435 356 467 844.853 384 853 6.794

13 2 612 138 803 (*) 292 741 12.288

14 15 672 832 819 (*) 488 257 23.051

15 94 037 996 913 (*) 805 863 42.535

16 564 221 981 491 (*) 1 368 153 69.516

17 3 385 341 988 947 (*) 1 839 991 96.197

18 20 312 051 933 683 (*) 2 708 965 182.691

19 121 871 948 002 803 (*) 3 907 683 296.374

20 731 231 688 012 955 (*) 5 495 589 447.164

21 4 387 390 128 075 571 (*) 7 610 421 681.843

Table 2. Program space and runtime comparison with and without constraints for size 1 to 21 in the Robots
Grammar. (*) Instead of actual enumeration, the theoretical number of programs was calculated with

∑𝑛−1
𝑘=0

6
𝑘 .

(1) Hybrid method: The decomposition solver is used to enumerate uniform trees, and uniform

solvers are used to enumerate all complete programs of each uniform tree, as described in

Algorithm 4.

(2) Uniform solver only: We ignore constraints in the decomposition solver, and only start

propagating constraints once a uniform tree is reached.

(3) Decomposition solver only: We never dispatch to the uniform solver. Even uniform trees

will be expanded by the decomposition solver

First, using only the decomposition solver does not rely on simple program spaces. All holes are

treated as non-uniform holes, which significantly reduces the inference power of the constraints.

Second, only using the uniform solver, we can use constraints once they are broken down into

local constraints on a uniform hole. In this setting, all constraints are always posted on all feasible

uniform holes.

Figure 17 holds the result of the ablation study.We see that the hybrid method always outperforms

using only the decomposition solver. In both the hybrid and decomposition solver methods, the

number of uniform trees is exactly the same. In other words, the results indicate that solving

a uniform tree with the uniform solver, optimized for solving uniform trees, outperforms the

decomposition solver.

For the symbolic grammar, only using the uniform solver outperforms the hybrid method (see

Figure 17). This indicates that the overhead of propagating constraints in the decomposition solver

does not outweigh the gained inference. This suspicion is confirmed by the follow-up experiment

38 Hinnerichs et al.

Size Without Constraints With Constraints
Program Space Runtime (s) Program Space Runtime (s)

1 4 0.000 0 0.000

2 16 0.000 0 0.000

3 100 0.000 0 0.001

4 640 0.001 0 0.002

5 4 708 0.010 0 0.007

6 35 920 0.072 0 0.020

7 287 236 0.550 0 0.056

8 2 355 328 4.469 0 0.146

9 19 763 524 43.766 0 0.406

10 168 628 240 377.454 11 1.143

11 1 459 357 732 3213.797 3 3.011

12 - - 11 8.752

13 - - 108 24.491

14 - - 2597 71.632

15 - - 27 667 210.122

16 - - 345 428 653.034

Table 3. Comparison of program space and runtime with and without constraints in the Symbolic Grammar

Size Without Constraints With Constraints
Program Space Runtime (s) Program Space Runtime (s)

1 1 0.000 1 0.000

2 3 0.000 1 0.000

3 13 0.000 6 0.001

4 51 0.001 20 0.001

5 217 0.002 31 0.003

6 951 0.010 56 0.008

7 4 297 0.036 206 0.018

8 19 887 0.124 1 026 0.042

9 93 757 0.513 1 656 0.092

10 448 875 2.172 5 381 0.216

11 2 176 261 8.963 16 006 0.580

12 10 663 563 37.675 53 631 1.159

13 52 724 209 150.302 166 881 3.010

14 262 718 895 771.796 548 256 6.346

15 1 317 979 105 3629.086 1 779 631 15.498

16 - - 5 817 631 36.277

17 - - 19 329 756 89.173

18 - - 63 692 256 250.183

19 - - 213 391 631 652.133

Table 4. Comparison of program space and runtime with and without constraints in the Lists Grammar

in Figure 18a. We see that the decomposition solver (orange line) only eliminates a negligible

Modelling Program Spaces in Program Synthesis with Constraints 39

Fig. 17. An ablation study. Comparing the runtime of the overall search procedure using both or only 1 of the
2 built-in solvers.

amount of uniform trees, which means the inference is weak. For this particular grammar, using

the decomposition solver is not worth its overhead.

On the contrary, for the list grammar (see Figure 17), the hybrid method outperforms only

using the uniform solver. This indicates that the decomposition solver has strong inference for this

grammar. Again, this suspicion is confirmed by the follow-up experiment in Figure 18b. We see

that the decomposition solver (orange line) eliminates a significant portion of uniform trees. A

reduced number of uniform trees means that fewer uniform solvers have to be instantiated. Hence,

the hybrid method will outperform only using the uniform solver.

D.3 First-order Constraints
We run two ablation studies on first-order constraints. First, we compare the first-order and

grounded forbidden constraints. We see a clear positive trend in the number of constraints and the

number of propagate calls. This also correlates with the runtime of the propagation algorithm.

D.4 Bottlenecks
In this section, we will look at the bottlenecks in the proposed methods to aid developers in

optimizing the solvers. We can make several observations from the results in Figure 20.

For the Robot and Arithmetic grammars, we see that a significant amount of time is spent on

posting constraints, almost as much as on propagating them. This is because propagators are

40 Hinnerichs et al.

(a) Symbolic Grammar (b) List Grammar

Fig. 18. Comparing the total number of uniform trees with and without the decomposition solver.

Fig. 19. Enumerating programs of the Symbolic Grammar using different combinations of first-order and
grounded forbidden constraints. The plots depict runtime, propagate calls, and search nodes, respectively.

scheduled unnecessarily often. For the robot grammar, only 16% of them were able to make any

kind of deduction
4
.

4
A propagator makes a deduction iff it prunes 1 or more rules from 1 or more domains.

Modelling Program Spaces in Program Synthesis with Constraints 41

Fig. 20. The activity distribution of the decomposition and uniform solver in the top-down iterator for several
grammars. For the Symbolic- and List grammars, an additional experiment without constraint propagation in
the decomposition solver is included (labeled ’Uniform’). The activity was measured using a profiler tool and
grouped into high-level categories.

For the Symbolic grammar, the issue is even more pronounced. We see that more time is spent

posting than propagating. This indicates that many constraints are scheduled, but are unable to

make any deductions. This is an expected result, as the decomposition solver deals with non-

uniform trees, and most constraints can only make deductions if the tree’s structure is known. In

the ablation study (See Figure 17), we have seen that if we refrain from propagating constraints

in the decomposition solver, we can improve the total runtime by a rough factor of 3. However, a

more sustainable approach would be to limit the conditions for constraint propagation, thereby

reducing the number of unnecessary ones.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Using Syntactic Constraints to Remove Redundant Programs
	2.2 Using Syntactic Constraints to Guide the Search

	3 Background
	3.1 Program Synthesis
	3.2 Constraint Programming

	4 Problem Statement
	5 Method Overview
	6 Modelling the Program Space (be)for(e) Synthesis
	6.1 The Language of Constraints
	6.2 Simple Program Spaces
	6.3 Local Constraints

	7 Efficiently Propagating Syntactic Constraints in Program Spaces
	7.1 Solver Architecture
	7.2 Propagating Constraints
	7.3 Proving Correctness

	8 Searching Shaped Program Spaces
	9 Experimental Evaluation
	9.1 Reducing the Program Space (RQ1)
	9.2 Guiding State-of-the-Art Synthesizers (RQ2)
	9.3 First-order Constraints (RQ3)

	10 Related Work
	11 Conclusion and Future Work
	References
	A Constraint Propagation Algorithms
	A.1 Forbid
	A.2 Contains
	A.3 Ordered Constraint

	B Search Algorithms using BART
	C Grammars
	C.1 Arithmetic/LIA Grammar
	C.2 Robots Grammar
	C.3 Symbolic Grammar
	C.4 Lists Grammar
	C.5 SLIA and BV

	D Ablation Studies and Experiments
	D.1 Program Space Reduction
	D.2 Performance of the Uniform Solver
	D.3 First-order Constraints
	D.4 Bottlenecks

