
Bayesian Deep Q-Learning via Sequential Monte Carlo

Pascal van der Vaart Matthijs T.J. Spaan Neil Yorke-Smith
Delft University of Technology

p.r.vandervaart-1@tudelft.nl

Abstract
Exploration in reinforcement learning remains a difficult challenge. Recently,
ensembles with randomized prior functions have been popularized to quantify
uncertainty in the value model, in order to drive exploration with success. However
these ensembles have no theoretical guarantee to resemble the actual posterior. In
this work, we view training ensembles from the perspective of sequential Monte
Carlo, and propose an algorithm that exploits both the practical flexibility of
ensembles and theory of the Bayesian paradigm. We incorporate this method into
a standard DQN agent and experimentally show improved exploration capabilities
over a regular ensemble.

1 Introduction
Reinforcement learning algorithms are still notoriously sample inefficient. One pressing reason is the
difficulty of exploring an environment efficiently while assuming little prior knowledge. A promising
approach that is currently studied is to quantify uncertainty in the value models learned by the agent,
and then either provide intrinsic reward or use Thompson sampling to explore [Bellemare et al.,
2016, Ostrovski et al., 2017, Burda et al., 2018, Osband et al., 2016, 2018, Gal and Ghahramani,
2016, Fortunato et al., 2017]. However, quantifying uncertainty for deep neural networks is in itself a
difficult task [Hüllermeier and Waegeman, 2021, Lockwood and Si, 2022].

Ensembles of neural networks have been shown to provide better predictive accuracy over a single
model in supervised learning tasks [Dietterich, 2000, Lakshminarayanan et al., 2017], as well as
suitable methods for uncertainty quantification for exploration in reinforcement learning [Osband
et al., 2016, 2018, Fellows et al., 2021]. While ensembles with independent models of identical
architecture tend to collapse to the same predictive model [Geiger et al., 2020], there are several
techniques developed to prevent this, such as regularization, adversarial learning [Lakshminarayanan
et al., 2017], bootstrapping the data [Osband et al., 2016], and adding additive priors [Osband
et al., 2018]. Furthermore, some techniques such as Stein Variational Gradient Descent [Liu and
Wang, 2016, D’Angelo and Fortuin, 2021] alleviate this issue by interpreting the ensemble as an
approximation to the Bayesian posterior and training it as such. The method that we propose falls into
this last category and aims to be closer to the posterior, while retaining the practicality of ensembles.

Bayesian neural networks can have desirable properties if the posterior can be inferred accurately.
They have in theory optimal predictive accuracy given the correct likelihood and prior and also provide
accurate uncertainty quantification. Unfortunately, exactly inferring the posterior is intractable already
for some simple statistical models, and accurately approximating this posterior is very difficult for
neural networks.

Typically, posterior approximation methods fall into one of two categories. Markov Chain Monte
Carlo (MCMC) methods, which are theoretically unbiased but have high variance, and Variational
Inference methods, which have low variance but are typically biased. Recently both types of methods
have been altered specifically for application to neural networks, with MCMC showing strong results
in large networks [Chen et al., 2014, Wenzel et al., 2020, Garriga-Alonso and Fortuin, 2021]. However,
for complex multimodal distributions, MCMC methods can struggle to find every mode [Del Moral
et al., 2006]. This is an important drawback in deep learning, where the posterior distribution is

16th European Workshop on Reinforcement Learning (EWRL 2023).



likely very ill behaved, and especially in reinforcement learning where under-approximation of the
posterior complexity might lead underestimating the uncertainty and therefore failure of exploration.
Sequential Monte Carlo can be a remedy to these issues in non-deep learning applications [Del Moral
et al., 2006], and is also promising for deep learning noting the success of ensembles.

In this work, we unify ensembles and MCMC methods by using SMC algorithms to train an ensemble
in a Bayesian manner, to benefit from both the practical effectiveness of ensembles and theoretical
foundations of MCMC.

Our contributions are two-fold:

1. We introduce existing sequential Monte Carlo algorithms as feasible methods to train
ensembles so that they serve as proper approximations to the Bayes posterior.

2. We modify the BootDQN algorithm [Osband et al., 2016] to use sequential Monte Carlo
instead, which keeps track of a posterior over the Q-values in a theoretically sound manner.

2 Background
2.1 Markov Decision Processes
A Markov Decision Process is a tuple (S,A, T,R, γ) of a state space S, action space A, transition
function T : S × A → ∆(S), reward function R : S × A → R and discount factor 0 ≤ γ < 1. At
each time step t, an agent observes the current state st, chooses an action at ∼ π(st) according to
its policy π : S → ∆(A), and receives reward rt = R(st, at). The goal of reinforcement learning
is to find a policy π that maximizes the discounted cumulative reward ET,π [

∑∞
t=0 γ

trt]. Of central
importance is the Q-function

Qπ(s, a) = R(s, a) + ET,π

[ ∞∑
t=1

γtrt | s0 = s, a0 = a

]
, (1)

denoting the expected discounted future reward if the agent executes action a in state s and then
follows the policy π.

Since the transition function T and reward function R are assumed to be unknown to the agent,
computing a strong policy requires exploration of the environment to learn which actions result in
optimal return.

2.2 Bootstrapped DQN
A common strategy to find an optimal policy is Deep Q-learning (DQN), where a parameterized
neural network Qθ is learned and the corresponding policy picks argmaxa Qθ(s, a) in every state
[Mnih et al., 2015]. To improve exploration, the BootDQN algorithm [Osband et al., 2016] leverages
the uncertainty estimation abilities of ensembles. By learning an ensemble of Q-networks

Qθ1(s, a), . . . , Qθn(s, a)

the agent achieves deep exploration through Thompson sampling, sampling uniformly i ∈ {1, . . . , n}
and acting greedily with respect to the network Qθi for a full episode by picking argmaxa Qθi(s, a)
in every state s. To update its predictions, each network Qθi is equipped with their own target network
Qθ′

i
, and gets updated with their own targets:

θi ← θi −∇θi

[
Qθi(s, a)− r −max

a′
Qθ′

i
(s′, a′)

]2
, (2)

where s, a, r, s′ are transitions sampled uniformly from a replay buffer.

Crucially, the ensemble Qθ1(s, a), . . . , Qθn(s, a) has to stay diverse in underexplored states in order
to keep exploration going. This can be achieved by bootstrapping the data for each ensemble member,
or by using randomized prior functions. Randomized prior functions have been shown to be effective
at keeping ensemble diversity [Osband et al., 2018].

A randomized prior function is a fixed prior function Qϑi
(s, a) that is sampled independently for

each ensemble member Qθi(s, a), at the start of training. It remains unmodified during training and
is added to the model outputs:

(Qθi +Qϑi
)(s, a) = Qθi(s, a) +Qϑi

(s, a). (3)

2



Algorithm 1: Base Sequential Monte Carlo
Input: sequence of target distributions p0(θ), . . . , pm(θ) and MCMC kernels P1, . . . Pm

Result: a sample θ1, . . . , θn ∼ pm(θ)
θ1, . . . , θn ∼ p0 ; /* Draw initial particles */
w1, . . . , wn ← 1;
for t = 1, . . . ,m do

for j = 1, . . . n do
wj ← pt(θj)

pt−1(θj)
; /* Reweighting */

end
for j = 1, . . . n do

θj ← Pt(θj) ; /* Apply Markov chain kernel */
end
θ1, . . . , θn ∼ resample(θ1, . . . , θn|w1, . . . , wn) ; /* Resample with replacement */

end

During action selection, the Q-values of ensemble member i are given by (Qθi +Qϑi)(s, a), and the
BootDQN update rule is modified:

θi ← θi −∇θi

[
(Qθi +Qϑi)(s, a)− r −max

a′
(Qθ′

i
+Qϑi)(s

′, a′)
]2

. (4)

Each ensemble member having a unique prior function causes unique generalization behaviour
on unobserved data, which keeps the ensemble outputs diverse in underexplored states. Note that
randomized prior functions are not unique to reinforcement learning and can be used in supervised
learning settings as well.

However, randomized prior functions lack theoretical motivation when considered as Bayesian priors
for neural networks. In problems with well-defined likelihoods and priors, the Bayesian posterior can
therefore be expected to outperform methods that rely on randomized prior functions.

2.3 Bayesian Neural networks
A Bayesian Neural Network (BNN) is any neural network fθ parameterized by θ ∈ Θ, with some
prior distribution p(θ) over Θ.

Given training data (x1, . . . , xn) and labels (y1, . . . , yn) i.i.d. from some likelihood L(y|fθ(x)), the
goal is to compute or sample from the posterior distribution over the parameter θ.

p(θ|D) = p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

=

∏n
i=1 L(yi|fθ(xi)p(θ)∫ ∏n
i=1 L(yi|fθ(xi)p(θ)dθ

(5)

Unfortunately, especially in the case of large neural networks, the posterior is intractable to compute or
sample from exactly. Therefore it is necessary to resort to approximation methods such as variational
inference and Markov Chain Monte Carlo.

2.4 Sequential Monte Carlo
Sequential Monte Carlo algorithms model a sequence of distributions p0(θ), . . . , pm(θ). An initial
state of particles is drawn from p0, and by repeatedly applying importance sampling, a Markov chain
Monte Carlo (MCMC) algorithm and resampling steps, the initial samples are transformed to be a
sample of pn(θ). A basic outline is given in Algorithnm 1. Under certain conditions, notably that
sample distributions have to be invariant under the MCMC steps, this Monte Carlo scheme converges
to the correct target [Del Moral et al., 2006].

Leveraging this fact, we can set pm(θ) = p(θ|D) ∝ p(θ)p(D|θ) and pick a sequence of temperatures
0 = λ0 < λ1 < · · · < λn = 1 and use SMC to sample from the sequence p0(θ), . . . , pm(θ), where
distribution is given by

pt(θ) ∝ p(D|θ)λtp(θ). (6)
This effectively interpolates between the prior and the posterior. Setting the temperature sequence
correctly is important, because a too course interpolation can cause the importance sampling weights

3



2 0 2
4
3
2
1
0
1
2
3
4
Full-batch Hamiltonian Monte Carlo

2 0 2
4
3
2
1
0
1
2
3
4

Minibatch Sequential Monte Carlo

2 0 2
4
3
2
1
0
1
2
3
4

Randomized Prior Functions

Figure 1: Sequential Monte Carlo and randomized prior functions in a supervised learning setting,
compared against the gold standard Hamiltonian Monte Carlo without noise. Sequential Monte Carlo
more closely resembles the posterior distribution as approximated by Hamiltonian Monte Carlo.

to be unstable and a too fine interpolation wastes computation. Fortunately, automatic on the fly
tuning methods exist that choose the next temperature based on the effective sample size of the
current sample [Cai et al., 2021, Dau and Chopin, 2022].

3 Sequential Monte Carlo for Bayesian Neural networks
Applying SMC to model the posterior of a Bayesian neural network is in practice similar to an
ensemble. The particles θ1, . . . , θn are individual models, and equipped with importance sampling
weights w1, . . . , wn model an unbiased approximation of the predictive posterior distribution.

The model is initialized by sampling initial parameters θ1, . . . , θn from the prior p(θ), and trained
by running Adaptive SMC with target distributions p(D|θ)λtp(θ). Unfortunately, typically in deep
learning the data set D is so large that mini batches are required to tractably compute the likelihood
and gradients. This poses two potential problems:

1. The reweighting step is now noisy, which lowers the quality of importance sampling.

2. The MCMC step, which typically is gradient based, is now noisy. This means we may have
to rely on MCMC methods that only approximately leave the target distribution invariant.

However, these problems can largely be alleviated, as the theoretical results by Llorente et al. [2022]
show that noisy importance sampling has higher variance but remains unbiased. Furthermore, Wenzel
et al. [2020] and Garriga-Alonso and Fortuin [2021] show that accurate noisy MCMC schemes that
leave the target distribution (approximately) invariant do exist.

Specifically, in our experiments we estimate the reweighting steps by sampling a single batch
independently for every particle every iteration. As MCMC kernel we use the Symplectic Euler
Langevin scheme with hyper-parameters as suggested by Wenzel et al. [2020]. At each iteration t,
the temperature in the next step λt+1 = λt + δ is picked by keeping the effective sample size (ESS)
at a desired level d:

max
δ

δ, such that: δ < 1− λt, and

ESS =

(∑n
j=1 wj

)2

∑n
j=1 w

2
j

=

(∑n
j=1 p(D|θj)δ

)2

∑n
j=1 p(D|θj)2δ

> d.

(7)

Our initial experimental findings in a supervised learning setting, shown in Figures 1 and 2, show that
even with very small mini batches, SMC with noisy likelihoods and gradients results in performance
on par with the gold standard noise-free Hamiltonian Monte Carlo [Neal et al., 2011], albeit at the
cost of requiring a finer grained temperature schedule for lower batch sizes. This is to be expected,
as the temperature schedule depends on maintaining a high enough effective sample size, which is
known to be lower when using noisy reweighting [Llorente et al., 2022].

4 Sequential Monte Carlo DQN
The ensemble of a BootDQN agent can be replaced with an ensemble trained by sequential Monte
Carlo with minor changes to the architecture. Most notably, along with the parameters of the ensemble
θ1, . . . , θn, the agent now also stores the importance sampling weights w1, . . . , wn.

4



Algorithm 2: Sequential Monte Carlo for BNNs
Input: Prior p0(θ) and target p0(θ)p(D|θ), MCMC algorithm
Result: A sample θ1, . . . , θn ∼ p0(θ)p(θ|D)
θ1, . . . , θn ∼ p0 ; /* Draw initial particles */
w1, . . . , wn ← 1;
t← 0;
λ0 ← 0;
while λt < 1 do

Pick λt > λt−1 ; /* Equation 7 */
log pt(θ)← log p0(θ) + λt log p(D|θ);
for j = 1, . . . n do

logwj ← λt log p(θj |D) ; /* Reweighting, evaluating likelihood */
end
w1, . . . , wn = normalize(w1, . . . , wn);
for j = 1, . . . n do

θj ← MCMC(θj , log pt(θ)) ; /* Apply Markov chain kernel */
end
θ1, . . . , θn ∼ resample(θ1, . . . , θn|w1, . . . , wn) ; /* Resample */
t← t+ 1;

end

128 64 32 24 16 8 4 2
batch size

0

25

50

75

100

125

150

175

ite
ra

tio
ns

 fo
r >

99
%

 E
SS

Figure 2: Number of interpolation iterations required in Sequential Monte Carlo to achieve 99%
effective sample size for decreasing batch size, in the same experimental setup as Figure 1.

Equipped with a likelihood and prior, the agent attempts to maintain a posterior over the parameters
of a Q-network, conditioned on the current replay buffer D = ((st, at, rt, st+1))t=1...N and current
target parameters θ′1, . . . , θ

′
n. This is achieved by defining a joint likelihood over (θ, θ′). In line with

[Schmitt et al., 2023], a normal distribution Qθ(s, a) − r(s, a) − argmaxa′ Qθ′(s′, a′) ∼ N (0, σ)
is used as a probabilistic interpretation of the squared temporal difference error, resulting in the
log-likelihood

logL(θ, θ′,D) = − 1

2σ2

N∑
t=1

[
Qθ(st, at)− rt − argmax

a′
Qθ′(st+1, a

′)

]2
. (8)

The log posterior distribution is defined then as

log p(θ|θ′,D) ∝ log p(θ) + logL(θ, θ′,D). (9)

5



Algorithm 3: Sequential DQN
Input: MDP, batch size B, ensemble size n
Result: Posterior over Qθ(s, a)
θ1, . . . , θn ∼ p(θ) ; /* Initialize networks */
w1, . . . , wn ← 1;
while training do

i ∼ uniform(1, . . . , n);
s0 ∼ MDP;
t← 0;
while episode not done do

at = argmaxa Qθi(st) ; /* TS sample for full episode */
rt, st+1 ∼ MDP(st, at);
B = B ∪ {(st, at, rt, st+1)}
if |B| = B then

θ1, . . . , θn, w1, . . . , wn ← SMC(p(θ|θ′,D), p(θ|θ′,D ∪ B)) ; /* main update */
D ← D ∪ B;
B ← ∅

end
if time for target update then

θ′i,new ← θi;
θ1, . . . , θn, w1, . . . , wn ← SMC(p(θ|θ′,D), p(θ|θ′new,D)) ; /* target update */
θ′i ← θ′i,new

end
end

end

After collecting a batch of trajectories B = ((st, at, rt, st+1))t=1,...,B , the posterior distribution can
be updated efficiently by noting that

log p(θ|θ′,D ∪ B) = log p(θ) + logL(θ, θ′,D ∪ B)

= log p(θ) +

N+B∑
t=1

− 1

2σ2

[
Qθ(st, at)− rt − argmax

a′
Qθ′(st+1, a

′)

]2
= log p(θ) + logL(θ, θ′,D)

+

N+B∑
t=N

− 1

2σ2

[
Qθ(st, at)− rt − argmax

a′
Qθ′(st+1, a

′)

]2
.

(10)

Therefore, since our agent is currently holding a sample of p(θ|θ′,D), the posterior can be updated
by running SMC on the sequence

p(θ|θ′,D), p(θ|θ′,D)L(θ, θ′,B)λ1 , . . . , p(θ|θ′,D)L(θ, θ′,B)λk , p(θ|θ′,D)L(θ, θ′,B), (11)

interpolating between the posterior given what was already known, and the new posterior including
the new batch. The temperatures λ1, . . . λk can be tuned on the fly, depending on how novel the new
batch is.

Evaluating the likelihood L(θ, θ′,B) only requires the latest batch, and can easily be computed
exactly. However, we choose to approximate p(θ|θ′,D) by sampling mini batches uniformly from
the replay buffer, since computing it exactly would require summing over the entire replay buffer.

Updating the target networks naively changes the target distribution, meaning that the weights
w1, . . . wn are incorrect, and the sample

θ1, . . . , θn, w1, . . . , wn

is no longer a sample of the posterior with respect to the updated targets, i.e., p(θ|θ′new,D). Therefore,
the typical target update θ′i ← θi is now accompanied by another sequential Monte Carlo step, which

6



0 1000 2000 3000 4000 5000 6000 7000
episodes

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

SQLDQN
BootDQN + prior
BootDQN

Figure 3: The fraction of runs where the agent reaches the goal state at each episode, averaged over
50 episodes. The shaded area shows the standard error of the mean over 5 seeds. Dotted lines show
individual seeds. The agent with an ensemble of DQNs can not solve this environment.

smoothly interpolates between the distribution conditioned on the old targets and the distribution
conditioned on the new targets via the sequence

p(θ)L(θ, θ′old,D)(1−λt)L(θ, θ′new,D)λt → p(θ)L(θ, θ′new,D), (12)

as λt → 1. This transforms a sample of the posterior with respect to the previous targets to a sample
with respect to the new targets. Intuitively speaking, this trains the main networks θ1, . . . , θn to
immediately match the new targets.

Apart from the novel parameter updates and target network updates, Sequential Monte Carlo DQN
(SQL DQN) makes no further alterations to BootDQN. Algorithm 3 shows the general structure with
both updates, where SMC refers to Algorithm 2. The symplectic euler Langevin scheme [Wenzel et al.,
2020] is used as MCMC step. While the structure is similar to a typical DQN implementation, a
major difference is that the SMC steps takes significantly more time than typical Q-value updates.
For each batch from the environment, the agent fully adapts its model to match the posterior given
the new replay buffer, and also after each target update the agent trains its networks to match the
posterior given the new targets. Furthermore, there is a very clear split between samples that are
already in the data set D and samples that have yet to be incorporated. It is assumed that the replay
buffer D is large enough to store every experienced transition.

5 Experiments
We evaluate our agent on the 30 × 30 Deep Sea environment [Osband et al., 2016, 2020]. This
environment is a grid, where the agent starts in the top left corner and at each time step, the agent
drops down one row and either moves left or right. The agent receives small negative reward when
moving to the right, except when reaching the bottom right state, where the agent obtains reward 1.
The optimal policy is to move right along the diagonal to reach this goal state, and a single mistake
in an episode will cause the agent to not receive any reward. This environment requires a dedicated
exploration method, as it would take a randomly exploring agent on average 230 episodes to observe
a positive reward.

Because updating the models and targets is more computationally expensive than in regular BootDQN,
the agent uses a relatively large batch size of 1024, meaning that the models are only updated
approximately every 34 episodes. Furthermore, because the target update step also updates the main
models alongside the targets, the target networks can be updated after every main update without

7



episode 50000

m
ea

n

episode 100000 episode 150000 episode 200000

0 5 0 2 0 2 0.0 0.5

va
ria

nc
e

10 5 10 1 10 5 10 1 10 5 10 1 10 5 10 3

Figure 4: Graphical view the mean and variance of the values during training on Deep sea. Each
pixel shows the mean (top row) or variance (bottom row) of that state as predicted by the ensemble.
The top left state is the initial state, and the bottom right state is the goal state. The diagonal is the
only sequence of states that results in reward. The states in the upper triangle are unreachable. Note
the different scale of the color bars across columns.

causing instability. To further increase the diversity of collected trajectories, the active Q-network is
sampled uniformly from the particles instead of from the distribution. Furthermore, no resampling is
performed during SMC in order to maintain more diversity in the target networks.

Figure 3 shows the average success rate, i.e., the number of times the agent reaches the goal state,
during training. Crucially, this is the success rate of the Thompson sampling policy which still
explores up until all ensemble members agree on the correct path. It can be seen that it takes a long
time for the entire ensemble to agree on the correct action sequence. Even after observing the goal, it
takes several thousands more episodes to fully converge to the optimal policy. This could be improved
upon by switching to a more optimistic evaluation, likelihood or prior, but not without assuming
further information about the environment. For example, in this experiment the agent is not aware
that the rewards and trajectories are in fact deterministic given the action sequence. In figure 4 this
problem is very apparent: even after convergence at 200000 episodes, the value is still reasonably
high for early but non-optimal states. This is because the aleatoric uncertainty in the likelihood is
compounded from the end to the start of the trajectory, and the argmax in the targets biases the value
upwards. BootDQN with prior functions does not suffer from this as much as it simply minimizes the
mean squared error without taking a probabilistic point of view. It can be seen clearly in Figure 3 that
a well-tuned variant of BootDQN with prior functions outperforms SQL DQN significantly in this
scenario. Taking this probabilistic point of view as in SQL DQN may be an advantage in stochastic
scenarios, but we leave further comparisons on these environments for future work.

Qualitatively speaking, Figure 4 shows what should be expected of a posterior. The variance decreases
as states are explored more often, and the variance decreases faster for states that are closer to the
end of the environment. Furthermore, the values are learned bottom up, and the ensemble stays
optimistic about states that have not been visited often. This allows the agent to eventually solve the

8



environment, albeit at more steps than BootDQN with prior functions. At episode 200 000, the mean
value prediction is close to γn for n = 29, . . . , 0 along the diagonal, which is the true value, and the
variance is low for every state.

6 Conclusion
This paper studied the novel idea of how sequential Monte Carlo can be used to train an ensemble
to approximate the Bayesian posterior distribution. We modified the BootDQN algorithm to use
sequential Monte Carlo, thus keeping track of a posterior over the Q-values in a theoretically sound
manner.

We found that such an approach is able to maintain a diverse set of models that can drive exploration in
difficult to explore environments such as Deep Sea. The algorithm developed here is motivated from a
theoretical standpoint, but our findings are that deviating from the theoretically-sound algorithm by not
performing resampling and uniformly sampling particles for action selection improves performance in
reinforcement learning. This could be caused by the likelihood or prior not describing the environment
well, especially in deterministic environments such as Deep Sea. In the future, we will extend our
experiments to stochastic and continuous environments,

7 Acknowledgements
This work has received funding from the European Union’s Horizon 2020 research and innovation
programme, under grant agreement No. 964505 (E-pi). We thank the reviewers for useful feedback
and thank Yaniv Oren and Moritz Zanger for insightful discussions.

References
M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying count-based

exploration and intrinsic motivation. Advances in Neural Information Processing Systems, 2016.

Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation. In
International Conference on Learning Representations, 2018.

M. Cai, M. Del Negro, E. Herbst, E. Matlin, R. Sarfati, and F. Schorfheide. Online estimation of dsge
models. The Econometrics Journal, 24(1):C33–C58, 2021.

T. Chen, E. Fox, and C. Guestrin. Stochastic gradient hamiltonian monte carlo. In International
Conference on Machine Learning, 2014.

F. D’Angelo and V. Fortuin. Repulsive deep ensembles are bayesian, 2021.

H.-D. Dau and N. Chopin. Waste-free sequential monte carlo. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 84(1):114–148, 2022.

P. Del Moral, A. Doucet, and A. Jasra. Sequential monte carlo samplers. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 68(3):411–436, 2006.

T. G. Dietterich. Ensemble methods in machine learning. In Multiple Classifier Systems, pages 1–15.
Springer Berlin Heidelberg, 2000.

M. Fellows, K. Hartikainen, and S. Whiteson. Bayesian bellman operators. In Advances in Neural
Information Processing Systems, 2021.

M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos, D. Hassabis,
O. Pietquin, et al. Noisy networks for exploration. arXiv:1706.10295, 2017.

Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in
deep learning. In International Conference on Machine Learning, 2016.

A. Garriga-Alonso and V. Fortuin. Exact langevin dynamics with stochastic gradients.
arXiv:2102.01691, 2021.

M. Geiger, A. Jacot, S. Spigler, F. Gabriel, L. Sagun, S. d’Ascoli, G. Biroli, C. Hongler, and M. Wyart.
Scaling description of generalization with number of parameters in deep learning. Journal of
Statistical Mechanics: Theory and Experiment, 2020(2):023401, 2020.

9



E. Hüllermeier and W. Waegeman. Aleatoric and epistemic uncertainty in machine learning: An
introduction to concepts and methods. Machine Learning, 110(3):457–506, 2021.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. In Advances in Neural Information Processing Systems, 2017.

Q. Liu and D. Wang. Stein Variational Gradient Descent: A General Purpose Bayesian Inference
Algorithm, 2016.

F. Llorente, L. Martino, J. Read, and D. Delgado-Gómez. Optimality in noisy importance sampling.
Signal Processing, 194:108455, 2022.

O. Lockwood and M. Si. A review of uncertainty for deep reinforcement learning. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, 2022.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533, Feb. 2015. ISSN 00280836.

R. M. Neal et al. Mcmc using hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo.
Chapman and Hall/CRC, 2011.

I. Osband, C. Blundell, A. Pritzel, and B. V. Roy. Deep exploration via bootstrapped dqn, 2016.

I. Osband, J. Aslanides, and A. Cassirer. Randomized prior functions for deep reinforcement learning,
2018.

I. Osband, Y. Doron, M. Hessel, J. Aslanides, E. Sezener, A. Saraiva, K. McKinney, T. Lattimore,
C. Szepesvari, S. Singh, B. V. Roy, R. Sutton, D. Silver, and H. V. Hasselt. Behaviour suite for
reinforcement learning. In International Conference on Learning Representations, 2020.

G. Ostrovski, M. G. Bellemare, A. Oord, and R. Munos. Count-based exploration with neural density
models. In International Conference on Machine Learning, 2017.

S. Schmitt, J. Shawe-Taylor, and H. van Hasselt. Exploration via epistemic value estimation, 2023.

F. Wenzel, K. Roth, B. Veeling, J. Swiatkowski, L. Tran, S. Mandt, J. Snoek, T. Salimans, R. Jenatton,
and S. Nowozin. How good is the bayes posterior in deep neural networks really? In International
Conference on Machine Learning, 2020.

Appendices

A Implementation details
A.1 Supervised learning
The neural network is a fully connected network with two hidden layers of size 100 and 10. The data
is generated by sampling x i.i.d. from a uniform mixture of three normal distributions with means
−1, 0, and 1 and standard deviation 0.25. The labels y are generated by randomly sampling a neural
network θprior from the prior and setting yi = fθprior(xi) + ϵi, where ϵi ∼ N (0, 0.25).

The hyperparameters for SMC are shown in Table 1, where the batch size is varied for the results
shown in Figure 2. For randomized prior functions, the prior function was drawn from the same prior
as used for SMC and HMC.

10



Sequential Monte Carlo hyperparameters

p(θ) (prior) i.i.d. N (0, 1)
σ (likelihood std) 0.1
B (batch size) 1024
MCMC steps (main) 100
MCMC steps (target) 100
Reinforcement Learning hyperparameters

Total episodes 7500
Buffer size ∞
Main update frequency B
Target update frequency B

Symplectic Euler Langevin Scheme hyperparameters

ℓ (learning rate) 10−3

cycle length 20
β 0.98

h (step size)
√

ℓ
ndata

γ 1
h

Table 2: Hyper-parameters of the Deep Sea environment experiments.

Sequential Monte Carlo hyperparameters

p(θ) (prior) i.i.d. N (0, 1)
σ (likelihood std) 0.1
B (batch size) 32
MCMC steps (main) 10
MCMC steps (target) 10
Symplectic Euler Langevin Scheme hyperparameters

ℓ (learning rate) 10−3

cycle length 20
β 0.98

h (step size)
√

ℓ
ndata

γ 1
h

Table 1: Hyperparameters for SMC in the supervised learning experiments shown in Figures 1 and 2.

A.2 Deep Sea
The environment is the deepsea/10 environment as implemented in BSuite [Osband et al., 2020],
which is 30× 30 and uses a random action mapping.

The Q-value network is the same as the baseline BootDQN agent in BSuite, which is fully connected
with two hidden layers of size 50. Action selection is also unchanged and done by picking one
ensemble member uniformly at random, and acting greedily with respect to that network for the rest
of the episode.

The hyperparameters used are shown in Table 2.

The hyperparameters for BootDQN + prior and BootDQN are the default hyperparameters in BSuite.

11


