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Surrogate modelling techniques such as Kriging are a popular means for cheaply emulating the response
of expensive Computational Fluid Dynamics (CFD) simulations. These surrogate models are often used
for exploring a parameterised design space and identifying optimal designs. Multi-fidelity Kriging extends
the methodology to incorporate data of variable accuracy and costs to create a more effective surrogate.
This work recognises that the grid convergence property of CFD solvers is currently an unused source of
information and presents a novel method that, by leveraging the data structure implied by grid conver-
gence, could further improve the performance of the surrogate model and the corresponding optimisation
process. Grid convergence states that the simulation solution converges to the true simulation solution
as the numerical grid is refined. The proposed method is tested with realistic multi-fidelity data acquired
with CFD simulations. The performance of the surrogate model is comparable to an existing method, and
likely more robust. More research is needed to explore the full potential of the proposed method. Code
has been made available online at https://github.com/robertwenink/MFK-Extrapolation.
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1. Introduction

1.1. Motivation

Automatic design procedures based on Computational Fluid Dynamics (CFD)
simulations are becoming increasingly important in practical ship design [36]. For an
efficient optimisation phase of such a design procedure, accurate high-dimensional
surrogate modelling is essential [43]. A surrogate model provides a cheap substi-
tute for an expensive (CFD) simulation, enabling us to feasibly approximate and
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explore the design space. To illustrate the effectiveness and promise of using sur-
rogate models in naval optimisation routines, Scholcz and Veldhuis [37] show that
Surrogate-Based Global optimisation (SBGO) of a tanker’s hull reduces the required
computational time from two weeks to only a day when compared with a direct op-
timisation algorithm. This is important since Raven and Scholcz [34] state that the
time available for hull shape optimisation with the goal of, for instance, wave resis-
tance minimisation is usually only one to two weeks or even less.

However, SBGO suffers from the curse of dimensionality [27]. Here, the curse of
dimensionality refers to the exponential growth of the design-space volume when
the number of dimensions or design variables increases, thereby drastically increas-
ing the number of (expensive) simulations required to cover this volume and reliably
construct the surrogate model. In other words, if we increase the number of design
variables we optimise over, we drastically need to increase the number of CFD simu-
lations, which is costly or even infeasible. Simultaneously, high-dimensional design
spaces naturally arise in naval ship design [37], making this curse of dimensionality
a limiting problem for using SBGO in practice.

Multi-fidelity modelling can improve the efficiency of SBGO, by using the usual
expensive and precise data together with less expensive but less accurate data. Re-
sults as early as that of Leifsson et al. [22] show that optimised hull designs can
be obtained at over 94% lower computational cost when using multi-fidelity optimi-
sation as compared to a direct high-fidelity optimisation algorithm. However, these
results typically do not scale to more design variables.

We want to lessen the effects of the curse of dimensionality even further and en-
able ourselves to feasibly solve more complex problems of higher dimensionality,
or to solve problems less costly and more accurately in general. Shan and Wang
[38] survey strategies of solving high-dimensional expensive black-box problems.
These strategies include problem decomposition, screening (e.g. Global Sensitivity
Analysis), mapping (e.g. lossless projection of high-dimensional spaces onto lower-
dimensional spaces; or multi-fidelity approaches that map a lower-fidelity onto a
higher-fidelity model (such as considered in this work), and (adaptive) space reduc-
tion. From these, Shan and Wang [38] mark mapping as a promising approach and
note that research does not take advantage of the characteristics of the underlying
expensive functions. Wu and Wang [46] reiterate this conclusion, demonstrating that
this research direction still holds relevance today.

In this work, we recognise that the grid convergence property of CFD solvers
is currently an unused source of information that could further improve the perfor-
mance of the surrogate model and the corresponding optimisation process. Grid con-
vergence states that the simulation solution converges to the ‘true’ simulation solu-
tion as the grid is refined. CFD simulations reported by for instance Eijk and Wellens
[40] show the clear presence of grid convergence. Therefore, this work explores a
novel hierarchical multi-fidelity mapping method exploiting this grid convergence
information to relieve the effects of the curse of dimensionality at the expensive high
fidelity.
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1.2. Method background

Kriging, also known as a form of Gaussian Process Regression [32], is a particu-
larly popular surrogate modelling technique due to two reasons. First, Kriging pro-
vides the best linear unbiased prediction (BLUP) when the assumption of Gaussian
correlations between data samples holds [35]. Second, Kriging provides an estima-
tion of the mean squared error corresponding to that prediction [9].

Kriging receives its name from Krige [19,20], who used a precursor method to
estimate gold concentrations based on only a few boreholes. It was further mathe-
matically developed by Matheron [25] and has been popularised for use outside the
field of geostatistics by Sacks [35]. Jones [14] and Forrester et al. [9] provide a gentle
and intuitive introduction to (Ordinary) Kriging.

Kriging and other forms of Gaussian Process Regression are the most popular sur-
rogate models for use in Bayesian optimisation [27], of which the Efficient Global
Optimisation (EGO) algorithm [13] is one form. The EGO algorithm adaptively sam-
ples additional points based on the Expected Improvement criterion [13], which is
formulated using the estimated mean squared error that Kriging provides. Using this
criterion, EGO provably converges to the global optimum in an optimisation process
[24], although it may exhaustively sample around local optima [8].

In contrast to Gaussian Process Regression, Kriging in principle is an interpolating
formulation, which causes problems in the presence of noisy data. To solve this, For-
rester et al. [7] show how to introduce regression terms to the Kriging formulation in
coherence with the EGO method through a process called re-interpolation. Jones [14]
discusses the relation of Kriging with respect to other surrogate modelling methods
and explores possible improvements to EGO and the Expected Improvement crite-
rion. As one of the most promising directions for further work, he hinted towards
multi-fidelity simulation: using expensive high-precision simulations together with
simulations of a lower precision but a much lower cost. This enables us to respec-
tively balance exploitation and exploration of the search space and thereby cut costs
while improving the quality of the surrogate.

Since then, Multi-Fidelity Kriging has received significant research effort, see for
instance the review papers of Fernández-Godino et al. [10], Peherstorfer et al. [28],
Viana et al. [43]. Kennedy and O’Hagan [15] mathematically formulated the funda-
mentals, while Forrester et al. [8] provides a more transparent overview. Gratiet and
Garnier [21] show that the model of Kennedy and O’Hagan [15] can be equivalently
but more cheaply formulated as recursively nested independent Kriging problems,
one for each fidelity level. Perdikaris et al. [30] improve upon this work by gener-
alising the linear autoregressive1 formulation of Gratiet and Garnier [21] to better
accommodate non-linear-relations.

1Meaning that the relations between fidelity levels and the regression parameters are directly solved in
the linear system.
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Korondi et al. [17], Meliani et al. [26] use the recursive formulation of Gratiet and
Garnier [21] to introduce a multi-fidelity approach to the EGO algorithm and for-
mulate level-selection criteria that balance the expected reduction of the prediction
variance with the costs of sampling a given level. The combination of Gratiet and
Garnier [21] together with the multi-fidelity SBGO method of Meliani et al. [26]
will serve as a reference to the method proposed in this work since that combination
will feature the so-called nested Design of Experiments (DoE), a sampling strategy
that provides the most complete information on the relation between the fidelities
[15].

Optimisation methods based on Multi-Fidelity Kriging hold promise in maritime
engineering considering the following accounts. Raven [33], Raven and Scholcz [12]
apply Multi-Fidelity Kriging in a ship hull form optimisation with a dense set of
potential flow results and a coarse set of RANS data, and positively compared the
result with the single-fidelity formulation. Korondi et al. [18] performs reliability-
based optimisation of a ducted propeller using an EGO-like strategy and a multi-
fidelity Kriging surrogate. Although performed under compressible flow conditions,
the same techniques are interesting to incompressible flows. Liu et al. [23] uses vis-
cous and potential flow calculations as the high- and low-fidelity respectively and
shows the multi-fidelity Kriging approach can obtain a more optimal hydrodynamic
hull form than the single-fidelity model alone.

Other than in these accounts, to the authors’ knowledge, Multi-Fidelity Kriging
does not seem to have been applied within maritime engineering, presumably be-
cause the increased complexity of the computational setup versus the perceived po-
tential benefit. There are still unresolved questions regarding when it is advantageous
to use a multi-fidelity over the standard single-fidelity approach [11,17,39] in terms
of accuracy, cost, and assumed data characteristics.

1.3. Objective

The main research objective that is investigated is how to leverage the grid con-
vergence property of CFD solvers in order to reduce the number of expensive high-
fidelity samples required for an accurate (multi-fidelity) Kriging surrogate. Using
this property can accelerate surrogate-based global design optimisation in maritime
engineering. CFD with a free surface description is used to computed the accelera-
tions for stylized bow shapes of a falling life boat. The main assumption in reaching
the objective is that value differences of the objective function that minimized the
accelerations, implied by the grid convergence property of a CFD solver, are propor-
tional from one point in the design space to another. To our knowledge the assump-
tion has not been investigated in the context of Kriging or Gaussian Processes for the
purpose of Bayesian Optimisation.
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Fig. 1. Image from Forrester et al. [8] to showcase multi-fidelity Kriging. Here yc represent low-fidelity
samples, ye represent high-fidelity samples, and ‘co-Kriging’ is the surrogate that uses the samples at both
fidelity levels to find an optimum.

2. Methodology

When we take a look at the results of Forrester et al. [8] in Fig. 1, and later those
of Meliani et al. [26] in a fully MF-EGO setting, we notice that although we are
only interested in the optimum solution we still need to construct the multi-fidelity
surrogate model by sampling the high-fidelity across the full domain. Effectively
we need to sample the expensive high-fidelity truth in areas that ultimately are not
of interest to an optimisation problem, and therefore will not be directly used. This
seems to be a waste of our resources, especially since the high-fidelity per definition
is often much more expensive than the low-fidelity while both are generally required
to be highly correlated [39].

Due to the high required correlation between fidelity levels, we implicitly assume
to be able to identify regions of interest based on the low fidelity and only sample
the high fidelity there. However, this approach presents a problem already observed
in the toy case of Forrester et al. [8], where the low-fidelity optimum is only a local
optimum of the ‘truth’. Compared to the reference method with two fidelity levels
[21,26], our proposed method will feature three fidelity levels, low, medium and
high, and will formulate a surrogate model from the combination of samples at these
fidelity levels and the assumption of uniform grid convergence, thereby arriving at
the formulation of the main assumption as stated together with the objective.

In the following, we exploit this assumption and project the information of as few
as a single high-fidelity sample onto the full input domain. We thereby retrieve an
approximate Kriging model of the high-fidelity (near) truth, which at the very least
should be indicative of areas of interest to an optimisation routine. Then, the adaptive
sampling of the EGO algorithm can be performed as usual but at a lower cost of the
initial surrogate model in terms of sampling the high-fidelity.
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2.1. Basic formulation

We want to predict an unknown higher fidelity level based on as few samples as
possible at that unknown level. To do this, we will estimate the training points of
the Kriging model at an unknown level l + 1, initially based upon only one actual
high-fidelity sample at a location of interest to our optimisation. We retrieve an initial
sample zl+1,x0 with x0 = Xl[argmin(Zl)] and intuitively determine the multiplica-
tive difference:

dx0 = zl+1,x0

zl,x0

.

Here, l denotes the currently known level, and l + 1 is the level we want to predict.
We would then use this discrepancy to predict the value at some other location x∗ of
level l + 1 as:

zp,x∗ = zl,x∗ · dx0 .

We use subscript p to more clearly indicate a predicted value at level l + 1. Now,
we would like the discrepancy dx0 to scale according to the increase we observe
between the two lower fidelity levels at this other point x∗ to obtain discrepancy dx∗ .
That is, we match the ratios of the differences between levels (l − 1, l) and (l, l + 1)
at locations x0 and x∗, thereby retrieving:

zl,x∗ − zl−1,x∗
zl,x0 − zl−1,x0

= zl+1,x∗ − zl,x∗
zl+1,x0 − zl,x0

= zl,x∗ · dx∗ − zl,x∗
zl,x0 · dx0 − zl,x0

.

Rewriting in order to get an expression for dx∗ :

dx∗ = zl,x0zl,x∗ − zl−1,x∗zl,x0

zl,x0zl,x∗ − zl−1,x0zl,x∗
· (dx0 − 1) + 1

Equivalently, rewriting this to a physically much more logical form in which we
predict a high-fidelity point directly:

zp,x∗ = zl+1,x0 − zl,x0

zl,x0 − zl−1,x0

· (zl,x∗ − zl−1,x∗) + zl,x∗ (1)

2.2. Incorporating noise and variance

Noise and variance are in principle present in each of the values used in Eq. (1).
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Note again that sampling noise of numerical origin can be regressed and estimated
by introducing an additional hyperparameter. We can then describe the noise using a
Gaussian variance that is fully integrated with the Kriging model prediction variance.

To project this combination of noise and Kriging variance onto our estimation
of the high-fidelity, we should thus incorporate them into Eq. (1). Noticing each z in
Eq. (1) is actually the mean of a Gaussian, we can alternatively write the correspond-
ing Gaussian as:

N (zl,x, σl,x) = zl,x + N (0, 1) · σl,x = zl,x + Nl,x · σl,x . (2)

Here, Nl,x is used as a shorthand notation for the standard normal distribution
N (0, 1), corresponding to level l and location x. We now make three assumptions:

• The high-fidelity sample zl+1,x0 exhibits no noise or variance.
In other words, we assume the sampled (near) truth to be sufficiently precise
such that it exhibits relatively little to no noise. In reality however, this is a
practical consideration since we will have an insufficient amount of high-fidelity
samples to pre-emptively obtain an accurate noise estimate.

• At location x0, the Kriging variances of levels l and l − 1 are i.i.d. Gaussians.
As we will see at the end of this section, it only makes sense to sample all three
involved levels at location x0, leading to a nested DoE. This implies that at x0
there will be no (cross-correlated) Kriging predictions and variances present,
but only noise estimates. These noise estimates are per definition i.i.d., see for
instance [7,21].

• At location x∗, Nl,x∗ and Nl−1,x∗ are perfectly negatively correlated. In effect,
the difference N (zl,x∗ , σl,x∗) − N (zl−1,x∗ , σl−1,x∗) is described by N (zl,x∗ −
zl−1,x∗ , σl,x∗ + σl−1,x∗)
Although the actual distribution of the expected difference between N (zl,x∗ ,
σl,x∗) and N (zl−1,x∗ , σl−1,x∗) is less pessimistic in terms of variance and not
necessarily normally distributed, this description provides the right variance
sign (variances generally amplify each other) and provides a stronger parallel
with the multi-fidelity methodology of Gratiet and Garnier [21].

Using the notation of Eq. (2) and incorporating the above assumptions into Eq. (1)
retrieves the formulation:

zp,x∗ + Nx∗σp,x∗ = f · (
zl,x∗ − zl−1,x∗ + Nx∗ · (σl,x∗ + σl−1,x∗)

) + zl,x∗

+ Nx∗σl,x∗ (3a)

where f = zl+1,x0 − zl,x0 − Nl,x0σl,x0

zl,x0 − zl−1,x0 + Nl,x0σl,x0 − Nl−1,x0σl−1,x0

. (3b)

Since the terms σxl,0 , σxl−1,0 , zxl,0 , zxl−1,0 in fraction f of Eq. (3a) and (3b) are known
and constant, we can numerically compute the corresponding expectation Ef and
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variance Sf as a function of Nxl,0 and Nxl−1,0 :

Ef = E
[
f (Nxl,0 ,Nxl−1,0)

]; (4a)

Sf = E
[(

f (Nxl,0 ,Nxl−1,0) − Ef

)2]
. (4b)

Note that the calculated variance Sf is generally not a normal Gaussian, but will be
treated as such in the following. Equation (3a) and (3b) can now be rewritten to:

zp,x∗ + Nx∗σp,x∗ = (Ef + Nx∗
0
Sf ) · (

zl,x∗ − zl−1,x∗ + Nx∗(σl,x∗ + σl−1,x∗)
)

+ zl,x∗ + Nx∗σl,x∗

= (Ef + Nx∗
0
Sf ) · (�zx∗ + Nx∗�σx∗) + zl,x∗ + Nx∗σl,x∗

= (Ef �zx∗ + zl,x∗) + (
Nx∗�σx∗(Ef + Nx∗

0
Sf )

+ �zx∗ · Nx∗
0
Sf + Nx∗σl,x∗

)
. (5)

This defines �zx∗ and �σx∗ as:

�zx∗ = zl,x∗ − zl−1,x∗ (6a)

�σx∗ = σl,x∗ + σl−1,x∗ (6b)

Having rearranged Eq. (5), we notice the first term (Ef �zx∗ + zl,x∗) is equal to our
original expression of Eq. (1) but with the fraction adjusted for involved variances
by means of the expectation. All other terms are contributing to the variance of our
predicted point. We thus separate the terms in Eq. (5) to retrieve:

zp,x∗ = Ef �zx∗ + zl,x∗ (7a)

Nx∗σp,x∗ = Nx∗ · (
�σx∗(Ef + Nx∗

0
Sf ) + σl,x∗

) + Nx∗
0

· �zx∗Sf . (7b)

In Eq. (7b), recall that Nx∗ = N(0, 1) and Nx∗
0

= N(0, 1), so we rewrite this as:

N(0, σp,x∗) = N
(
0,

(
�σx∗(Ef + Nx∗

0
Sf ) + σl,x∗

)) + N(0,�zx∗Sf ).

Since this is a sum of normally distributed independent variables, this simplifies to:

σp,x∗ = �σx∗(Ef + Nx∗
0
Sf ) + �zx∗Sf + σl,x∗ .

Lastly, the expectation E[Nx∗
0
] = 0. As a final result for the variance of the predicted

point, we retrieve:

σp,x∗ = �σx∗Ef + �zx∗Sf + σl,x∗ .
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Summarizing:

zp,x∗ = zl,x∗ + Ef,x0�zx∗ (8a)

σp,x∗ = σl,x∗ + �σx∗Ef + �zx∗Sf . (8b)

Note that this chaining of variances implies that it never makes sense to not sample a
lower fidelity whenever we sample the high fidelity. Therefore we should adhere to
a fully nested design of experiments.

Let it be clear that we use each zp,x∗ as a training point for the Kriging model
at level l + 1. Effectively the variances σp,x∗ should be used as regression param-
eters. They can be used similarly to how we regress noise (see Forrester et al. [7])
by correcting them with the process variance σ̂ . However, since the addition to the
correlation matrix is not uniform (heteroscedastic instead of homoscedastic noise),
we require an adapted Kriging implementation to accommodate this.

2.3. Sample weighing

Equation (1) retrieves exact predictions (predicted value equals the true value) if:

(1) zl,x0 , zl,x∗ , zl−1,x0 , and zl−1,x∗ are sampled without noise or variances
present.

(2) The response surfaces of each fidelity level are linearly dependent.

We additionally note that Eq. (8a) and (8b) reduces to Eq. (1) in the absence of noise
or other variances for each fidelity at input location x0.

Of course, the above conditions in general will not be met exactly. Additionally,
we might not know they are not met based on a single high-fidelity sample at location
x0.

To detect such events, or simply (locally) improve our response surface, we must
be able to retrieve and integrate additional high-fidelity samples. The predictions pro-
vided by each high-fidelity sample should therefore be weighed to obtain a weighted
prediction zp,x∗ . Adapting Eq. (8a) and (8b) to express this:

zp,x∗ = zl,x∗ +
∑

i

ci · (Ef,i�zx∗) (9a)

σp,x∗ = σl,x∗ +
∑

i

ci · (�σx∗Ef,i + �zx∗Sf,i). (9b)

Subscript i denotes a quantity corresponding with input xi , the ith high-fidelity sam-
ple. We will use this notation during the continuation of this section.

We will determine the coefficients ci using two metrics:

(1) Distance, and
(2) Variance.



124 R. Wenink et al. / Multi-fidelity Kriging for a falling lifeboat

To retrieve a correct result we enforce that
∑

i ci = 1 and x∗ = xi → zp,x∗ = zp,xi

by defining ci as:

ci, = ci,distance · ci,variance

ci =
{

ci,∑
j cj,

, if x∗ �= xi

1, if x∗ = xi

(10)

An estimated point should be influenced more by a nearby sampled point than by one
far away. Fortunately, there already is a way of expressing this: the (tuned) Kriging
correlation kernel, with known kernel hyperparameters at level l = 1.

Before defining ci,distance, let us consider why the tuned kernel of the medium-
fidelity, instead of the high-fidelity, is used and can be used. First, we know that
these hyperparameters correctly encode the dimensional scales because these are the
same for each fidelity. Furthermore, it is reasonable to assume that the medium-
fidelity kernel correctly encodes the variability of the objective function, relative per
dimension. Would we on the contrary tune the kernel using only the high-fidelity
samples, in number as little as one, we generally have insufficient information to
do so effectively and retrieve inaccurate if not nonsensical results. Therefore, using
hyperparameters tuned using the medium-fidelity is a justified and reasonable option.

However, although capturing the dimensional scales and relative variability of the
objective function per dimension, the medium-fidelity kernel does not necessarily
provide an interpolating solution at the high-fidelity samples in the extrapolated sur-
rogate. This is however an absolute requirement.

Therefore, we apply the elementary linear operations of row addition and row
multiplication to the correlation matrix to retrieve an interpolating solution while
retaining the correlation information. In this form, negative corrected ‘correlations’
indicate that a sample should provide no contribution to an extrapolated point, and
are set to zero. Lastly, the columns (with the column consisting of each high-fidelity
sample’s contribution to an extrapolated point) of this matrix are rescaled such that
the sum equals one. The full procedure that defines ci,distance is described by Algo-
rithm 1.

Note that by weighing the contribution of the high-fidelity samples in this way,
we implicitly construct a difference model like Zd(x) of the multi-fidelity Kriging
model. In effect, using this distance-weighing method we can partly resolve inherent
non-linearities of the objective function by means of an increased sampling density
in a similar fashion to regular multi-fidelity Kriging.

To define ci,variance, consider that if the variance Sf,i of Ef,i in Eq. (9a) and (9b)
is large, then the fraction Ef,i upon which we base our prediction is not reliable and
thus our extrapolation based on location xi is not reliable.

A clear example of when such high variances Sf,i occur is when all levels of some
sampled location are extremely close to each other (and noise is involved). Small
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Algorithm 1 Distance weighing: scaling the correlation matrix
1: Xhifi ← high fidelity sample locations
2: Xunique ← all unique sample locations � Either high fidelity, or extrapolation
3: corr ← KRIGINGCORRELATIONl=1(Xhifi, Xunique) � nhifi × nunique matrix
4:

5: for each xi ∈ Xhifi do
6: r , c ← row, column index of xi in corr
7: for each xi,other ∈ Xhifi − {xi} do
8: rother, cother ← row, column index of xi,other in corr
9:

10: Row addition to force other sample’s contribution to 0 at xi

11: corr[rother, :] −= corr[r, :] ∗ corr[rother, c]
12:

13: Row multiplication to rescale the contribution of xi,other to 1
14: corr[rother, :] /= corr[rother, cother]
15:

16: cdistance = max(0, corr) � For each entry in corr
17: cdistance /= sum_per_column(cdistance) � For all columns in cdist

changes then potentially lead to large fraction differences or even changes in sign
and so the resulting predictions are spurious and unreliable.

To resolve this, we define ci,variance using Eq. (11), which weighs the contribution
of each xi to an extrapolated point using the negative exponential of the extrapolation
variances σi,x∗ , as defined by Eq. (8b), normalised with the minimum mean σi,x∗ ,
where the mean is taken over all extrapolation locations x∗ and the minimum over
corresponding samples xi :

ci,variance = e
− σi,x∗

minxi∈Xl+1 σi,x∗ . (11)

This method works also when comparing with variances that do not originate from
the proposed method, the relevance of which will become clear below. This is, of
course, given the comparability of these two quantities.

Please note that the Gaussian-inspired use of a negative exponential is a function-
ing solution that fits the desired properties. However, other approaches might work
as well and the usage of some scaling hyperparameter or constant could improve
performance. These considerations are however left to subsequent work.

2.4. Method weighing: ‘Hybrid’ multi-fidelity surrogate modelling

When there is little convergence or difference between levels, even with little noise
the prediction variance Sf,i of Ef,i in Eq. (9a) and (9b) might be large and thus our
prediction unreliable. This is a fail-mode of the proposed method independent of
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non-linear relations between levels and thus should be presented with a separate
solution. As it happens, since the differences between levels in such a case are small,
intuition tells us we can regard for instance the medium fidelity to be indicative of
the truth and thus of importance to the optimisation process. In other words: if a
prediction based on sample xi is unreliable, that sample’s weighted contribution to
the overall truth prediction as formulated in section 2.3 should be comprised of a
different, more reliable solution.

To this end, we introduce prediction weight-factor wi and the ‘reliable solution’
metrics ẑl,x∗ , σ̂l,x∗ into Eq. (9a) and (9b):

zp,x∗ = wi · (Ef,i�zx∗ + zl,x∗) + (1 − wi)ẑl,x∗ (12a)

σp,x∗ = wi · (�σx∗Ef,i + �zx∗Sf,i + σl,x∗) + (1 − wi)σ̂l,x∗ (12b)

Parameters ẑl,x∗ , σ̂l,x∗ and wi remain to be defined.
Before defining wi in Eq. (12a) and (12b), we elaborate upon the difference be-

tween ẑl,x∗ , σ̂l,x∗ and zl,x∗ , σl,x∗ as used previously. Suppose a scenario where a
sample of the medium fidelity l lies between or close to samples of the high-fidelity
l + 1. Then even when w = 0, it would not be reasonable to discard all weighted
information and just take the value of the medium fidelity level. In fact, we would
run into problems such as a perceived high noise in the high-fidelity Kriging model
when samples of levels l and l + 1 are very proximate as usually encountered dur-
ing an optimisation process. This means our intuition as described at the start of this
section would only be of benefit when using the initial DoE where samples are at a
distance from each other by definition.

To solve this problem, we must weigh the contributions of the two fidelities auto-
matically and optimally; which is the very objective of any multi-fidelity surrogate
data fusion model. Therefore, we should use the Kriging mean and MSE estimate of
a multi-fidelity method such as that of Gratiet and Garnier [21] to define ẑl,x∗ and
σ̂l,x∗ , respectively.2

When using the medium-fidelity as an alternative surrogate, the proposed method
gains the characteristic of being a hierarchical method. Giselle Fernández-Godino et
al. [11] define a multi-fidelity hierarchical method in optimisation as a method that
optimizes using the low-fidelity and refines the found extrema using the high-fidelity.

It is important to notice that Eq. (9a) and (9b) and the method of Gratiet and Gar-
nier [21] are both in principle interpolating and exact formulations at the locations
of high-fidelity samples, and thus the formulation of Eq. (12a) and (12b) will be too.
The medium fidelity, however, inherently is not interpolating.

If the variance Sf,xi
of Ef,xi

in Eq. (9a) and (9b) is large, then the fraction Ef,xi

upon which we base our prediction is not reliable and thus our prediction is not reli-
able. We do not want to weigh samples relative to each other but define an absolute

2For three levels, this solution is limited to a minimum of three high fidelity samples for the method of
Gratiet and Garnier [21], which is a requirement imposed by the involved GLS solver for the Universal
Kriging parameters.
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measure of the reliability per sample. This absolute measure is captured in wi , which
puts weight on either the prediction of the proposed method or that of a multi-fidelity
method such as that of Gratiet and Garnier [21].

Consequentially, when Sf,i becomes higher with respect to Ef,i we want wi to
diminish to indicate the unreliability of the extrapolation. Furthermore, a certain
amount of noise is fully acceptable. To achieve this, the following methodology is
used:

wi =

⎧⎪⎪⎨
⎪⎪⎩

1, if Sf,i � a · |Ef,i |
0, if Sf,i � b · |Ef,i |
1 −

Sf,i
|Ef,i | −a

b−a
, else

(13)

We use a = 1 and b = 5, indicating that an Sf,i up until the absolute value of Ef,i

is fully acceptable and Sf,i past 5 times the absolute value of Ef,i deemed as fully
unreliable. This is a simple linear function between the bounds a and b, which is
effective for the current goals. Exploring other functions or bounds is left for further
work.

2.5. Level selection procedure

If the proposed method above is to be used within a multi-fidelity global optimi-
sation routine, a method is required to select the level at which we will retrieve the
sample at a given location x∗. Korondi et al. [17] and Meliani et al. [26] introduce
such level selection algorithms, based on the work of Gratiet and Garnier [21]. Since
the proposed multi-fidelity methodology is not formulated recursively, it requires a
different approach.

Equation (12b) gives the total variance at x∗ of the prediction level, including
method weighing. However, let us focus on only the variances of the proposed
method, given by Eq. (9b). We notice that Ef,i and Sf,i are pre-calculated constants
and rewrite Eq. (9b) to:

σp,x∗ = σl,x∗ +
∑

i

ci · (�σx∗Ef,i + �zx∗Sf,i)

= σl,x∗ + �σx∗
∑

i

ci · Ef,i + �zx∗
∑

i

ci · Sf,i (14)

In Eq. (14), the expectation of �zx∗ per definition cannot be changed and so the
variance of the proposed method that is reducible by sampling becomes (substituting
Eq. (6b)):

σp,x∗ = σl,x∗ + (σl,x∗ + σl−1,x∗)
∑

i

ci · Ef,i (15)
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This formula can be separated into contributions per level, where it is taken into
account that a fully nested DoE is used: Sampling a fidelity level always implies
sampling the corresponding lower level. The reduction at level l + 1 (level p) then
becomes, per level:

• Level l − 1 : σred,x∗(l − 1) = σl−1,x∗
∑

i ci · Ef,i

• Level l : σred,x∗(l) = σl,x∗ + σl,x∗ + ∑
i ci · Ef,i

• Level l + 1 : σred,x∗(l + 1) = σl,x∗ + (σl,x∗ + σl−1,x∗)
∑

i ci · Ef,i .

This formulation adheres to the following requirements we had set:

• A strictly increasing expected variance reduction over levels.
• The variance reductions at level p are of the same order as the Kriging predic-

tion variances
• The variance reductions at level p are independent of the Kriging prediction

variances of the extrapolated surrogate at level p

Especially the last point is important for the stability of the level selection procedure
since the variances at the extrapolated level can be spurious. This means the level
selection procedures of Korondi et al. [17] and Meliani et al. [26], purely based
on the methodology Gratiet and Garnier [21] would not provide correct and stable
results.

Although the above variances are calculated point-wise and do not take neigh-
bouring points into account as the Kriging prediction variances do, this difference is
of no consequence since we only require an indication of the reducible variance. In
fact, the methods of Korondi et al. [17] and Meliani et al. [26] do not correspond with
the Kriged variances either, nor do they take irreducible model noise into account.
The presence of the second requirement, therefore, is enough to provide us with a
reliable level selection methodology.

The level selection procedure is completed by selecting the level that provides
the maximum variance reduction σred,x∗ at level l + 1 scaled by the cost to sample
[17,26]:

lselected = argmax
k∈(0,...,l+1)

σ 2
red(k, x∗)
cost(k)2

(16)

Where the expected cost of nested sampling at level k is found by:

cost(k) =
k∑

i=0

costmean,i (17)

Calculation of the mean cost at level i requires the tracking of sampling costs per
level. Simulation time is the metric used to represent the cost of the method.
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2.6. Alternative EI reinterpolation procedure

The Expected Improvement (EI) criterion is used by the (Multi-fidelity) Efficient
Global Optimisation algorithm to select the next best location to sample to explore
the design space. In the presence of noise, we would reinterpolate the surrogate [7],
to ensure the EI converges to zero at sampled locations.

In our case however, we are in principle additionally involved with the extrapo-
lated points of the proposed method. The associated extrapolation variances express
the uncertainty of the extrapolation that should ideally remain informative even after
reinterpolation. The reinterpolation routine of Forrester et al. [7] would render this
information unused. Therefore, this section introduces a reinterpolation strategy that
can accommodate both information sources and has the added benefit of being a less
costly procedure by not requiring additional training steps. The procedure is given
by Algorithm 2. Algorithm 2 ensures that the next sampling location does not auto-
matically default to the maximum EI location, but occasionally samples the location
of the best extrapolation instead.

It does so either when the EI at the extrapolation location is higher than the max-
imum EI, or the difference between these two options normalised with the involved
maximum expected cost ratio is lower than the criterion εEI .

At the best extrapolation, the lower fidelities were already sampled and so the high
fidelity will be sampled next. The used cost ratio is therefore calculated as the cost
of the high fidelity over the minimal cost of sampling at the location of maximum
EI, which in this case is the cost of (nested) sampling the lower fidelities.

Algorithm 2 ensures that we do not sample the lower fidelities at infinitesimally
small intervals, but sometimes sample the higher fidelity to lower the actual non-
corrected Expected Improvement.

Compared to the original reinterpolation routine of Forrester et al. [7] the surrogate
does not have to be retrained. The routine of Algorithm 2 is thereby about half the
computational cost.

Algorithm 2 is in effect near identical to the original reinterpolation routine of
Forrester et al. [7] if there are no extrapolations present. The Expected Improvement
of samples is pushed to a maximum of 0. The primary difference is believed to be
found in the evaluation of the Kriging variance, between samples, since the variance
at the samples influences the process variance that is solved for during the hyperpa-
rameter optimisation. However, in that regard, the procedure proposed here should
be regarded as the more accurate method that is more true to the Kriging model.

2.7. Implementation details

The proposed method is dependent on accurate noise estimates to provide results
as desired. This observation involves some considerations in the method implemen-
tation:
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Algorithm 2 Alternative implicit EI reinterpolation procedure, fit for the proposed
method

1: Xsample ← the sampled high fidelity locations
2: Xextrapolation ← locations of the extrapolated high fidelity
3:

4: procedure EI_IMPLICIT_REINTERPOLATE(Xsample, Xextrapolation)
5: Retrieve EI of kriged means near best high-fidelity sample
6: xbest,sample, zbest,sample ← GET_BEST(Xsample)

7: zpred,sample, msepred,sample ← KRIGINGPREDICT(xbest,sample)

8: EIsample ← EI(zbest,sample, zpred,sample,
√

msepred,sample)

9:

10: xbest,extrapolation, zbest,extrapolation ← GET_BEST(Xextrapolation)

11: zpred,extrapolation, msepred,extrapolation ← KRIGINGPREDICT(xbest,extrapolation)

12: EIextrapolation ← EI(zbest,sample, zpred,extrapolation,
√

msepred,sample)

13:

14: xEImax , EImax ← FIND_BEST_EI()

15:

16: if EImax < εEI or xEImax ∈ Xsample then
17: break from loop

18:

19: Correct the EI with the sample EI
20: EImax,corrected = EImax − EIsample

21: EIextrapolation,corrected = EIextrapolation − EIsample

22:

23: if EImax,corrected < εEI and EIextrapolation,corrected < εEI then
24: break from loop

25:

26: cost_ratio ← cost(lvl2)
cost(lvl1)+cost(lvl0)

27: if (EImax,corrected − EIextrapolation,corrected)/cost_ratio � εEI then
28: Sample the high fidelity at xbest,extrapolation

29: else
30: Sample at xEImax

• The extrapolated high-fidelity surrogate should always be decoupled from the
noise estimates on the lower two fidelities. In the proposed method, the high fi-
delity ‘samples’ include extrapolated values, based on information of the lower
fidelities. Thereby the result of the proposed method determines the value of the
noise estimates it will use itself at the next timestep. This co-dependency would
instigate instability in the surrogate during the course of optimisation.

• Each fidelity level should be a single-fidelity surrogate. To see why this is, con-
sider that the multi-fidelity Kriging model of Bouhlel et al. and Gratiet and
Garnier [4,21] combines the fidelity levels and deducts a single process vari-
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ance σ̂ which is coupled to the regression parameter, while giving the higher
fidelity information prevalence over lower fidelity information sources. The
inter-dependent noise estimate of the multi-fidelity Kriging model of Gratiet
and Garnier [21] aids in getting the best estimate at the highest fidelity but
might not necessarily retrieve the best estimate for a lower fidelity in isolation,
especially when the MFK methodology is less applicable. For example, a low
σ̂ as might be indicated by higher-fidelity data will retrieve a higher noise esti-
mate if the process variance is in fact naturally higher at that lower fidelity level.
The proposed method benefits from unbiased noise estimates, and so each lower
fidelity should be a single-fidelity model.

• When using a reinterpolation routine for EI calculation, one should take care
that the reinterpolation does not affect the lower fidelities.

• It is beneficial to the proposed method to sample the lower fidelities at locations
directly around higher fidelity samples to get better noise estimates and thereby
a more stable Kriging mean. Without doing this, it might be that the extrapolated
surrogate is quite unstable during optimisation until an area in the design space
emerges that is more densely sampled. Doing the same does not provide an
advantage to the reference method [21,26], so rather than instigating an unfair
advantage, acquiring these additional lower fidelity samples is a disadvantage
in terms of costs for the proposed method.

Just as the proposed method benefits from unbiased noise estimates per fidelity level,
the same is true for the Kriging means that are used to extrapolate. The Kriging mean
should be regarded as the surrogate that is corrected for noise in the input data. This
is as well the reason why the extrapolation is based on the Kriging mean and not on
the original data, with a clear difference present in the performance of the proposed
method.

Code for the proposed method is available at https://github.com/robertwenink/
MFK-Extrapolation.

3. Design simulation setup

Realistic test scenarios where the data is acquired by means of CFD simulations
using the CFD solver described in Eijk and Wellens [40]. The design problem will
consist of only two actively controlled variables. This is due to three reasons:

• We are verifying a novel method using a CFD evaluation function fit for mar-
itime engineering purposes. Issues are harder to pinpoint for higher-dimensional
design problems.

• Visualisation of two-variable response surfaces is relatively straightforward and
less confusing compared to higher dimensional problems.

• The used CFD solver has been under development in 2D until now. Sensible
one-to-one 2D design parametrisations with more than two variables were not
found.

https://github.com/robertwenink/MFK-Extrapolation
https://github.com/robertwenink/MFK-Extrapolation
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Since our primary aim is to validate our proposed method, we will not consider
multi-objective or constrained formulations. Note that a 3D simulation tool can also
be used since the objective output per simulation remains a scalar, see Eq. (18). Fur-
thermore, the proposed method is applicable to higher dimensional design problems,
keeping in mind that the effectiveness of the proposed method is primarily dependent
on the validity of the main assumption.

In the following the test case and the objective function will be elaborated upon,
the parametrisation used to define one-to-one shape variations will be described, and,
finally, the filtering procedures to remove errors of numerical origin is discussed.

3.1. Case description

The in-house CFD solver that has been used is called EVA [40–42] and developed
with a focus on extreme fluid-structure interaction (FSI). EVA is a multiphase flow
solver based on the 2D Navier–Stokes equations for the motion of a mixed fluid.
The method uses a fixed staggered Cartesian grid on which the free-surface between
water and air is described using a geometric Volume-of-Fluid (VoF) method. The
interface is represented by piecewise linear line segments and transported using a
direction-split scheme.

Examples of extreme FSI are found when waves impact with structures [2,29,42,
44,45]. Note that when waves are concerned, simulations benefit from Generating
Absorbing Boundary Conditions [5,6], both in terms of accuracy and of computing
time. Slamming of an object onto a free water surface constitutes another type of
impact simulation, demonstrated by means of a falling cylinder on water in van der
Eijk and Wellens [40].

A well-known 2D test case for such impact simulations is the ‘free-falling wedge’
which in our case mimics the collision with water of a free-fall lifeboat: a rescue
vessel that drops off an offshore drilling platform into the sea in case of emergency.
After the rescue vessel slams the water, constituting the moment with the highest
vertical accelerations, flow separation and the generation of a cavity follows. EVA
[40] has been validated for the whole entry procedure.

The deformation capacity of the falling object itself, as in Bos and Wellens [3],
Xu and Wellens [47,48], is not taken into account, and the object is considered com-
pletely impermeable and not porous [44]. We will modify the scenario with a 2D
falling wedge to represent a single-objective optimisation problem in which we vary
the shape of the falling life boat’s nose or ‘bottom’ in the way that we have set up
the simulations.

The optimisation objective is to minimize the maximum acceleration of the wedge
as the main indicator for the immediate safety of its hypothetical passengers:

yopt = min
x∈X

(
max(ax)

)
(18)
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Here, ax denotes a time trace of accelerations, at location x within the full domain
X. The max operator is applied to the accelerations of the life boat in the simula-
tions, whereas the min operator is applied on all accelerations in all simulations, the
minimum of which is considered optimal.

Fixed parameters in this problem will be:

• All environmental constants, such as gravitational acceleration g = 9.81 m/s
and water density ρw = 1025 kg/m3.

• Main dimensions of the boat: the size in beam direction B = 3.4 m is the main
dimension that will lead to obstruction of the flow around the structure upon
impact with the free surface; the size in draft direction D = 4.3 m is the out-
of-plane dimension when the free-fall life boat is assumed to fall completely
vertically (high mass case). The length L = 12.6 m of the boat is the out-of-
plane dimension when evaluating the hypothetical scenario that the free-fall life
boat impacts the free surface bottom-first (low mass case).

• Mass or the loaded weight of the boat M = 15,816 kg
• The height of the boat’s bottom shape variations h = D/2 = 2.15 m.
• Design dropping height H = 36 m, equivalent to the frictionless free-fall impact

velocity v = 26.58 m/s (= 95.68 km/h).

All capitalized constants are based upon a real offshore free-fall boat.3

The mass will be varied between different optimisations (but fixed per optimi-
sation problem) since it is interesting to observe its effect. For instance, a vessel
with low mass and thus low specific weight compared to the water might benefit
from a more axe-shaped bottom, because buoyancy or added mass effects might de-
accelerate the vessel before the primary impact. On the contrary, a vessel with a high
mass and thus high specific weight would slow down much less and would benefit
from avoiding anything close to flat-plate impacts.

Furthermore, from a design perspective, it makes more sense to fix the mass than
for instance to fix the mass-buoyancy ratio or specific weight of the vessel. This is
because the main dimensions, required load capacity, and structural weight are more
or less already fixed.

We will consider the following two masses in these experiments, where one should
note that the 2D CFD solver EVA accepts a mass per meter:

• m = M = 15,816 kg/m. This scenario with high mass per meter represents
a more realistic scenario in which the lifeboat collides with the water with its
length perpendicular to the water’s surface.

• m = 15,816
12.6 = 1,255 kg/m. This scenario with a low mass per meter coincides

with the lifeboat colliding with the water over its full length at once, parallel
to the water’s surface. This is not necessarily a realistic scenario but is a case
variation that could be interesting to optimise nonetheless.

3https://www.palfingermarine.com/en/boats-and-davits/life-and-rescue-boats/free-fall-lifeboats#an-
chorslides_content_contentslides11_5; model: FF 1000 S M2; visited 20/06/2023.

https://www.palfingermarine.com/en/boats-and-davits/life-and-rescue-boats/free-fall-lifeboats#anchorslides_content_contentslides11_5
https://www.palfingermarine.com/en/boats-and-davits/life-and-rescue-boats/free-fall-lifeboats#anchorslides_content_contentslides11_5
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Since we have fixed the mass per design optimization in our experimental setup,
the optimization objective acceleration is proportional to the surface-integrated body
forces in the vertical y-direction.

3.2. NURBS parametrisation

The parameters which determine the shape of the wedge’s bottom spline are the
parameters that define the domain of the surrogate model. We will use Non-Uniform
Rational B-Splines (NURBS) to define this shape, see Piegl and Tiller [31] for ex-
tensive information. NURBS are implemented in the geomdl python package [1].

We impose some constraints on the shape endpoints:

• The angle of the spline at the bilge is constrained between 10 degrees (horizon-
tally inward) and 90 degrees (vertically down)

• The angle of the spline at the keel is constrained between 10 degrees (horizon-
tally outward) and 80 degrees (up).

Both horizontal 10-degree angle restrictions are in place to prevent situations too
close to flat-plate impacts, which are numerically hard to simulate. Further, we con-
sider an angle of 90 degrees vertically up at the keel to be unrealistic and not physi-
cally constructible and likewise restrict it to (90 − 10) = 80 degrees.

We will limit the dimensionality of the design problem to 2. Note that normally
by using NURBS, shapes such as the flare bow [50] can be created. Likewise, if we
do not impose topological constraints on the vertical location of the control points,
we can arrive at catamaran-like shapes. These would provide an interesting class of
shapes involving air entrapment. However, proper optimisation requires a one-to-one
shape parametrisation, meaning that each input x retrieves a unique shape. Simulta-
neously, we are limited to 2D shape variations due to the development status of
EVA [40]. In 2D, we did not succeed in attaining a one-to-one parametrisation when
including the above interesting variations while retaining the simpler but nonethe-
less important shape variations. Especially triangular bottom shapes were commonly
constructed by non-unique and completely different inputs. We choose to retain only
the simpler and more interpretable shape variations, defined purely by the angular
constraints above.

Because we are interested in the primary impact response and not necessarily in
any buoyancy effects after the bilge has submerged, we decrease the freeboard to
only 0.5 m to decrease the numerical domain size.

Given a NURBS shape parameterisation, a resulting body is exported to an im-
age. From this image, an SDF (Signed Distance Function) is created, providing the
shortest distances to the body boundary where negative values are inside the body
and positive values are outside the body. This SDF function is then used to project a
body-fraction field upon the simulation grid corresponding to the shape of the pro-
vided NURBS image. Lastly, based on this fraction field the body is reconstructed in
the grid using the Piecewise Linear Interface Calculation technique.

An example result of the mapping of a NURBS parameterisation to a reconstructed
body in-grid is provided in Fig. 2.
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Fig. 2. NURBS input image (a) and reconstructed output (b) for X = [06975, 09443].

3.3. Definition of the numerical grid and the fidelity levels

The definition and coarseness of the numerical grid directly influences the accu-
racy and costs of the simulation and thereby determine the effective fidelity level.
Therefore, first the grid definition is provided, followed by a description of how that
grid is refined to create the required fidelities.

The grid definition has to conform to some requirements or preferences:

• It has to be symmetric over the body, effectively meaning we require an even
number of grid cells for a body defined at the centre of the x-axis.

• In height and especially in the width, any grid-cell boundary cannot perfectly
overlap with a body boundary. In such a case, PLIC (Piecewise Linear Interface
Construction [49]) cannot reconstruct that body boundary, instigating numerical
problems. This is true for the definition of the body of water too. It suffices to
pick cell spacings that do not exactly divide the body’s main dimensions.

• To focus computational effort, the grid is defined such that the grid area that
contains the body is of a higher grid density than the surroundings where no
direct interactions between body and liquid occur. This area of grid refinement
should encompass the whole body from the beginning to the end of the sim-
ulation and be somewhat wider to accurately capture, for instance, generated
waves. Outside these defined bands of higher cell-density, the dimensional size
of each consecutive cell is stretched with a factor of 1.05 as compared to its
predecessor.

The standard grid definition in the computational domain resulting from these
considerations is given by Table 1.
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Table 1

Numerical domain size, the definition of the focussed grid area per dimension, and the corresponding
effective cell-spacing

Dimension Full domain size Focussed grid area definition Effective cell-spacing

From Until Total size Number of
grid-cells in band

x 17.0 m 6.5 m 10.5 m 4.0 m 44 dx = 0.09091 m

y 13.5 m 6.0 m 10.5 m 4.5 m 48 dy = 0.09375 m

Table 2

Characteristics of the focussed area in the simulation grid for a selection of refinement factors

Refinement factor 0.5 1 1.5 2 3 4

#cells in x-band 22 44 66 88 132 176

#cells in y-band 24 48 72 96 144 192

Total #cells in focus area 528 2112 4752 8448 19008 33792

dx within x-band 0.18182 0.09091 0.06061 0.04545 0.03030 0.02273

dy within y-band 0.20455 0.09375 0.06250 0.04688 0.03125 0.02344

The definition of ‘refined’ grids and fidelity levels are simple but important, so
will be provided separately here.

The refined grids or grid refinements adhere to the same rules as the standard grid
definition provided earlier. Of particular importance is that the refinement does not
break the grid symmetry around the rigid body. The standard grid definition provided
above is from hereon referred to as ‘refinement factor 1’.

A refinement factor 2 takes the standard grid definition (refinement factor 1) and
multiplies the number of cells within the focussed band of cells by a factor 2. In such
a way we would retrieve a number of cells within the focussed grid area as given in
Table 2.

The seemingly arbitrary usage of refinement steps of 0.5 originates from the fact
that the given base grid definition uses a grid coarseness at which the simulation
output seemed to be with reasonable levels of noise, provided an appropriate filtering
routine and a reasonable cost level. Therefore, this seemed a good medium fidelity
level, which is indexed with a 1 using 0-based indexing. The three fidelity levels
required by the proposed method could now be constructed using for instance the
refinement factors 0.5, 1 and 4.

Given this information, the refinement for the lower fidelity was already fixed
too, at l0 = 0.5, due to it being the only refinement below refinement level 1 that
ensures a symmetrical grid definition. Although having quite a coarse grid definition,
this implies we could better expect convergence as desired while simultaneously
providing us with challenging, noisy data.
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The refinements used to define the fidelities for all experiments are:

(1) l0 = 0.5
(2) l1 = 1
(3) l2 = 2

These refinement levels, based upon the constant low mass scenario, are conse-
quently applied regardless of what might be best for the other experimental scenarios.
The chosen refinement level of the high fidelity is primarily based on the computa-
tion time of a CFD run. A CFD run at the lowest fidelity is completed after 1 to 3
minutes, while for the medium fidelity, this is 5 to 9 minutes. At high fidelity, a CFD
run takes between 16 and 50 minutes,4 with the majority taking around 45 minutes
each. CFD simulations at any refinement level higher than 2 would easily surpass
a simulation time of an hour, which is deemed pragmatically infeasible during this
exploratory phase of research.

3.4. CFD solver signal filtering

Having described the procedures of mapping the NURBS shape definitions onto
the computational grid, we identify the need of filtering either the force signal or,
equivalently, the acceleration signal retrieved by EVA such that we can retrieve a
more stable objective value with a smaller error. Unfortunately, the force signal re-
trieved from EVA contains spikes, and these are of a purely numerical origin. Sources
of these peaks are for instance the pressure peaks as described in Kleefsman et al.
[16], or the PLIC reconstruction.

This custom composite filter consists of:

(1) Filter step 1: Forward + backward time-step compensated exponential mov-
ing average. In effect, force peaks of numerical origin, occurring during small
time steps, will have almost no influence on the result and thereby the next
step will be much more effective.

(2) Remove data outliers: removing data that deviates more than 8 per cent of the
data mean with respect to the result of step 1, then interpolate again.

(3) Filter step 2: Normal forward-backwards emw, with double the span to smooth
result.

Filter step 2 is not necessary but improved the smoothness and correctness of the
results, especially around where outliers were removed.

The results of this filtering procedure are visualized by means of a force signal
in Fig. 3. In the figure, a comparison is made between the original signal and some
other filters.

4The runtimes are highly dependent on the NURBS shape provided as input. For instance, in simula-
tions where the impact occurs with the (parts of) the body reconstruction comparatively perpendicular to
the water (flat-plate impact), the required timestep is much lower and thereby the simulation times longer.
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Fig. 3. Comparison of filters. Zoom of the signal for the best design of the high mass scenario with
m = 15,816 [kg/m]. The filtered result is more stable and not biased towards the force spikes that have
a purely numerical origin like the other filtering methods are. By disregarding these spikes, the filtered
result more accurately follows the actual trend of the data.

3.5. Considerations of the simulation setup

Results will be compared to the surrogate modelling method of Gratiet and Garnier
[21], extended with the level selection procedure of Meliani et al. [26] in order to be
used in MF-SBGO. As stated above, these methods will jointly be referred to as ‘the
reference method’. The reference method has a low-fidelity level and a high-fidelity
level. Note that the method proposed here, compared to the reference method, uses
an additional fidelity level. A lower fidelity level was added so that that becomes the
low-fidelity level in our proposed method. The original fidelity levels in the reference
method will hence be referred to as medium-fidelity and high-fidelity levels in the
proposed method. The other main difference with the reference method is that the
proposed method features the assumption of uniform proportional grid convergence
throughout the design space.

To provide a comprehensive comparison, the following metrics will be employed
to offer insights into both the surrogate and SBGO methodology in terms of the costs,
performance, and other underlying factors:

• The best found objective value, together with the corresponding location in the
parameter-space, given by the NURBS-parameters x0 and x1 that describe the
outer geometry of the falling wedge)

• Sampling costs, given as the total sampling cost and the high-fidelity sampling
cost.

• The number of high-fidelity and low-fidelity samples.
• Normalized RMSE of the optimisation’s solution with respect to a fully sam-

pled (initial) DoE at the highest fidelity, see Eq. (20). These are given for the
high-fidelity at the start and end of a simulation, and the medium fidelity at the
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end of the simulation. The medium fidelity is reported as a reference that the
(extrapolated) high-fidelity at the very least should outperform.

Performance is measured by comparing the predicted value with the real sampled
results by using the Root Mean Squared Error (RMSE) as done in Toal [39]:

RMSE =
√√√√1

n

n∑
i=1

(yei
− yci

)2. (19)

However, we prefer the normalised RMSE for better comparison between different
optimisation cases:

NRMSE = RMSE

max(ye) − min(ye)
(20)

The NRMSE will be reported as a percentage. RMSEs are calculated using the high-
fidelity ‘truth’ sampled on the full initial DoE ye, where subscript i indexes such that
high-fidelity samples used in the surrogate model are excluded to prevent a bias for
surrogate models that use a lot of high-fidelity samples.

Random number generators are used in many aspects of the code:

• The initial sampling LHS experimental design within the design space.
• The LHS used in the EI maximisation sub-routine.

All these random states are set to be constant or structurally varied using coun-
ters. Thereby, although semi-random noise is applied, the simulations themselves are
completely deterministic. That is, one can re-run the same simulation input and get
the same results. This does however not mean that the same input x always retrieves
the same result.

4. Results

4.1. Optimisation metrics and evaluation of the main assumption

Optimisation metrics for all the cases are given by Table 3, with the correspond-
ing best-optimised designs reported by Fig. 8. The table compares the outcomes for
the proposed optimisation method with the reference method [21,26] for the two
main scenarios with different masses. Variations of the methods are made by using a
different number, either 1 or 3, of starting high-fidelity samples.

For both the high mass (m = 15,816 [kg/m]) and the low mass (m = 1,255 [kg/m])
scenarios, the initial DoE has been fully sampled at each fidelity and represented in
Fig. 4 and Fig. 5. These figures also show the design that is near-optimal. For each of
the designs, the force as a function of time is provided at the three different fidelity
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Table 3

Optimisation metrics for the falling offshore lifeboat cases with the proposed method and the reference method [21,26]. The number after the used method
indicates the number of initial high-fidelity samples used. The best results per scenario and metric are highlighted in bold

Scenario Method Method weighing Objective Sampling cost [-] Number of
samples [-]

NRMSE [%]

Value [ms−2] Location [-] Total High High Low High (start) High (end) Medium (end)

Lifeboat m =
15,816 [kg/m]

Proposed 1 MFK/mf 63.59 (6.48 g) [0.598, 0.033] 23074.72 4331.08 2 26 6.4943 8.7362 6.1023

Proposed 3 - 63.59 (6.48 g) [0.598, 0.033] 34355.11 12105.3 6 34 6.6711 6.3117 6.6747

Proposed 3 MFK 62.15 (6.33 g) [0.568, 0.004] 35924.36 12827.66 6 36 1.9887 6.4761 6.1113

Reference 3 n.a. 63.59 (6.48 g) [0.598, 0.033] 24147.27 11006.35 5 22 3.2519 22.3208 6.1858

Lifeboat m =
1,255 [kg/m]

Proposed 1 MFK/mf 214.88 (21.9 g) [0.881, 0.521] 16007.25 1960.58 1 24 5.2116 5.2116 8.0242

Proposed 3 MFK 214.88 (21.9 g) [0.881, 0.521] 22768.63 6558.09 3 28 5.4931 5.4931 8.6596

Reference 3 n.a. 214.88 (21.9 g) [0.881, 0.521] 16667.21 7441.17 4 21 3.7576 38.3085 9.8313
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Fig. 4. Convergence for the falling wedge experiment with m = 15,816 [kg/m] on the initial DoE of
size 20 and over the refinement levels 0.5, 1 and 2. The black line plots the optimisation objective over
the fidelity levels while the coloured lines provide the full CFD simulation time traces. The design for
each NURBS parameterisation x is shown in the background. The design at x = [0.5982, 0.0332] is
near-optimal.

levels so that it can be investigated how the designs interact with the water, and what
the effect of grid refinement is. Although the optimisations themselves do not have
access to the full high-fidelity level, these plots provide context to the optimised
designs and insight into the overall convergence behaviour of EVA and the problem
at hand.

The proposed method relies on the convergence of the objective value over fidelity
levels – as stated in the main assumption. This convergence was assumed to be uni-
form across the design space. The validity of this assumption is inspected before
analysing the optimisation results. When we look at Fig. 4 and Fig. 5 it is seen that
there is the anticipated convergence at badly performing designs (large acceleration),
but almost no convergence at well-performing designs (low acceleration). The obser-
vation is that CFD simulations near the optimum design will encounter less strenuous
circumstances with lower forces, pressures, fluid velocities and accelerations present.
Because the flow variables for these designs have lower values overall near the op-
timum designs, good estimates of these flow variables are already achieved at lower
grid resolution. Therefore, we observe less convergence of the objective value for
better designs.
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Fig. 5. Convergence for the falling wedge experiment with m = 1,255 [kg/m] on the initial DoE of size
20 and over the refinement levels 0.5, 1 and 2. The black line plots the optimisation objective over the
fidelity levels while the coloured lines provide the full CFD simulation time traces. The design for each
NURBS parameterisation x is shown in the background. The design at x = [0.8809, 0.5214] turns out to
be ‘optimal’, i.e. causes the algorithm to stop because the stopping criteria have been met.

4.2. High mass case and the low mass case

The end-states of the surrogate of the proposed method and the surrogate of the
reference method [21,26] are plotted and visually compared to the ‘truth’ surrogate
that is based on a fully sampled DoE at the high-fidelity in Fig. 6 for the high mass
case with m = 15,816 [kg/m]. Figure 7 shows the same for the low mass case with
m = 1,255 [kg/m].

Figure 6 reveals the following for the high mass case. In testing the method weigh-
ing procedure, the medium fidelity is not used if the MFK solution is available, which
is from 3 starting high fidelity samples and on. The problem with using the medium
fidelity as the alternative surrogate is that it is not principally a solution interpolating
with the high-fidelity. Although the high fidelity is forcibly added and there is in this
case typically barely any difference between the high and medium fidelity in areas
where the proposed method does not work well and so method weighing is used,
differences over short distances could be relatively large and thus noise estimates
overestimated.
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Fig. 6. Visualization at the optimisation end of the high mass case with m = 15,816 [kg/m]. On the left:
the proposed method with 3 starting high-fidelity samples + MFK optimisation that was able to find a
better design than all other setups. On the right: the reference method, which ends with a high NRMSE
due to a wrongly build trend model for the additive differences. More high-fidelity samples in the initial
DoE might decrease the issue.

Fig. 7. Visualization at the optimisation end of the low mass case with m = 1,255 [kg/m]. On the left:
the proposed method with 1 starting high-fidelity sample + MFK optimisation that has all the best cost
statistics and the best ending NRMSE. On the right: the reference method, which like the high mass case
ends with a high NRMSE.

For the case where instead the surrogate modelling method of Gratiet and Gar-
nier [21] provides the alternative surrogate, we are ending with a higher NRMSE,
similar to the experiments with the reference method [21,26], even though starting
with a very accurate surrogate. When comparing the time traces of the NRMSE to-
gether with the weighing variables wi over time, we observe that as we sample more
high-fidelity samples, there is a heightened probability of hitting ‘no convergence’
areas and thus likely falling back to the alternative method. At the same time, the
reference surrogate provides increasingly bad results when sampling the area near
the optimum. This was not expected given a Pearson correlation of 0.990 which nor-
mally implies the reference is effective [39].
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Fig. 8. Best results of the wedge optimisations with (a) constant low mass (b) constant high mass. Next to
the found optimal shape, the figures provide the body forces in the y-direction for the original acceleration
signals and the signals after filtering. Although we minimise the maximum acceleration, the body forces in
the y-direction are given because 1) constant body masses are used and so the translation to acceleration is
the same for each point in the design space, and 2) this provides insight into how the body mass influences
the involved forces whereas Tab. 3 does not.

Continuing on this, the simulation start of the proposed method with MFK as the
alternative surrogate knows a very low NRMSE. This coincides with the reference
method having good accuracy at the start too. The proposed method already applies
method weighing at the simulation start, and it seems we retrieve a result that takes
the best of both worlds. On top of that, this is the only optimisation run that retrieves
a better design. This shows the idea of method weighing can be beneficial.

Figure 8a shows the force on the optimal high mass case design as a function of
time, and the optimal design itself. Contrary to expectations, the bottom end of the
design is somewhat blunt, starting with a low gradient near the nose, after which
the gradient of the cross-section increases before it becomes lower near the sides.
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Considering the hydrodynamics of water jet formation and jet seperation from the
sides of the wedge, that is associated with the force on the wedge becoming lower,
this design makes perfect sense: the design tries to avoid a single high force peak
by postponing jet separation for as long as possible with a more constant force over
time as the outcome.

The body forces of the best-optimised low mass design, given by Fig. 8b, are seen
to be stable around the maximum value for most of the impact time, which indicates
this is a very good design where we cannot expect to gain more by reducing force
peaks. The design maintains a constant deadrise for most of the height of the bottom
before tapering off to a more horizontal end at the chine. The peak of the low mass
case force is nearly an order of magnitude lower than the high mass case force peak.

While interpreting the objective values of the low mass scenario, one should con-
sider that due to the 2D nature of EVA used the wedge or ‘lifeboat’ effectively drops
onto the body of water over its full length at once. This results in much higher forces
and accelerations compared to the high mass scenario of m = 15,816 [kg/m]. Again,
as with the high-mass case, there is low to no convergence around the optimum de-
sign.

4.3. Cost-efficiency

The objective of the proposed method is also to lower the costs of building an
accurate surrogate and optimise using it, by lowering the required number of samples
at the expensive high fidelity. To assess if successful, Table 3 considers the following
main metrics:

• Surrogate accuracy, given by the NRMSE of Eq. (20)
• Sampling cost

For the sampling cost, it should be taken into account that the ‘low’ fidelity in
Table 3 consists of only the medium fidelity for the reference method [21,26] and
both the low- and medium-fidelity for the proposed method. Next to this, to improve
the proposed method’s stability, extra samples around the high-fidelity samples are
acquired to improve the initial noise estimates per fidelity level. Therefore, any gains
by the proposed method at the high fidelity need to offset the sampling costs of the
complete lowest fidelity to perform better than the reference method. The proposed
method is able to do this for the simulations starting with a single high-fidelity sam-
ple.

In terms of surrogate accuracy expressed in the NRMSE, the proposed method
gives comparable results to the reference method [21,26], but cannot be said to per-
form better. It is found to be more stable during the course of EGO optimisation.
Given the nature of the problem, the reference seems to need more high-fidelity
samples in the initial surrogate to perform well.

Because of the instability of the reference method and the corresponding upward
parabolic surrogate, the reference might decide earlier than the proposed method to
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stop the optimisation based on the Expected Improvement criterion. The reference
method might therefore seem to be more efficient in costs than it deserves in these
scenarios.

As for the optimisation result, only the proposed method has been able to find a
better design, for the high-mass case. More investigation is required to determine
whether this is due to a structural strength of the method.

5. Conclusions

The main research objective was to leverage the grid convergence property of
CFD solvers to reduce the number of expensive high-fidelity samples required for
an accurate (multi-fidelity) Kriging surrogate, thereby accelerating surrogate-based
global design optimisation in maritime engineering.

A multi-fidelity method was proposed and tested using computational experi-
ments. The proposed method uses three fidelity levels and assumes that the dif-
ferences between them are proportional across the design space to extrapolate the
high-fidelity data from one point in the design space to another. It then uses the
statistics and correlations of the underlying Kriging models to balance or correct the
surrogate. An adapted sequential sampling and fidelity-level selection procedure was
formulated such that the proposed surrogate can be used in multi-fidelity surrogate-
based global design optimisation (MF-SBGO).

To investigate the possible usefulness of the proposed method to SBGO in the
field of maritime engineering, the proposed method was tested by optimising the
shape of two variations of a falling wedge case as an example of slamming, of which
the relevance to maritime engineering is explained by Eijk and Wellens [40], using
their CFD solver EVA that is tailored to the problem. The performed optimisations
found two different designs of the bottom shape depending on the specific weight
of the wedge, where the interplay of hydrodynamic effects resulted in non-trivial
designs. In many of the considered cases, the optimal design was also found with
fewer high-fidelity samples than the reference method [21,26]. However, the cost of
finding the optimal design by means of the proposed method was not lower than that
of the reference method in all of the cases. The main explanation is that the grid con-
vergence of EVA was not uniform in magnitude over the design space. Near optimal
designs, due to how EVA represents the hydrodynamics of slamming work, good
predictions of the wedge’s acceleration were already reached at the low-resolutions,
low-fidelity levels, so that information of the grid convergence obtained from other
samples farther away from the optimum design was less beneficial than originally
assumed. Future work will take this property about grid convergence near optimal
designs into account.
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