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Abstract— Robust Optimal Control (ROC) with adjustable
uncertainties has proven to be effective in addressing criti-
cal challenges within modern energy networks, especially the
reserve and provision problem. However, prior research on
ROC with adjustable uncertainties has predominantly focused
on the scenario of uncertainties modeled as continuous vari-
ables. In this paper, we explore ROC with binary adjustable
uncertainties, where the uncertainties are modeled by binary
decision variables, marking the first investigation of its kind. To
tackle this new challenge, firstly we introduce a metric designed
to quantitatively measure the extent of binary adjustable
uncertainties. Then, to balance computational tractability and
adaptability, we restrict control policies to be affine functions
with respect to uncertainties, and propose a general design
framework for ROC with binary adjustable uncertainties. To
address the inherent computational demands of the original
ROC problem, especially in large-scale applications, we employ
strong duality (SD) and big-M-based reformulations to create
a scalable and computationally efficient Mixed-Integer Lin-
ear Programming (MILP) formulation. Numerical simulations
are conducted to showcase the performance of our proposed
approach, demonstrating its applicability and effectiveness in
handling binary adjustable uncertainties within the context of
modern energy networks.

I. INTRODUCTION
In recent years, the so-called reserve and provision prob-

lem has gained increasing attention owing to its ability to
characterize the demand side management issues in modern
energy networks. As an efficient approach for modeling the
reserve and provision problem, a new optimal control frame-
work called robust optimal control (ROC) with adjustable
uncertainties was proposed [1]–[6]. Unlike the conventional
robust optimal control problem, where the uncertainty sets
are fixed and are determined by exogenous factors, ROC with
adjustable uncertainties considers the case where the scope
of uncertainties is adjustable and is determined by decision
makers.

By allowing the decision maker to actively decide the
admissible scope of uncertainty, the corresponding robust
optimal control framework can be more versatile to include
more practical cases. However, this versatility comes with
more computational challenges. It is worth pointing out that
existing research about ROC with adjustable uncertainties all
focus on the case of continuous adjustable uncertainties. In
the continuous case, uncertainty sets are typically represented
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as polyhedra or norm balls. As continuous variables yield
an infinite number of uncertain scenarios within a given
set, this leads to a semi-infinite optimization problem in
the ROC formulation with adjustable uncertainties. To create
a computationally tractable reformulation, strong duality
theory is employed, reducing the need to satisfy universal
constraints for all uncertain scenarios and instead focusing
only on the worst-case scenario [1]–[6].

Despite the success of ROC with continuous adjustable un-
certainties in supporting modern energy networks, it should
be noted that it fails to deal with the case where uncertainties
can be binary. For example, in building climate control, some
heating, ventilation and air conditioning (HVAC) devices
only operate with two modes: on and off. If such devices
are considered for providing demand response services, the
existing ROC with continuous adjustable uncertainties fails
to characterize this scenario. In addition, the existing design
framework for ROC with continuous adjustable uncertainties
cannot be directly generalized to deal with the binary case.
On the one hand, polyhedra or norm balls used in the
continuous case to describe the scope of uncertainties is not
suitable for binary uncertainties. On the other hand, duality-
based reformulation, which is built upon the assumption of
continuous uncertainties, utilized in the continuous case for
finding the worst uncertainty scenario cannot be directly
applied to deal with the binary case. Motivated by this
fact, in this paper, we investigate the problem of ROC with
binary adjustable uncertainties. Our main contributions can
be summarized as follows:

• The problem of ROC with binary adjustable uncertain-
ties is investigated for the first time. By introducing a
new metric to evaluate the scope of binary uncertainties,
we propose a general design formulation for ROC with
binary adjustable uncertainties.

• Due to the high computational demand and poor scal-
ability of the orignal formulation of ROC with binary
adjustable uncertainties, we provide a computationally
efficient and scalable alternative together with detailed
derivation procedures. In addition, the probabilistic
robustness of the optimal solution for our proposed
approach is analyzed via Markov inequality.

• We consider a practical case of reserve and provision
problem: utilizing the energy flexibility of buildings to
provide demand response services and show how our
proposed approach can be utilized to explore the energy
flexibility potential. Simulation results are provided to
demonstrate the effectiveness of the proposed approach.

The remaining parts of this paper are organized as follows.
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Section II introduces the control problem and proposes a
novel formulation of the ROC with binary adjustable un-
certainties. For this original formulation, Section III gives a
computationally efficient alternative with detailed derivation
procedures and also analyzes the probabilistic robustness
of the optimal solution. Simulation results are presented in
Section IV, and the conclusion follows in Section V.

Notation: Bold-face letters are used to denote the stacked
time sequences of related signals; the operator | · | for a given
set of indices denotes the cardinality of the set; subscript i
of a given vector/matrix represents the i-th element/row of
the corresponding vector/matrix; N[0,a] denotes the set of
nonnegative integers less than equal to a; max or min for
a given vector implies row-wise maximization/minimization.∑

k xk denotes the summation of all terms xk, 1N denotes
the N -dimensional all 1 vector.

II. PROBLEM FORMULATION

In this section, we will introduce the problem of robust
optimal control with binary adjustable uncertainties. The
considered system is

x(t+ 1) = Ax(t) +Br(t) +Du(t) + Ev(t) (1)

where the x(t) ∈ Rn are system states, r(t) ∈ Bm are
reference control inputs, u(t) ∈ Rp and v(t) ∈ Bq are con-
tinuous and binary recourse control variables, respectively.
For system (1), we assume that the following linear state
and input constraints should be satisfied

Gxx(t) ≤ gx, (2a)
Grr(t) +Guu(t) +Gvv(t) ≤ gr, (2b)

where (Gx, Gr, Gu, Gv) and (gx, gr) are matrixes and vec-
tors with approximate dimensions, respectively.

In our design framework, the reference control input is
assumed to be predetermined but suffers from adjustable
uncertainties, which is equivalent to the case that the system
is subject to additive uncertainties.

Within the context of the reserve and provision problem,
system (1) can model the dynamics of several utilities in
energy systems, such as building thermal dynamics or energy
storage devices. For example, for building climate control,
system (1) can model the thermal dynamics of buildings that
draw power from both main power grid r(t), which is usually
determined according to the day-ahead electricity market,
and local renewable energy sources (RES) (u(t) and v(t)),
which can be flexibly scheduled in real time.

Based on (1), the predicted state evolution over N time
steps is

x = Fxx(0) + Frr+ Fuu+ Fvv, (3)

where x = [x(1)T, · · · , x(N)T]T ∈ Rn·N , r =
[r(0)T, · · · , r(N − 1)T]T ∈ Bm·N , u = [u(0)T, · · · , u(N −
1)T] ∈ Rp·N , and v = [v(0)T, · · · , v(N − 1)T]T ∈ Bq·N ,
and x0 is the initial state vector. The detailed format of the
matrixes Fx, Fr, Fu and Fv can be found in [7].

Correspondingly, constraints (2) within the prediction hori-
zon can be compactly denoted as

XN := {x|Gxx ≤ gx}, (4a)
UN := {(u,v)|Grr+Guu+Gvv ≤ gr}, (4b)

where Gx = diag(Gx, · · · , Gx), Gr = diag(Gr, · · · , Gr),
Gu = diag(Gu, · · · , Gu), Gv = diag(Gv, · · · , Gv), gx =
1N ⊗ gx, and gr = 1N ⊗ gr.

In the reserve and provision framework, the reference
control signal suffers from unknown external manipulations
to provide services for external entities, and the design
objective is to optimally quantify how much uncertainty
(also called flexibility) can be reserved while guaranteeing
system constraints. For the case of continuous adjustable
uncertainties, the scope of flexibility is denoted as adjustable
polyhedrons or norm balls, and the volume of uncertainty
sets are adopted as metrics to measure the scope of uncer-
tainties [2]. However, in the case of binary uncertainty, this
definition of uncertainty set is not applicable because poly-
hedron/norm balls cannot accurately characterize uncertain
binary variables, and their volumes also cannot truly reflect
the scope of uncertainties.

In the following, we introduce a new metric to deal with
binary adjustable uncertainties. The indices k ∈ N[0,mN−1]

for rk within the prediction horizon are partitioned into two
disjunctive groups C and U . For all k ∈ U , the corresponding
reference inputs rk are allowed to be adjusted flexibly. For
all k ∈ C, the reference inputs rk are not influenced by
uncertainties and are fixed to their nominal values r̄k.

However, due to system constraints, not all reference
inputs rk(k ∈ U) can be flexibly adjusted without violating
(2). Here, we define S ⊆ U as the index set in which the
corresponding rk (k ∈ S) is adjusted from r̄k to a new
value, denoted as r̃k with r̃k &= r̄k, without violating system
constraints. Based on the above definition, the values of rk
within the prediction horizon can be represented as

rk =

{
r̃k, k ∈ S
r̄k, k ∈ C ∪ U \ S

(5)

A schematic diagram of flexible input signals with m = 1 is
given in Fig. 1. Similarly to the case of continuous adjustable
uncertainty, r̄k = 0 and r̃k = 1 means up-ward flexibility,
and r̄k = 1 and r̃k = 0 means down-ward flexibility.
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Fig. 1. Schemetic diagram of flexible reference input signal r.

In contrast to the continuous case, where the volume
of the uncertainty set is adopted to measure the scope of
reserved flexibility, according to the definition (5), a new
variable Γ is defined as the largest cardinality of S that
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can be freely selected among U , to measure the scope of
the reserved uncertainty/flexibility. An admissible Γ implies
that there exist feasible recourse inputs (u,v) to ensure
system constraint satisfaction for any possible reference input
adjustment as long as |S| ≤ Γ. Clearly, a larger value of Γ
implies that the controlled system can reserve more flexibility
for providing services.

For the problem of ROC with adjustable uncertainties,
a general control objective is to balance the minimization
of operational cost and the maximization of the scope of
reserved flexibility, while guaranteeing constraint satisfaction
under all possible scenarios of uncertainties/flexibilities [1],
[2]. Accordingly, the design objective for our considered
problem takes the form

min
u,v,Γ

{
max
S

{J(x,u,v)}− λΓ
}

(6a)

s.t. x = Fxx
0 + Frr+ Fuu+ Fvv (6b)

x ∈ XN , (u,v) ∈ UN , (6c)
rk = r̄k, ∀k ∈ C ∪ U \ S, (6d)
rk = r̃k, ∀k ∈ S, (6e)
∀S : |S| ≤ Γ, (6f)

where J(x,u,v) :=
∑N

k=0 lk(x,u,v) is the summation of
linear stage cost functions lk(x,u,v), λ > 0 is a user-
selected weighting parameter.

The objective function (6a) aims at minimizing the worst-
case operational cost given Γ, namely maxS J(x,u,v), w.r.t.
the input uncertainties determined by S and in the mean-
while maximizing the scope of flexibility Γ. If the worst-
case operational cost function maxS J(x,u,v) is removed,
optimization problem (6) is to find out the largest feasible
Γ. Namely, the largest cardinality of S that can be freely
selected without violating system constraints. For example,
in Fig. 1, four inputs among {rk : ∀k ∈ U} are adjusted, if
the optimal Γ∗ computed in (6) satisfies Γ∗ ≥ 4, we are still
capable of ensuring system constraints for this scenario of
flexible inputs.

To ensure the feasibility of (6), it is assumed that for the
predefined reference input r̄, there exists at least one input
sequence (u,v) such that the state and input constraints (6c)
are satisfied.

Remark 1: We refer to the optimal control problem (6),
similarly to its continuous counterparts: ROC with contin-
uous adjustable uncertainties [1], [2], as ROC with binary
adjustable uncertainties. The main difference between ROC
with adjustable uncertainties and conventional ROC problem
lies in the uncertainty set. For conventional ROC problems,
the uncertainty sets are predetermined and fixed. But for the
ROC with adjustable uncertainties, the shape/size of uncer-
tainty sets are not fixed but will be optimally determined by
decision variables, such as Γ in (6).

Remark 2: We highlight that the problem formulation
proposed in (6) can be applied to several important issues
in modern energy systems. For example, similarly to [3],
[5], formulation (6) can model the reserve and provision
problem of buildings with on-off types of HVAC devices

for providing demand response services. Besides, as shown
in [8], it is also possible to extend the formulation (6) to
analyze and design resilient control strategies for power grid
networks to mitigate faults or cyberattacks.

III. ROBUST OPTIMAL CONTROL DESIGN AND
ROBUSTNESS ANALYSIS

This section is devoted to solving the problem of ROC
with binary adjustable uncertainties formulated in (6), and
to analyzing the robustness of the derived solution.

A. Robust Optimal Control Design
Considering the system dynamics (1), state and input

constraints (4), and the linear property of the objective
function, the optimization problem in (6) can be rewritten
in the following compacted form

min
θ,Γ,u,v

θ − λΓ (7a)

s.t. Or+Pu+Qv ≤ h, (7b)
rk = r̄k, ∀k ∈ C ∪ U \ S, (7c)
rk = r̃k, ∀k ∈ S, (7d)
∀S : |S| ≤ Γ, (7e)

where matrixes O, P, Q and h are constructed according
to system dynamics, constraints and problem data, θ is
introduced for the epigraph reformulation of the worst-case
operational cost in (6) as robust constraints J(x,u,v) ≤ θ
∀S : |S| ≤ Γ, which are compactly included in (7b). Similar
reformulation can be found in [2].

Unlike the continuous case, in which the original formula-
tion of ROC with adjustable uncertainties is semi-infinite and
is computationally intractable, the optimization problem (7)
can be solved directly without further reformulation since it
only entails a finite number of uncertainties r̃k and S given
a fixed Γ. By trying out all possible Γ and considering all
corresponding uncertain scenarios, the optimal solution can
be found by exhaustive search. However, it should be noted
that given a fixed Γ, the number of constraints that need to
be considered in (7) is proportional to

∑Γ
i=0

(|U|
i

)
·N , which

can result in a large scale MILP that is computationally
demanding. In the following, we will propose a novel refor-
mulation for (7) such that the resulting problem is scalable
and computationally efficient.

For the recourse control inputs u and v, we will design
closed-loop control policies instead of open-loop control
actions since it has been demonstrated in many works that
closed-loop control policies can tolerate more uncertainties
than open-loop control actions [9]–[11]. Because considering
arbitrary control policies can make the problem computa-
tionally intractable, we consider the following affine control
policies to balance robustness, optimality, and computational
effort for our proposed scheme

uk =
∑

i∈U
Mkiri + ηk, (8a)

vk =
∑

i∈U
Lkiri + εk, (8b)
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where Mki ∈ R, ηk ∈ R, Lki ∈ Z and εk ∈ Z are control
policy parameters to be optimized. Since the exact value of
the flexible inputs r̃k(k ∈ U) is not determined when solving
(7), the control policy (8) will adapt inputs uk and vk once
ri(i ∈ U) are revealed, which can increase the robustness of
the controlled system so that more flexibility can be reserved.
Note that binary restriction for vk can be imposed by a linear
constraint 0 ≤ vk ≤ 1 since the control policy (8b) will only
generate integer outputs when Lki ∈ Z and εk ∈ Z.

Theorem 1: Considering the system dynamics (1), the
binary adjustable input uncertainties (5) and the control
policies (8), the robust optimal control problem in (7) can
be reformulated as the following MILP problem

min
θ,δk,µij ,φij ,yijβij ,

Mkj ,Lkj ,ηk,εk

θ − λ
∑

k∈U
δk (9a)

s.t.
∑

j∈U
µij +

∑

j∈U
βij + φi +

∑

k

Pikηk+

∑

k

Qikεk +
∑

j∈C
Oij r̄j ≤ hi, (9b)

µij + πi ≥
1

2

(
Oij +

∑

k

PikMkj+

∑

k

QikLkj + yij

)
+

(
Oij+

∑

k

PikMkj +
∑

k

QikLkj

)
r̄j ,

(9c)

− yij ≤ Oij +
∑

k

PikMkj+

∑

k

QikLkj ≤ yij , (9d)

φi ≥
∑

j∈U

(
Oij +

∑

k

PikMkj+

∑

k

QikLkj

)
· r̄j , (9e)

0 ≤ βij ≤ Mδj , (9f)
0 ≤ πi − βij ≤ M(1− δj), (9g)
δj ∈ B, µij ≥ 0, πi ≥ 0, yij ≥ 0, (9h)
i ∈ I, j ∈ U , (9i)

where I is the set of row indices of constraints (7b), and the
optimal solution δ∗k satisfies

∑
j∈U δ∗j = Γ∗.

Proof : Given a fixed Γ, system constraint (7b) has to be
satisfied for all possible r̃k and S such that k ∈ S and
|S| ≤ Γ. To ensure constraint satisfaction for all possible
uncertainties, which entails the order of

∑Γ
i=0

(|U|
i

)
uncer-

tainty scenarios, we alternatively design a control scheme
to guarantee constraint satisfaction under the worst case
scenario of uncertainty, which can be represented as

max
S

{
Or+Pu+Qv : |S| ≤ Γ, rj satisfies (5)

}
≤h, (10)

where the maximization and inequality in (10) is computed
and hold row-wise, respectively. The i-th row of constraints

(10), combining the control policies (8) and the reference
input pattern (5) can be expressed as

max
S:|S|≤Γ

{
OT

i r+
∑

k

Pik

(∑

j∈U
Mkjrj + ηk

)
+

∑

k

Qik

(∑

j∈U
Lkjrj + εk

)}
≤ hi,

which can be further reformulated as

max
S:|S|≤Γ

{∑

j∈S

(
Oij +

∑

k

PikMkj +
∑

k

QikLkj

)
r̃j

+
∑

j∈U\S

(
Oij +

∑

k

PikMkj +
∑

k

QikLkj

)
r̄j

}

+
∑

k

Pikηk +
∑

k

Qikεk +
∑

j∈C
Oij r̄j ≤ hi. (11)

As explained in [12], it can be verified that
(
Oij +

∑

k

PikMkj +
∑

k

QikLkj

)
r̃j ≤

1

2

(
Oij +

∑

k

PikMkj +
∑

k

QikLkj +
∣∣Oij+

∑

k

PikMkj +
∑

k

QikLkj

∣∣
)
.

(12)

Accordingly, by following a similar line as in [13] and
introducing additional decision variables zj ∈ R (j ∈ U),
the maximization problem in (11) is relaxed as

max
zj

∑

j∈U

zj
2

·
(
Oij +

∑

k

PikMkj +
∑

k

QikLkj+

|Oij +
∑

k

PikMkj +
∑

k

QikLkj |
)
+ (13a)

(1− zj) ·
(
Oij +

∑

k

PikMkj +
∑

k

QikLkj

)
r̄j

s.t. 0 ≤ zj ≤ 1,
∑

j∈U
zj ≤ Γ. (13b)

Since (13) is a linear program (LP) w.r.t. zj , according to
strong duality theory of LP, see [14], the objective value of
(13) coincides with that of the following dual problem:

min
µij ,πi,φi

∑

j∈U
µij + Γπi + φi (14a)

s.t. µij + πi ≥
1

2

(
Oij +

∑

k

PikMkj +
∑

k

QikLkj

+ |Oij +
∑

k

PikMkj +
∑

k

QikLkj |
)
−

(
Oij +

∑

k

PikMkj +
∑

k

QikLkj

)
r̄j , (14b)

φi ≥
∑

j∈U

(
Oij +

∑

k

PikMkj +
∑

k

QikLkj

)
r̄j ,

(14c)
µij ≥ 0, πi ≥ 0, ∀j ∈ U , (14d)
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where µij and πi are Lagrange multipliers.
Optimization problem (14) is nonlinear because it contains

the absolute function, which will incur increased compu-
tational effort. By introducing auxiliary decision variables
yij ≥ 0, optimization problem (14) can be further relaxed as
the following linear optimization problem

min
µij ,πi,φi

∑

j∈U
µij + Γπi + φi (15a)

s.t. µij + πi ≥
Oij +

∑
k PikMkj +

∑
k QikLkj + yij

2

−
(
Oij +

∑

k

PikMkj +
∑

k

QikLkj

)
· r̄j ,

(15b)

− yij ≤ Oij +
∑

k

PikMkj +
∑

k

QikLkj ≤ yij ,

(15c)

φi ≥
∑

j∈U

(
Oij +

∑

k

PikMkj +
∑

k

QikLkj

)
· r̄j ,

(15d)
µij ≥ 0, πi ≥ 0, yij ≥ 0, ∀j ∈ U . (15e)

For the inequality (11), the maximization problem can be
relaxed by a feasible solution of the above LP problem to
yield the following alternative constraints
∑

j∈U
µij + Γπi + φi +

∑

k

Pikηk +
∑

k

Qikεk+

∑

j∈C
Oij r̄j ≤ hi, (16a)

µij + πi ≥
1

2

(
Oij +

∑

k

PikMkj +
∑

k

QikLkj + yij

)

−
(
Oij +

∑

k

PikMkj +
∑

k

QikLkj

)
· r̄j , (16b)

− yij ≤ Oij +
∑

k

PikMkj +
∑

k

QikLkj ≤ yij , (16c)

φi ≥
∑

j∈U

(
Oij +

∑

k

PikMkj +
∑

k

QikLkj

)
· r̄j , (16d)

µij ≥ 0, πi ≥ 0, yij ≥ 0, ∀j ∈ U . (16e)

Furthermore, introducing δj ∈ B (j ∈ U) and βij ∈ R (i ∈
I, j ∈ U) and defining Γ :=

∑
j∈U δj , the term Γπi in (16a)

can be further relaxed via big-M formulation as

Γπi =
∑

j∈U
βij , (17a)

0 ≤ βij ≤ Mδj , (17b)
0 ≤ πi − βij ≤ M(1− δj), (17c)
δj ∈ B, (17d)

where M > 0 is a sufficiently large constant. Finally,
constraints (7b) – (7e) can be replaced by (16) and (17),
which result in the optimization problem (9). This completes
the proof. !

Remark 3: For the original formulation in (7), given a
fixed Γ, in order to guarantee constraint satisfaction robustly,
the number of constraints considered is proportional to∑Γ

i=0

(|U|
i

)
·N . In contrast, the number of constraints in the

reformulated optimization problem in (9) is only proportional
to |U| · N , which is more favourable when

∑Γ
i=0

(|U|
i

)
*

|U|. In addition, the constraint (16a) has nonconvex term
Γπi since Γ ∈ N[0,|U|] is a decision variable. While this
nonconvexity in (16a) can be dealt with by several solvers,
e.g. Gurobi, with the big-M based reformualation in (17)
the final optimization problem (9), which is a MILP, can be
solved more efficiently by more off-the-shelf solvers, such
as Gurobi, CPLEX, and GLPK.

B. Robustness of the Optimal Solution

The obtained optimal control strategy, namely
(M∗

kj , η
∗
k, L

∗
kj , ε

∗
k), is able to guarantee constraint satisfaction

if no more than Γ of the flexible reference inputs rj (j ∈ U)
are changed. In practice, however, it is possible that in
some cases more than Γ number of reference inputs rk
are subjected to uncertainties, e.g., in case of device faults.
As a result, it is of interest and importance to analyze the
robustness of the derived solution for such cases. In the
following, we will investigate the possibility of constraint
violation with the derived optimal solution when more than
Γ number of rj (j ∈ U) might be changed.

In our analysis, rj (j ∈ U) are regarded as random
variables (r.v.). Consequently, the left-hand side of constraint
(7b) are also r.v. For the i-th row of the constraint (7b), its
probability of violation is

Pvio = Pr
(
OT

i r+
∑

j∈U
rj

∑

k

PikM
∗
kj+

∑

j∈U
rj

∑

k

QikL
∗
kj+

∑

k

Pikη
∗
k +

∑

k

Qikε
∗
k ≥ hi

)
. (18)

For notational brevity, we define

aij := Oij +
∑

k

PikM
∗
kj +

∑

k

QikL
∗
kj , (19a)

bi := hi −
∑

j∈C
Oijrj −

∑

k

Pikη
∗
k −

∑

k

Qikε
∗
k. (19b)

Proposition 1: Assuming that rj ∈ B (j ∈ U) are inde-
pendent random variables, then the probability of violation
for the i-th constraint (18) satisfies

Pvio ≤
∏

j∈U E
(
exp(aijrj)

)

exp(bi)
. (20)

Proof : Based on the definitions of aij and bj in (19), the
probability of violation (18) can be rewritten as

Pvio = Pr
[∑

j∈U
aijrj ≥ bi

]
(21a)

= Pr




exp
(∑

j∈U
aijrj

)
≥ exp(bi)




 . (21b)
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Then, it follows from the Markov inequality [15] and the
independence property of rj that

Pvio ≤
∏

j∈U E
(
exp(aijrj)

)

exp(bi)
. (22)

This completes the proof. !
It should be noted that the bound of the probability of

violation in (20) relies on system information in aij and bi.
In the following, we give a probability bound that does not
rely on system information and is easy to compute.

Proposition 2: Assuming that rj (j ∈ U) are independent
random variables with Pr(rj &= r̄j) = εj , Then, we have
Pvio ≤

∑
j∈U εj
Γ .

Proof : Define random variables zj as the indicator func-
tions of the events rj &= r̄j (j ∈ U). Then, it is readily
concluded that Pvio ≤ Pr(

∑
j∈U zj ≥ Γ). By applying

Markov inequality and the independence of rj , it yields

Pvio ≤
E(

∑
j∈U zj)

Γ
(23a)

=

∑
j∈U E(zj)

Γ
=

∑
j∈U εj

Γ
. (23b)

This completes the proof. !
While the bound of probability violation in Proposition 2

is independent of system information and is easy to compute,
it is very conservative when Γ is small or

∑
j∈U εj is large.

IV. SIMULATION RESULTS

power from grid

power from RES

Fig. 2. Diagram of energy consumption options.

The effectiveness of our proposed approach is illustrated
via a numerical case study about the reserve and provision
problem for a smart building system. A schematic diagram
of the considered building system is depicted in Fig. 2. In
our simulation, it is assumed that the thermal energy of the
building is provided by three heat pumps (HP) that draw
electricity from two sectors: power grid and local renewable
energy sources (a solar panel). The HP powered by the grid
has only two operation modes: on and off, which is denoted
as r, and the nominal operation status r̄ is predetermined
according to day-ahead electricity price. For the remaining
two HPs drawing power from local RES, their control signals
(u,v) are available for adjusting in real-time. One HP has
only on-off operational modes, and the other can operate
continuously, e.g., PWM based operation. A solar panel is
equipped to provide RES.

As ubiquitous storage devices of energy flexibility, build-
ings are utilized to provide demand response (DR) services
to the power grid. During demand response period, the
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Fig. 3. Computation time and optimal Γ∗ for all schemes.

building management system is asked to adjust its electricity
consumption, namely the operational pattern of r, according
to the requests of the grid operator.

In our simulation, the sampling period is selected as 30
min and the prediction horizon is set as N = 48, i.e., one
day. The starting time instant of flexibility assessment period
U is selected as 22 (11am). A solar panel with a maximal
2000W electricity output is included to provide RES. The
initial indoor temperature is selected as x(0) = 21◦C, and
the indoor temperature bound is [20◦C, 24◦C].

The objective for the optimization problem (7) is selected
to maximize Γ. Namely, we want to assess the largest flexi-
bility potential of the considered building system within the
period of U . Three schemes are adopted in our simulation:

• Scheme 1: our proposed formulation (9).
• Scheme 2: original formulation (7) solved via exhaus-

tive search.
• Scheme 3: our proposed formulation (9) but only con-

sidering open-loop control actions (Mki = 0, Lki = 0
in (8)).

All simulations are carried out using Gurobi 9.5.1 [16] on
an Intel Xeon W-2223 CPU at 3.60GHz with 16G RAM.
Optimization problems are modeled via the Python package
Pyomo [17].

Fig. 3 gives the computation time and the optimal Γ∗, i.e.,
the largest number of flexible switches of rj (j ∈ U), for
all schemes with an increasing size of |U|. Clearly, it can be
observed from Fig. 3a that the computation time of Scheme
2 (exhaustive search) increases exponentially with |U|. On
the contrary, our proposed approach is much more computa-
tionally efficient, and its computation time increases linearly
with |U|. Compared with Scheme 1, Scheme 3, which only
considers open-loop control actions instead of closed-loop
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Fig. 4. Indoor temperature envelopes for all schemes.

control policies as in Scheme 1, is computationally less
demanding due to its smaller number of decision variables.
Obviously, the downside of Scheme 3 is its suboptimality,
as shown in Fig. 3b. In addition, we can also conclude from
Fig. 3b that, for this case study, the affine control policy
(8) restricted in our proposed approach (Scheme 1) does not
compromise the optimality of the solution and can find the
optimal Γ∗ as with Scheme 2.

Fig. 4 depicts the indoor temperature envelopes with all
3 schemes under all possible uncertain scenarios of r given
|U| = 8 and Γ = 5. According to the computation results
in Fig. 3b, it it shown that Schemes 1 and 2 are both able
to tolerate all possible uncertainties but Scheme 3 can only
ensure robust constraint satisfaction with Γ = 3. Clearly, as
can be seen from Fig. 4, Scheme 3 is unable to robustly
guarantee indoor comfort constraints, which validates the
conclusion that open-loop control actions are less robust than
closed-loop control policies.

V. CONCLUSIONS

This paper investigated a class of ROC problems with
binary adjustable uncertainties, that offers a framework for
addressing the reserve and provision problem for energy
systems with on-off type devices. In contrast to the existing
methods for ROC with continuous adjustable uncertainties,
a novel metric is introduced to measure the extent of binary
uncertainties, and a general design framework for ROC with
binary adjustable uncertainties is formulated. Subsequently,
we reformulated and relaxed the ROC formulation by in-
troducing auxiliary variables and applying strong duality,
transforming it into a MILP problem amenable to efficient
numerical solvers. This innovative approach empowers us
to quantitively evaluate the flexibility potential inherent in
modern energy systems with on-off type equipment. The ef-
ficacy of our proposed methodology is demonstrated through
numerical experiments.

Future extensions include considering nonlinear con-
straints and nonaffine control policies, as well as hybrid types
of adjustable uncertainties.
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