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Abstract

Uncertainty quantification remains a difficult challenge in re-
inforcement learning. Several algorithms exist that success-
fully quantify uncertainty in a practical setting. However it is
unclear whether these algorithms are theoretically sound and
can be expected to converge. Furthermore, they seem to treat
the uncertainty in the target parameters in different ways. In
this work, we unify several practical algorithms into one the-
oretical framework by defining a new Bellman operator on
distributions, and show that this Bellman operator is a con-
traction. We highlight use cases of our framework by analyz-
ing an existing Bayesian Q-learning algorithm, and also intro-
duce a novel uncertainty-aware variant of PPO that adaptively
sets its clipping hyperparameter.

Introduction
Reinforcement learning (RL) algorithms have surpassed hu-
mans’ ability in many games (Mnih et al. 2015; Schrit-
twieser et al. 2020), and have now also found success
in real world problems such as controlling plasma in a
nuclear fusion reactor (Degrave et al. 2022), video com-
pression (Mandhane et al. 2022), large language mod-
els (Ouyang et al. 2022) and algorithm design (Fawzi et al.
2022; Mankowitz et al. 2023). However, even for relatively
simple tasks, algorithms still require many simulations or
real interactions to learn a strong policy, making them in-
efficient. One approach to attack this problem is by mak-
ing algorithms aware of their epistemic uncertainty, which
is uncertainty caused by a lack of data. This allows them
to explore only parts of the problem that are still uncertain,
decreasing the total amount of interactions required.

However, proper uncertainty quantification is still an
open problem in reinforcement learning. Many techniques
from supervised learning, such as ensembles (Dietterich
2000; Lakshminarayanan, Pritzel, and Blundell 2017) and
Bayesian methods (Chen, Fox, and Guestrin 2014; Liu and
Wang 2016; D’Angelo and Fortuin 2021; Wenzel et al.
2020), have found success in practice when applied to su-
pervised learning tasks with labelled data. However, in rein-
forcement learning data is not labelled with a ground truth,
and instead the label for the current state is a self-supervised
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bootstrap from the label of the next state, known as the tar-
get value. Uncertainty quantification in RL must consider
this sequential nature. At the heart of this problem is the fact
that uncertainty in the current state should include the un-
certainty in the target values, which is the uncertainty in the
future states.

Adaptations of uncertainty quantification methods from
supervised learning have been applied to reinforcement
learning settings (Osband et al. 2016; Osband, Aslanides,
and Cassirer 2018; Fortunato et al. 2017; Azizzadenesheli,
Brunskill, and Anandkumar 2018; Burda et al. 2018;
Dwaracherla and Roy 2021; Schmitt, Shawe-Taylor, and van
Hasselt 2023; Van der Vaart, Yorke-Smith, and Spaan 2024)
with good practical results, but there is no guarantee that the
way these algorithms treat the uncertainty in the successor
state leads to a theoretically sound algorithm, in the sense
that the uncertainty quantification aspect can be expected to
converge to a solution at all. At least guaranteeing that these
methods work in potentially simplified scenarios is essential
for the adoption of uncertainty quantification in algorithms
in the real world. Furthermore, some algorithms seemingly
disagree in their decisions on how to treat the uncertainty in
the target values.

When adapting Deep Q-learning (DQN)-style algorithms
to uncertainty aware algorithms like BootDQN (Osband
et al. 2016), EVE (Schmitt, Shawe-Taylor, and van Has-
selt 2023), Langevin-DQN (Dwaracherla and Roy 2021),
LMCDQN (Ishfaq et al. 2023), SMC-DQN (Van der Vaart,
Yorke-Smith, and Spaan 2024) and BDQN (Azizzade-
nesheli, Brunskill, and Anandkumar 2018), there are deci-
sions to be made about how to use and update the target
parameters. Generally, these algorithms condition their pos-
terior on a posterior of the target parameters. As a main prob-
lem, we highlight that there is no guarantee that the process
of repeatedly updating the current distribution, conditioned
on the distribution over target parameters, and copying it to
the target parameters will converge to a limiting distribution.

Recently, Fellows, Hartikainen, and Whiteson (2021)
studied this problem theoretically and contended that
Bayesian model-free reinforcement learning algorithms cre-
ate a posterior over Bellman operators. They showed that
the posterior converges to the true Bellman operator in the
limit of infinite data. We instead take an arguably more nat-
ural and direct approach, and show that the problem can be
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formulated as a generic Bellman operator that works on dis-
tributions.

Specifically, our contributions are as follows:
1) We introduce Epistemic Bellman operators as a tool to
analyze existing algorithms and develop theoretically sound
uncertainty aware RL algorithms. Our unified framework
formalizes the process of conditioning on distributions over
target parameters.
2) We prove that Epistemic Bellman operators are contrac-
tions, implying that the process of interleaving posterior in-
ference and target updates converges to a consistent fixed
point for a general class of distributions and return estima-
tors. Furthermore, we show that the mean of the fixed point
of an Epistemic Bellman operator for policy evaluation is
the fixed point of its non-epistemic counterpart.
3) We highlight the utility of Epistemic Bellman operators
by analyzing an existing Bayesian Q-learning algorithm, al-
leviating an overestimation problem and experimentally ver-
ify our theory. Furthermore, we develop a novel uncertainty
aware version of Proximal Policy Optimization that clips
less aggressively whenever it is certain about its advantages,
and show improved performance in several environments.

Background
Markov Decision Processes
We focus on Markov Decision Processes (MDP) with in-
finite horizon in the discounted reward setting. Formally, a
Markov Decision Process is a tuple (S,A, T, R, γ) of a state
space S , action space A, transition function T : S × A →
∆(S), reward function R : S × A → R and discount factor
0 ≤ γ < 1. At each time step t, an agent observes the current
state st, chooses an action at ∼ π(st) according to its pol-
icy π : S → ∆(A), and receives reward rt = R(st, at). The
goal of reinforcement learning is to find a policy π that max-
imizes the discounted cumulative reward ET,π [

∑∞
t=0 γ

trt].
Of central importance is the Q-function

Qπ(s, a) = R(s, a) + ET,π

[ ∞∑
t=1

γtrt | s0 = s, a0 = a

]
,

denoting the expected discounted future reward if the agent
executes action a in state s and then follows the policy π.

In a tabular setting, we represent the reward function,
transition function and policy as vectors and matrices R ∈
R|S||A|, T ∈ R|S||A|×|S|, π ∈ R|S||A|. The Bellman opera-
tor for a policy π can then be written as

Bπ
T,RQ = R+ γTπQ,

where Tπ ∈ R|S||A|×|S||A| is the transition function from
state-action to state-action induced by the transition func-
tion T and the policy π, defined by

(Tπ)sas′a′ = P(st+1, at+1 = s′, a′ | st, at = s, a)

= Tsas′πs′a′ .
(1)

Since the transition function T and reward function R
are assumed to be unknown to the agent, computing a
strong policy requires exploration of the environment to
learn which actions result in optimal return.

Model-free Reinforcement Learning
Typically interesting problems have large states and action
spaces, making it difficult to learn the transition and reward
functions. Model-free algorithms such as actor-critics (Mnih
et al. 2016; Schulman et al. 2017; Haarnoja et al. 2018) and
Q-learning (Mnih et al. 2015) bypass this step and instead
aim to learn a good policy or the values of a good policy
directly, without estimating T and R.

A common component is to learn the values or Q-values
by representing them by a neural network and minimizing
the squared temporal difference loss on a dataset D:

LTD(θ, θ′,D) =
∑

(s,a,r,s′)∈D

TD(θ, θ′, (s, a, r, s′))2

=
∑

(s,a,r,s′)∈D

[Qθ(s, a)− r − γG(θ′, s′)]
2
,

(2)

where G(θ′, s′) is some return estimator usually depend-
ing on a bootstrap from a target network θ′ (Mnih
et al. 2015). Examples are G(θ′, s′) = maxa′ Qθ′(s′, a′)
in the case of one step Q-learning, or G(θ′, a′) =∑

a′∈A π(a′|s′)Qθ′(s′, a′) in the case of policy evaluation
in actor-critics.

Agents use empirically observed transitions (s, a, r, s′)
to learn these models, requiring exploration to sufficiently
cover the environment to achieve accurate values. Quantify-
ing uncertainty in the value models can greatly improve the
exploration capability of reinforcement learning algorithms
through Thompson Sampling (Osband et al. 2016; Osband,
Aslanides, and Cassirer 2018; O’Donoghue et al. 2018; For-
tunato et al. 2017; Schmitt, Shawe-Taylor, and van Hasselt
2023; Azizzadenesheli, Brunskill, and Anandkumar 2018;
Dwaracherla and Roy 2021) or exploration bonuses (Ostro-
vski et al. 2017; Bellemare et al. 2016; Burda et al. 2018).
Furthermore, uncertainty quantification can also aid in gen-
eral stability of algorithms by reweighting Bellman errors
(Lee et al. 2021).

Bayesian Value Learning
One method to quantify uncertainty is through Bayesian al-
gorithms. Generally, a Bayesian neural network is any neu-
ral network parameterized by θ ∈ Θ where one attempts to
model the posterior distribution

p(θ|D) = p(D|θ)p(θ)∫
p(D|θ)p(θ)d(θ)

,

where p(D|θ) is the likelihood, p(θ) is a prior andD is some
data set. The posterior density p(θ|D) signifies how likely
values of θ are, and is a natural method to model uncertainty
as a distribution.

To equip an agent with uncertainty quantification, a poste-
rior distribution over the parameters of a Q-function can be
constructed p(θ|D, θ′) ∝ p(D|θ, θ′)p(θ). Since the squared
error loss is proportional to the log-density of a normal dis-
tribution, defining

p(D|θ, θ′) = exp

− ∑
(s,a,r,s′)∈D

[Qθ(s, a)− r − γG(θ′, s′)]
2


(3)
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is a natural candidate for the likelihood when extending
value learning algorithms to a Bayesian paradigm. This cor-
responds to the assumption that the temporal difference er-
rors are normally distributed:

TD(θ, θ′, (s, a, r, s′)) ∼ N (0, σ). (4)

While this assumption is in general not correct for every
MDP, it is a convenient design choice and it should come
as no surprise that several previous works have used this
likelihood before (Osband, Aslanides, and Cassirer 2018;
Schmitt, Shawe-Taylor, and van Hasselt 2023; Dwaracherla
and Roy 2021; Azizzadenesheli, Brunskill, and Anandku-
mar 2018; Ishfaq et al. 2023).

The likelihood p(D|θ, θ′) and therefore also the poste-
rior density p(θ|D, θ′) does not only depend on the data,
i.e., the observed transitions, it is also conditioned on the
target values θ′. Handling this dependency is crucial for
a theoretically sound algorithm that handles the sequential
nature of uncertainty in this setting. Furthermore, poste-
rior distributions are generally difficult to compute in prac-
tice, requiring approximate models. For example, Boot-
DQN (Osband et al. 2016; Osband, Aslanides, and Cas-
sirer 2018) uses ensembles, Langevin-DQN, LMCDQN and
SMC-DQN (Dwaracherla and Roy 2021; Ishfaq et al. 2023;
Van der Vaart, Yorke-Smith, and Spaan 2024) use Monte
Carlo methods, EVE (Schmitt, Shawe-Taylor, and van Has-
selt 2023) uses a Laplace approximation and BDQN (Az-
izzadenesheli, Brunskill, and Anandkumar 2018) performs
inference over only the final layer of the Q-network.

Problem Statement
In this section we identify a key problem with model-free
Bayesian reinforcement learning algorithms and motivate
the value of our main contribution.

Problems with Target Updates
Roughly speaking, algorithms such as BootDQN, Langevin-
DQN, LMCDQN, SMC-DQN, BDQN and EVE operate by
interleaving steps
1. Infer a posterior given the current targets, pmain(θ|D) =

p(θ|D, θ′), where the targets are drawn or assumed to be
from some distribution over targets ptarget(θ′).

2. Update the distribution over targets: ptarget(θ) ←
pmain(θ|D) = p(θ|D, θ′) to the current distribution over
the main parameters θ.

This is analogous to the target update in many non-
probabilistic algorithms that use temporal difference learn-
ing, and may seem like a reasonable adaptation to the
Bayesian setting. However, for distributions there is no guar-
antee that this scheme converges, or is in fact well defined,
since setting ptarget(θ) ← pmain(θ) is mathematically un-
supported when pmain(θ) is a distribution that was condi-
tioned on the target parameters. Furthermore, if this scheme
does not converge to the same pmain(θ|D) for a fixed data
set D and every starting distribution, it is not sensible to de-
fine a posterior pmain(θ|D) that is only conditioned on D.

Fellows, Hartikainen, and Whiteson (2021) propose inter-
preting the problem as inferring a posterior distribution over

Bellman operators, and show convergence of the posterior to
the true Bellman operator as more data is collected.

Instead, we propose a new Bellman operator that operates
on posterior-like distributions, and prove that this operator
is a contraction and has a fixed point. Roughly speaking,
we show that an algorithm that alternates between updating
a distribution conditioned on the targets, and updating the
distribution over targets converges to a limiting distribution,
proving that several common Bayesian algorithms which are
special cases of our operator can be expected to converge,
independent of the starting distribution.

Visualizing the Distributions
Before we introduce Epistemic Bellman Operators, we ana-
lyze which distributions Bayesian Q-learning algorithms ac-
tually attempt to approximate. To this end, we study Boot-
DQN and EVE in a tabular setting, and assume there exists
some idealized distribution over targets Q′ ∼ ptarget(Q)
that our agent currently has. Furthermore, as in BootDQN
and EVE, we are equipped with a likelihood

p(D|Q,Q′) ∝ exp

− 1

2σ2

∑
(s,a,r,s′)∈D

TD(Q,Q′, s, a, r, s′)2

 ,

also conditioned on a set of target values Q′. This results in
a posterior distribution

p(Q|D, Q′) ∝ p(D|Q,Q′)p(Q).

However, this distribution is conditioned on a single value
for the targets and does not yet incorporate the fact that Q′ ∼
ptarget(Q), i.e., the uncertainty over the targets.

In the case of BootDQN, ptarget(Q) is modelled by the
ensemble of target networks θ′1, . . . , θ

′
n, and to approximate

the posterior each ensemble member optimizes for its own
loss Q∗

i = argmax p(Qi|D, Q′
i). On the other hand, EVE

has a Laplace approximation for ptarget(Q), and updates
the main distribution by sampling one Q̃′ ∼ ptarget(Q),
maximizing Q = argmax p(Q|D, Q̃′) and also updating the
Fisher information.

In our idealized setting, we can directly consider the
marginalization of the conditioned posterior over targets Q′:

pmain(Q|D) =
∫

p(Q|D, q′)dptarget(q′).

Figure 1 shows a graphical presentation of this marginaliza-
tion, together with BootDQN and EVE, in a simplified set-
ting with an MDP with one state and one action. The top row
is the idealized version of Bayesian model-free reinforce-
ment learning algorithms. A distribution over the targets de-
fines a distribution over the main values, which can exactly
be inferred by a fully expressive model class. The second
row contains a sketch of the situation with ensembles. The
distribution ptarget is an ensemble, which together with the
normal distribution likelihoods makes a mixture distribution
for the main values. Estimating this distribution with an en-
semble ideally returns an ensemble containing the modes of
the new distribution.
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Figure 1: Plots of the distribution over the Q-value of a single state-action. The final column shows the difference between the
target distribution (red) and the current distribution (blue). Rows are (1) idealized model class, (2) ensemble approximation
(BootDQN), (3) Laplace approximation (EVE).

For EVE, the target distribution is a normal distribution.
The distribution for the current state is therefore also a nor-
mal distribution, and representing it in the model class of
normal distributions returns a normal distribution.

Both BootDQN and EVE can be considered as approxi-
mations to this marginalization, approximating the integral
with an ensemble in the case of BootDQN and a single sam-
ple from ptarget(q

′) in the case of EVE. After constructing
an approximate p̃main(Q|D) each method then attempts to
represent this distribution in their model class.

Considering this marginalization process, we can now de-
fine what it means for a well-defined posterior to exist. If the
process of

p
(k)
main(Q|D) =

∫
p(Q|D, q′)dp(k)target(q

′) (5)

p
(k+1)
target(q

′|D) = p
(k)
main(Q|D) (6)

k = k + 1 (7)

converges to the same limiting distribution p(Q|D)∗ for
every starting p

(0)
target(q

′), the posterior-like distribution
p(Q|D) is well-defined. We formalize this process with the
Epistemic Bellman Operator.

Epistemic Bellman Operators
For any Bellman operator or contraction BD, perhaps de-
pending on some data set D, we can define a pushforward
distribution with additive noise as

p(Q|D, Q′) = Law (BD(Q
′) + ϵD) , (8)

where Law (X) denotes the probability density of X . This
is equivalent to the notion that the Q-values are distributed
around the target values Q′ with some local uncertainty ϵD,
independent of Q′. This is a naturally occurring distribu-
tion in literature, since the posterior distribution of a nor-
mal likelihood with a normal prior takes this shape, which
is commonly used in model-free deep RL literature (Os-
band et al. 2016; Osband, Aslanides, and Cassirer 2018;
Schmitt, Shawe-Taylor, and van Hasselt 2023; Fortunato

et al. 2017; Azizzadenesheli, Brunskill, and Anandkumar
2018; Dwaracherla and Roy 2021; Ishfaq et al. 2023). The
Epistemic Bellman Operator for this distribution marginal-
izes the distribution over Q′, and returns a new distribution.
Definition 1 (EBO). For any measurable set A, let P(A)
denote the set of probability distributions over A. Let
p(q|q′) be a distribution over Q-values conditioned on tar-
get Q-values, e.g., Equation 8. We define the correspond-
ing Epistemic Bellman Operator (EBO), as an operator Bp :

P(R|S||A|) → P(R|S||A|), mapping distributions over Q-
values to another distribution over Q-values by

BpPQ(q) =

∫
p(q|q′)dPQ(q

′). (9)

When p(q|q′) is of the form Law (BD(q
′) + ϵD), we can

equivalently write Equation 9 as

BpPQ = Law (BD(Q) + ϵD, Q ∼ PQ) . (10)

If the distribution p(q|q′) = Law (BD(Q) + ϵD) has con-
tracting properties, for example when BD is a Bellman op-
erator, it can be shown that the respective EBO is also a con-
traction. This is formalized in Theorem 1, whose proof is
provided in Appendix A (Van der Vaart, Spaan, and Yorke-
Smith 2025).
Theorem 1 (Contraction). Let Q = (R|S||A|, ∥.∥∞) be a
metric space, BD be a contraction onQ, and let pB(q|q′) =
Law (BD(q

′) + ϵD) be a distribution overQ conditioned on
target values in Q.

Then the corresponding Epistemic Bellman Operator Bp :
P(Q) → P(Q) defined by Equation 10, where ϵD is inde-
pendent of Q, is a Wℓ-contraction on P(Q) for any ℓ ∈
[1,∞).

This theorem implies that for any dataset D, and any con-
tractive return estimator, repeatedly applying an EBO to any
starting distribution will converge to a fixed point. A con-
sequence is that algorithms which interleave posterior infer-
ence with target distribution updates are theoretically sound
in the sense that they converge to a unique solution p(Q|D).
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Theorem 1 does not characterize the optimality of this solu-
tion, because this depends on the inner non-epistemic Bell-
man operator, which is typically the decisive factor for the
functioning of an algorithm. For example, in the next section
we will apply EBOs to the Optimal Bellman operator as well
as Proximal Policy Optimization’s return estimator, yielding
two very different algorithms.

In the case of policy evaluation with a one-step Bellman
Operator

BQ = R+ γTπQ,

the fixed point of the EBO B is simple to characterize, and
can be theoretically verified to be consistent with its non-
epistemic counterpart. This can be extended to any affine B.

Notably, the following theorem states that the mean of the
fixed point is equal to the fixed point of the non-epistemic
Bellman operator in p(q|q′) when it is affine and ϵ has mean
zero. We refer to Appendix A (Van der Vaart, Spaan, and
Yorke-Smith 2025) for the proof.

Theorem 2 (Mean of B). Let B be the EBO correspond-
ing to pB(q|q′) = Law (B(q′) + ϵ) with E[ϵ] = 0. Let
PB(Q) be the fixed point of B, and QB be the fixed point
of B. If B is an affine contraction, then EPB

[Q] = QB .
Furthermore, writing B(Q) = AQ + b, the covariance
ΣQ = EPB

[
QQ⊤ −QBQ

⊤
B

]
is given by

Vec(ΣQ) = (I −A⊗A)−1Vec(Σϵ)

where Vec(X) denotes the vectorization of X and ⊗ is the
Kronecker product.

To showcase what our theorems state, we conduct an ex-
periment in an MDP with one state and two actions so that
the distributions are easy to visualize. We initialize a mul-
tivariate normal distribution, and iteratively apply the EBO.
Figure 2 displays the density of the distribution over time,
with the fixed point of the non-epistemic Bellman equa-
tion Qπ marked in red. It can be seen that the distribu-
tions converge to a normal distribution centered around Qπ ,
where the Q-values are strongly correlated. This correla-
tion is expected, since both actions transition to the same
state. Furthermore, Figure 6 in the appendix shows that the
Wasserstein distance to the fixed point matches the theoreti-
cal contraction rate of γ.

Use Cases of Epistemic Bellman Operators
In this section we highlight two main use cases for Epistemic
Bellman Operators: gaining theoretical insight into existing
methods by interpreting them with EBOs, and creating new
methods using EBOs to guide the model updates.

Thompson Sampling with EBOs
Thompson sampling is a popular exploration algo-
rithm (Azizzadenesheli, Brunskill, and Anandkumar 2018;
Dwaracherla and Roy 2021; Ishfaq et al. 2023), making use
of approximate sampling from a posterior distribution. More
precisely, given a distribution PQ of likely models, Thomp-
son sampling samples a candidate model Q ∼ PQ and acts
greedily with respect to Q. We can model this behaviour

with Epistemic Bellman Operators by taking the standard
Optimal Bellman Operator as inner operator for our EBO:

p(q|q′) = Law
(
R+ γTπ∗

q′ q′ + ϵ
)
,

where π∗
q′ denotes the greedy policy with respect to q′. The

corresponding Epistemic Bellman Operator reads

BPQ = Law
(
R+ γTπ∗

QQ+ ϵD, Q ∼ PQ

)
.

As a result of Theorem 1, it is known that this operator is a
contraction and has a fixed point. However, since

EPQ,Pϵ
[ max

a
(Q(s, a) + ϵ(s, a))]

≥ EPϵ
[ max

a
EPQ

[Q(s, a) + ϵ(s, a)]]

>max
a

EPQ
[Q(s, a)]

(11)

when the event ϵ > 0 has positive probability, it can be pre-
dicted that the mean of the fixed point of B will overesti-
mate the true values of the Thompson sampling policy, sim-
ilar to the overestimation bias in Q-learning (Van Hasselt
2010; Van Hasselt, Guez, and Silver 2016). Epistemic Bell-
man Operators can remedy the overestimation in the same
manner as in Q-learning, through sampling two independent
samples from PQ. This leads to the operator

B2PQ = Law
(
R+ γTπ∗

Q′Q+ ϵD, Q,Q′ ∼ PQ

)
, (12)

which reduces the estimation bias by selecting actions from
an independent sample. We conjecture that this is operator
is also a contraction under the same assumptions as Theo-
rem 1, and we see in experiments that the values do con-
verge.

Experiments To showcase this result, we run Thomp-
son Sampling (TS) policies in a tabular environment, using
Hamiltonian Monte Carlo, a standard MCMC algorithm, to
approximately sample from the posterior, and using EBOs
to directly sample from the exact distribution. Both meth-
ods are provided with unbiased estimators for T and R, so
that any errors in the value models are purely due to bias in
the algorithms. We then compare the mean of the sampled
values to the true values achieved by the TS policy. The re-
sults are shown in Figure 3, with implementation details in
Appendix B. It can be seen that both the approximate sam-
pler (MCMC) and exact sampler (EBO) overestimate the
values with the same linear scaling in ϵ. However, using the
double-sampling EBO, eliminates the bias. Furthermore, ap-
proximately sampling the fixed point of the double-sampling
EBO with an MCMC algorithm also eliminates the bias. In
agreement, Ishfaq et al. (2023) report that the double-Q sam-
pling trick also helps MCMC methods in deep RL settings.

Epistemic Clipping PPO
Since Theorem 1 holds for any contraction, it is applica-
ble to a wide range of return estimators used in practice. To
showcase the generality of our results, we modify Proximal
Policy Optimization (PPO) (Schulman et al. 2017) into Epis-
temic Clipping PPO (ECPPO) by replacing the value models
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Figure 2: The Epistemic Bellman Operator applied iteratively to an initial distribution with a fixed policy in a single-state,
two-actions MDP. The fixed point of the regular Bellman operator is in red.

0.0 0.5 1.0 1.5 2.0

ε-scale

0

5

10

15

20

V
t
s
−
V
t
r
u
e

MCMC

Double-Q MCMC

EBO

Double-Q EBO

Figure 3: The gap between predicted values and true val-
ues of Thompson Sampling policies on a tabular MDP, with
various local noise scales. Each line is the mean of 10 inde-
pendent experiments.

with a distributional model. PPO estimates the advantages of
its policy with the following return estimator:

At = δt + γλδt+1 + · · ·+ (γλ)T−t+1δT−1, (13)
where δt = rt + γV (st+1)− V (st). (14)

An approximation of the posterior over V (s) provides the
agent with uncertainty quantification on the advantages,
which we use to clip less aggressively in the policy loss
whenever we are certain about the advantages. To this end,
the typical policy loss in PPO

LPPO(θ) = E[min(rt(θ)At, clip(rt(θ), 1− c, 1 + c)At)],
(15)

is modified to

LECPPO(θ) = E[min(rt(θ)At,

clip(rt(θ), 1− cϕ(Ut), 1 + cϕ(Ut))At)],
(16)

where Ut is an estimate of the uncertainty in At and ϕ is
a monotonically decreasing function, such that the clipping
range expands whenever Ut is low.

To approximate the distributions defined by the Epistemic
Bellman Operator, we present two options: ensembles and
a Laplace approximation. In the ensemble implementation
of ECPPO, the value network of PPO is replaced by an en-
semble V1(s), . . . , Vn(s), and the advantages are computed

according to each ensemble member k independently:

A
(k)
t = δ

(k)
t + γλδ

(k)
t+1 + · · ·+ (γλ)T−t+1δ

(k)
T−1, (17)

δ
(k)
t = rt + γVk(st+1)− Vk(st). (18)

As in standard PPO, the advantages are then normal-

ized Ã
(k)
t =

A
(k)
t −µ
σ using statistics µ, σ estimated from

the minibatch, and the uncertainty is defined as Ut =√
1
n

∑n
k=1(Ã

(k)
t )2 − ( 1n

∑n
k=1 Ã

(k)
t )2, which is the empir-

ical standard deviation of the ensemble. The clipping range
is modified by a function ϕ(Ut) such that 0.5 ≤ ϕ(Ut) ≤ 2.
For exact specifications we refer to Appendix B.

The Laplace-based version of ECPPO uses a Laplace
approximation with diagonal covariance for the value net-
work V (s). To approximate the uncertainty Ut, it is im-
portant to keep in mind the covariance between the val-
ues within the same trajectory V (st), V (st+1), . . . , V (sT ).
To this end, the advantages At are computed with a set of
candidate models V1(s), . . . Vn(s) drawn from the approx-
imate posterior N (θMLE , 1

nI(θ
MLE )−1), where θMLE is

the MLE estimator and I(θMLE ) is the Fisher Informa-
tion. We refer to Daxberger et al. (2021) for a more in-
depth overview of Laplace approximations. The advantages
and uncertainty are computed from V1(s), . . . Vn(s) anal-
ogously to the ensemble-based ECPPO. However, unlike
the ensemble-based version, no gradients are computed for
these candidate models as they are only used to compute tar-
gets. This makes the Laplace version more scalable.

Experiments We test the RL agent with base clipping hy-
perparameter of c = 0.2 on all discrete state environments in
Gymnax (Lange 2022), which includes environments from
OpenAI Gym (Brockman et al. 2016), BSuite (Osband et al.
2020), MinAtar (Young and Tian 2019), and several mis-
cellaneous environments (Lange and Sprekeler 2022; Mi-
coni et al. 2018; Sutton, Precup, and Singh 1999; Wang
et al. 2016), but excluding SimpleBandit-bsuite, which is
non-sequential and trivial, and MemoryChain-bsuite, which
is non-Markovian.

We compare results against the baseline version of PPO
in PureJaxRL (Lu et al. 2022), which also has clipping ra-
tio c = 0.2, and is tuned for these environments by the au-
thors. Furthermore, since ECPPO is a modification to the
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Figure 4: Regret of ECPPO with c = 0.2 relative to the re-
gret of the baseline with c = 0.2 (lower is better). Envi-
ronments are grouped and colour-coded by optimal baseline
clipping parameter. Average of 20 seeds, with error bars de-
noting one standard error.

clipping behaviour, we group environments by whether PPO
improves with c = 0.1 and c = 0.4, which are the smallest
and highest clipping ratio achievable by ECPPO.

Full experiment details and code are in Appendix B
(Van der Vaart, Spaan, and Yorke-Smith 2025), and all learn-
ing curves are in Appendix C. To highlight how ECPPO im-
proves over the baseline PPO with fixed c, Figure 4 shows
the cumulative regret of ECPPO with c = 0.2 w.r.t. the
strongest PPO baseline, normalised by the regret of the base-
line with c = 0.2. The environments are grouped by whether
decreasing or increasing c improves baseline performance. It
is immediately visible that Ensemble-ECPPO dramatically
improves performance across several environments, inde-
pendent of whether high or low c is optimal in the spe-
cific environment, and without suffering major performance
penalties in other environments. Laplace-ECPPO also im-
proves performance in several independent on the optimal c,
but becomes significantly worse on Breakout. Finally, we
observe in Figure 8 (provided in Appendix C) that the un-
certainty quantification make sense in a qualitative manner
in the FourRooms environment, where uncertainty is high
where the current policy has low support.

Related Work
There is a large body of research for Bayesian methods in
RL. On the practical side, there are algorithms such as Boot-
DQN (Osband et al. 2016; Osband, Aslanides, and Cas-
sirer 2018), EVE (Schmitt, Shawe-Taylor, and van Hasselt
2023), BDQN (Azizzadenesheli, Brunskill, and Anandku-
mar 2018), Langevin-DQN (Dwaracherla and Roy 2021),
LMCDQN (Ishfaq et al. 2023) and SMC-DQN (Van der
Vaart, Yorke-Smith, and Spaan 2024). Our main theoretical
result aims to theoretically ground these methods within a

general framework by interpreting them as special cases of
an EBO, which works on distributions, and prove that this is
a contraction.

Operators that work on distributions are also a main focus
in Distributional RL (Bellemare, Dabney, and Munos 2017).
The goal in distributional RL is to model the distribution
of returns, as opposed to learning only the mean. Distribu-
tional methods model the aleatoric uncertainty, which is the
inherent randomness of returns due to the randomness in the
policy and MDP. Instead, we focus on learning the mean of
the returns, and compute a distribution over possible means
given our observations to model the epistemic uncertainty
on the mean. Furthermore, our operator naturally takes into
account the dependency and covariance of the Q-values.

Dearden, Friedman, and Russell (1998) discuss a similar
operator, also providing convergence guarantees with a con-
traction argument. This result can be interpreted as a special
case of our results with a specific return estimator and spe-
cific approximation class. Our main theorem instead applies
to any return estimator with contractive properties.

Bayesian Bellman Operators (Fellows, Hartikainen, and
Whiteson 2021) also focus on the potentially problematic
dependence on target values when inferring posterior distri-
butions over Q-functions. In their work, these problems are
alleviated by interpreting Bayesian RL methods as inferring
posterior distributions over Bellman Operators, while we di-
rectly consider distributions over Q-functions. Furthermore,
they focus on a standard one-step Bellman operator with
parameterized Q-functions, relying on gradient-based opti-
mization theory to prove convergence in the limit of infinite
data under assumptions on the data generating distributions.
On the other hand, our results hold for any contraction oper-
ator and show existence and consistency for any data set.

Conclusion
We have introduced Epistemic Bellman Operators, which
are operators that map a distribution over Q-values to the
pushforward of regular Bellman operators with additive
noise. We have shown that our operator generalizes sev-
eral probabilistic reinforcement learning algorithms, unify-
ing practical algorithms that appear to have dissimilar archi-
tectures. Furthermore, we have proven that Epistemic Bell-
man Operators are contractions, which implies that inter-
leaving posterior inference and target updates converges to
a fixed distribution and motivates these practical algorithms
by showing consistency in tabular settings. We showed that
the fixed point of an EBO is sensible when doing policy eval-
uation. Finally, we showcased the generality of our operators
by studying an existing Bayesian Q-learning algorithm and
modifying PPO into an uncertainty-aware variant that out-
performs the original algorithm in several environments.

In future research, the insights from our main theorem can
aid in the design of new uncertainty-aware algorithms by
guiding practical design choices toward theoretically sound
approaches. Another research direction is to study more ap-
plications of uncertainty in reinforcement learning, other
than exploration and the one presented here. Finally, we
aim to investigate the influence of priors and likelihoods and
study more suitable distributions than normal distributions.
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