
Mathematical Programming
https://doi.org/10.1007/s10107-024-02130-y

FULL LENGTH PAPER

Series B

Machine learning augmented branch and bound for mixed
integer linear programming

Lara Scavuzzo1 · Karen Aardal1 · Andrea Lodi2 · Neil Yorke-Smith1

Received: 15 December 2023 / Accepted: 24 July 2024
© The Author(s) 2024

Abstract
Mixed Integer Linear Programming (MILP) is a pillar of mathematical optimization
that offers a powerful modeling language for a wide range of applications. The main
engine for solvingMILPs is the branch-and-bound algorithm. Adding to the enormous
algorithmic progress in MILP solving of the past decades, in more recent years there
has been an explosive development in the use of machine learning for enhancing
all main tasks involved in the branch-and-bound algorithm. These include primal
heuristics, branching, cuttingplanes, node selection and solver configurationdecisions.
This article presents a survey of such approaches, addressing the vision of integration
of machine learning and mathematical optimization as complementary technologies,
and how this integration can benefit MILP solving. In particular, we give detailed
attention to machine learning algorithms that automatically optimize some metric
of branch-and-bound efficiency. We also address appropriate MILP representations,
benchmarks and software tools used in the context of applying learning algorithms.

Keywords Mixed integer linear programming · Branch and bound · Machine
learning · Metrics · Benchmarks

Mathematics Subject Classification 90C11 · 68T05 · 90C57

This work was partially supported by OPTIMAL, a project funded by the Dutch Research Council
(NWO) under grant OCENW.GROOT.2019.015; and by TAILOR, a project funded by EU Horizon 2020
research and innovation programme under grant 952215.

B Lara Scavuzzo
L.V.ScavuzzoMontana@tudelft.nl

Karen Aardal
k.i.aardal@tudelft.nl

Andrea Lodi
andrea.lodi@cornell.edu

Neil Yorke-Smith
n.yorke-smith@tudelft.nl

1 Delft University of Technology, Delft, The Netherlands

2 Jacobs Technion-Cornell Institute, Cornell Tech and Technion–IIT, New York, NY, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-024-02130-y&domain=pdf
http://orcid.org/0000-0003-4144-2975

L. Scavuzzo et al.

1 Introduction

Mixed Integer Linear Programming (MILP) is a pillar of the field of mathematical
optimization. Its widespread use covers multiple application domains such as trans-
portation [14], production planning [85] and energy systems [102]. The theory of
modelling and solving MILPs is rich, and has fruitful intersections with several areas
of mathematics and computer science [79, 91, 103]. In practice, modernMILP solvers,
which all use the tree search method branch and bound (B&B) as the main component,
are of very high quality and can solve, to provable optimality, problem instances that
were considered as completely out of reach only a decade ago. This progress is to a
large extent due to remarkable algorithmic advances in the past two decades (see, e.g.,
Achterberg and Wunderling [2] for an overview).

Continuing these waves of algorithmic progress is key to unlocking new applica-
tion domains and larger scales, as many areas of potential improvement still exist.
For example, several algorithmic decisions that must be made within B&B are made
by heuristic rules that have been developed and tuned via computational studies to
yield good average performance. For some of these decisions we know that more suc-
cessful heuristics exist, which are, however, too computationally expensive. Recently,
MachineLearning (ML)methodologies have been explored as a potential tool tomimic
such time-consuming heuristics for improved performance. This strategy is particu-
larly promising given the increase in data availability, not only in terms of problem
instances but also data collected by the solver during the solution process.

This survey addresses precisely the perspective of enhancing key components of
B&B by ML so as to integrate machine learning and mathematical optimization as
complementary technologies, not as competing ones. We note that collecting data
about the solving process and exploiting it to make informed decisions within the
algorithm is standard practice in MILP solving. We survey methods that take this idea
one step further, in the sense that the mapping between the collected data and the
decision is not fixed a priori by an expert, but instead automatically constructed by
‘learning algorithms’ that try to optimize a predefined metric of efficiency.

ScopeThe survey byBengio et al. [15] presents thefirst developments of usingmachine
learning in the context of optimization, with a focus on combinatorial optimization.
Our survey is zooming in on theB&B framework in anMILP solver for solving a (class
of) MILP. The methods we discuss do not assume any particular problem structure
a priori, in the sense that the structure is instead learned. Our focus is on using ML
for elements of B&B where choices are being made, such as how to navigate the
search tree, how to quickly find good feasible solutions, and how to improve linear
relaxations. We do not cover solution methods that replace B&B, such as end-to-end
ML approaches. By restricting the attention to the MILP context and its integration
with ML, we are able to make a significant step forward in the characterization of
choices like the problem representation and of specific aspects like benchmarks and
software.

Readership This survey is intended first of all for readers with some background in
mathematical programming, and possibly with more limited background in machine

123

Machine learning augmented branch and bound…

learning. We aim for it to be accessible to those interested in how ML can aid aspects
of MILP solvers. Highly detailed knowledge of how contemporary MILP solvers
function is not required. We assume some familiarity with B&B.

OutlineThe remainder of this introduction recalls the definition of anMILP, overviews
the main components of a B&B-based MILP solver and presents classical evaluation
metrics that will be useful. Section2 introduces themain concepts ofmachine learning,
with attention to those found most useful for B&B. Section3 proceeds to survey the
tasks in MILP solving where ML can be useful. Section4 concerns representations
of MILP, and in Sect. 5 rounds out the survey by collating instance benchmarks and
software used in the literature. Somefinal remarks and perspectives are given in Sect. 6.

1.1 Mixed integer linear programming

We follow the notation from Wolsey [103], to which the reader is referred to for a
general introduction to MILP. We are given a matrix A ∈ Qm×n , vectors c ∈ Qn and
b ∈ Qm , and a partition (A,B, C) of the variable index set {1, ..., n}. A Mixed Integer
Linear Program is the problem of finding

z∗ = min cT x

subject to Ax ≥ b,

x j ∈ Z≥0 ∀ j ∈ A,

x j ∈ {0, 1} ∀ j ∈ B,

x j ≥ 0 ∀ j ∈ C.

(1)

We write I := A∪B to denote the set of integer and binary variables. An MILP is
said to be mixed binary if A = ∅ and binary if A = C = ∅. Relaxing the integrality
constraints for variables in I yields a Linear Program (LP), known as the LP relaxation
of the MILP.

1.2 MILP solvers

Modern exact solvers for MILP implement the (LP-based) branch-and-bound algo-
rithm. In our survey, we will stretch the concept of an algorithm to also allow for
inclusion of not precisely defined subroutines, such as ‘pick next search node to inves-
tigate’. As will become apparent, B&B contains many such subroutines that need to
be described in a precise way in order to make it an implementable algorithm.

Notice that throughout the article, we use the term ‘MILP solver’ rather than the,
sometimes more common, ‘MIP solver’, the reason being that we especially focus on
the learning developed for solving mixed integer linear programs, not including the
nonlinear case. Nevertheless, most of the technology is used in the solvers for both
linear and nonlinear programs. Notably, ML has also been applied to the nonlinear
case (see, e.g., [21]).

123

L. Scavuzzo et al.

B&B systematically explores the feasible region by partitioning it into sub-MILPs
and obtaining bounds via their LP relaxations, which serve as a mechanism to rule
out suboptimal regions. This partitioning scheme can be represented by a search tree,
where each node represents a sub-MILP.We use the notation zLPi to denote the optimal
value to the LP relaxation of node i , and we denote xLPi its optimal solution. At any
point during the search, the value of an integer feasible solution provides an upper
bound on z∗. The best, i.e., smallest, known upper bound value is called primal bound,
and we denote it by z̄. Similarly, the bounds zLPi of unprocessed nodes can be used
to obtain a lower bound. In particular, z := mini :i unprocessed{zLPi } provides a lower
bound on z∗ and is called dual bound. The B&B algorithm ends when all nodes have
been processed, when z̄ = z, or when another termination condition (e.g., timeout)
applies.

These are the basic principles of the B&B algorithm as implemented in commercial
solvers, such asCPLEX [60],Gurobi [52] orXpress [38], aswell as in academic solvers
like SCIP [43]. In practice, the execution of the B&B algorithm revolves around some
key solver components that handle the different aspects of the solving process. The
most important components are preprocessing, the branching rule, the cutmanagement
and the primal heuristics.

Preprocessing Most solvers implement a number of procedures that try to reduce
the size of the problem and its difficulty, for example by identifying substructures
or ways to strengthen the LP relaxation. These routines have been shown to be of
crucial importance in speeding the solution process. For an overview of thesemethods,
together with a computational analysis of their effectiveness see [5].

Branching and node selection The procedure of dividing the feasible region is called
branching. There is a choice to be made with respect to which disjunction is used for
branching. The standard1 is to use single variable disjunctions of the type

x j ≤ 	x LPj
 ∨ x j ≥ �x LPj
,

for some j ∈ I such that x LPj /∈ Z. Still, the solution to the LP relaxation is likely
to violate more than one integrality constraint, which means there is more than one
candidate variable for branching. The so-called branching rule is the strategy that
the solver uses to select a variable for branching. Computational studies have shown
that this choice has a critical impact on solver performance [2]. Another important
decision, though less critical in terms of solver performance, is node selection, where
the question is which unprocessed B&B node to consider next.

Cutting planes The LP relaxation can be strengthened by adding valid linear inequal-
ities. These are inequalities that cut off parts of the relaxation but do not exclude any
integer feasible solutions. This can, in principle, be done in any node of the B&B
tree representing a non-empty feasible region, yet it is standard practice to use cut-
ting planes more heavily, or even exclusively, at the root node. A B&B routine where

1 More generally, it is also possible to split the problem using multi-variable disjunctions (see, e.g., Kara-
manov and Cornuéjols [61]).

123

Machine learning augmented branch and bound…

cutting planes are added in other nodes than the root node is typically referred to as
branch-and-cut [82]. There is a vast amount of knowledge on cutting planes (or cuts,
for short) for MILP (see, e.g., [29, 79, 103]) and most solvers implement a plethora
of efficient separation2 algorithms. The wide availability of cuts can create an issue:
while the addition of cuts strengthens the local relaxation, a large amount of cuts can
slow down LP solving and lead to numerical instability. For this reason, a judicious cut
management strategy [9, 31, 101], which includes separation, selection and removal,
is of utmost importance.

Primal heuristics We use the term primal heuristics to refer to routines that try to
find feasible solutions in a short amount of time without a success guarantee of doing
so. Relying solely on integer feasible LP relaxations to find solutions is most often
inefficient. Primal heuristics can provide good solutions early on and help bring down
the primal bound z̄ more effectively. As with cutting planes, primal heuristics can be
used in any node of the tree if desired.

1.3 Evaluationmetrics for MILP

In this section, we define a number of metrics that quantify the progress of a branch-
and-bound run.We extend the notation just presented in Sect. 1.1 with a variable t ≥ 0
that represents solving time.We can then define the primal bound z̄(t) : [0, Tmax] �→ R

and the dual bound z(t) : [0, Tmax] �→ R as functions of time. We define z̄(t) to be
infinity if no integer feasible solution has yet been found at time t . We alsomake use of
a small tolerance value ε that is introduced for numerical stability, typically ε = 10−6.
Notice that many of these metrics make use of the optimal solution value z∗ and must
therefore be calculated a posteriori, once the instance is solved.

Optimality gap

We define the optimality gap as

g(t) :=
{
1 if no solution has been found yet or z̄(t) · z(t) < 0,

|z̄(t)−z(t)|
max{|z̄(t)|,|z(t)|,ε} otherwise.

(2)

Alternatively, one can track the integrality gap defined as g′(t) = |z∗ − z(t)|.
Primal gap and integral

For a given feasible solution x, we define the primal gap γ (x) as

γ (x) :=
⎧⎨
⎩
1 if z∗ · cT x < 0,

|z∗−cT x|
max{|z∗|,|cT x|,ε} otherwise.

(3)

2 The term separation refers to the fact that a cutting plane has an effect when it separates a fractional
solution of an LP relaxation from the convex hull of (mixed) integer feasible solutions.

123

L. Scavuzzo et al.

We can define a primal gap function that maps the solving time to the primal gap
of the best solution found up until that point. In particular, denoting by x(t) the best
solution found at time t , we define

p(t) :=
{
1 if no solution has been found at time t ,

γ (x(t)) otherwise.
(4)

The primal integral [16] of a process with time limit Tmax > 0 is defined as

P(Tmax) :=
∫ Tmax

0
p(t)dt . (5)

An extension of the primal integral is the confined primal integral [17] which
integrates over an exponentially dampened primal gap function pα(t) = p(t)et/α for
some α < 0. This puts emphasis on the early part of the solution process and avoids
a high dependence on the chosen time limit.

Primal-dual integral

One can extend the concept of primal integral to also account for improvements in
the dual bound. For this purpose, we integrate over the optimality gap instead of the
primal gap, to obtain

PD(Tmax) :=
∫ Tmax

0
g(t)dt . (6)

2 A brief introduction tomachine learning

This section provides a brief introduction to the key concepts of machine learning
that are necessary in order to follow this survey. For a more detailed introduction to
machine learning we refer to Mitchell [77].

We are interested in the problem of constructing a mapping from some input data
to a desired output space. Let X be the input data space and let Y be the output space.
It is common to refer to X as the feature space, as it basically represents a set of
descriptors of the data samples. The output can be, for example, a prediction based
on the input data. The mapping will be constructed by choosing among a family of
parameterized functions f (·, θ) : X → Y with parameters θ ∈ Θ . In short, the
objective is to optimize the behaviour of the mapping f (·, θ) by carefully tuning the
parameters, based on sampled observations and a progress metric of choice.

To formalize this, we follow standard practices in machine learning and distinguish
the following two settings.

Supervised learning The learner has access to a finite collection of pairs
{(Xi ,Yi)}Ni=1, where Xi ∈ X and Yi ∈ Y . Here, Yi is the desired output to input
Xi . It is common to refer to Yi as the ground truth or label. The goal is to minimize
the loss function l : Y × Y �→ R, a metric that represents the dissimilarity between

123

Machine learning augmented branch and bound…

the prediction and the desired output. An example is the mean square error loss (MSE)
1
N

∑N
i=1

(
f (Xi , θ) − Yi

)2
. Since the true sample distribution is unknown, the loss is

minimized with respect to the observed samples

minimize
θ∈Θ

N∑
i=1

l(Yi , f (Xi , θ)).

Reinforcement learning Reinforcement learning (RL) is defined in the context of
sequential decision making, where actions have long-term consequences and the opti-
mal action is either unknown or too expensive to compute. The learning agent has no
access to the ground truth. This methodology is formalized under the framework of
Markov Decision Processes (MDPs), see Fig. 1 for a diagram summarizing MDPs. In
an MDP, an agent interacts with an environment. The environment has an associated
state representing its internal configuration. We denote the state space S. The agent
acts on the environment by choosing an action from the action spaceA using a policy
π : S �→ A. The agent’s action changes the state of the environment, which corre-
sponds to the transition to a new state. The transitioning mechanism is unknown to
the agent.

Apart from the environment’s state, the agent can observe a reward function. We
consider the episodic case, where this interaction between agent and environment
happens sequentially in discrete time-steps until a terminal state is reached and the
interaction ends. A realization of such agent-environment interaction is called trajec-
tory

τ := (S0, A0, R1, . . . , ST−1, AT−1, RT , ST),

where T denotes the episode length. The goal of the agent is to find a policy that
maximizes the expected cumulative reward, known as the value function and formally
defined as

Vπ := Eτ

[T∑
t=1

γ t−1Rt

]
, (7)

where γ ∈ [0, 1] is the discount factor. This parameter controls the greediness of
the policy: for γ close to zero, the agent will prioritize obtaining immediate rewards,
whereas for γ close to one the agent is encouraged to follow a strategy that pays off
in the long term. There is a variety of RL methodologies (see, e.g., [92]) that provide
ways to train a parametrized function π(s, θ) with the goal of maximizing Vπ . Notice
that the trajectory distribution depends both on the agent’s policy and the unknown
transitionmechanism of the environment. For this reason, RL algorithms use trajectory
sampling as a way to estimate this expectation. Note that −Vπ can be seen as a loss
function.

TheMDP formulation can also be used in a supervised learning setting. In this case,
the reward signal is substituted by an expert that tells the agent what is the optimal
action. The expert is typically expensive to query, and for this reason we want the
agent to learn a policy that imitates the expert, but at a lower cost. This methodology
is known as imitation learning.

123

L. Scavuzzo et al.

Fig. 1 Markov decision process

2.1 Mapping features to predictions

A fundamental step in the design of a ML scheme is the choice of function space
parameterized by θ . This is commonly known as the architecture, and it is indepen-
dent of the choice of learning methodology. Modern machine learning favors neural
networks as the computational representation and mechanism of f . A simple form of
neural network is the feed-forward neural network that consists of a series of linear
transformations, each followed by a non-linear transformation called an activation
function.

Definition 1 (Feed-forward neural network) Let X ∈ Rd be the input data and let dL

be the desired output dimension. An L-layer feed-forward neural network is a function
f : Rd �→ RdL

that defines a mapping from X to aL ∈ RdL
through the recursive

relation
zl = Wlal−1 + bl

al = σ(zl)

for l = 1, . . . , L , where

– a0 = X , d0 = d,
– Wl ∈ Rdl×dl−1

and bl ∈ Rdl are learnable parameters, and
– σ is the activation function.

Some common activation functions are the Rectified Linear Unit (ReLU) or the
sigmoid function, defined, respectively, as

σReLu(x) = max(0, x),

σs(x) = 1

1 + e−x
.

Notice that these functions are applied componentwise.
Another prominent architecture is the graph neural network (GNN) that will be

of particular interest to the discussion in Sect. 4. Consider an undirected graph G =
(V , E) with vertex set V and edge set E . For a node v ∈ V , we denote N (v) ⊆ V the
set of neighbors of v.

123

Machine learning augmented branch and bound…

Fig. 2 Embedding computationwith aGraphNeuralNetwork.Here,we use the abbreviation ξ tv for ξ
t (G, v).

To update the embedding ξ tv of node v at time t , the embeddings of neighboring nodes are added and then
combined with the current embedding using the comb function. The result is ξ t+1

v

Definition 2 (Graph embedding) A (d-dimensional) graph embedding ξ is a function
that takes in a graph G = (V , E) and a node v ∈ V and returns an element ξ(G, v) ∈
Rd .

Definition 3 (Graph neural network) AGraph Neural Network is a function that takes
as input a graph G = (V , E) and an initial embedding ξ0 and defines a recursive
embedding ξ t over the vertices of G. This function is characterized by

– A combination function comb: R2d → Rd , and
– An update rule ξ t+1(G, v) = comb

(
ξ t (G, v),

∑
u∈N (v) ξ t (G, u)

)
.

Figure2 depicts one iteration of this recursive embeddingmechanism. It is common
to refer to a single iteration as a message-passing operation. A possible combination
function is a feed-forward neural network over the two concatenated vectors. We can
extend graph embeddings to edges. This is, for e ∈ E , we can define ξ(G, e) ∈ Rd .
In the presence of edge embeddings, we can redefine a GNN update rule as

ξ t+1(G, v) = comb

⎛
⎝ξ t (G, v),

∑
u∈N (v)

aggr
(
ξ t (G, u), ξ(G, {u, v}))

⎞
⎠ (8)

with an aggregation function aggr: R2d → Rd that handles the combination of node
and edge embeddings. An example of aggregation function is a simple component-
wise sum.

2.2 Elements of the learning process

The learning process is itself one of (inexact) optimization, termed training.

Optimization algorithmsThegoal of the trainingprocess is to optimize the behaviour of
the mapping f (·, θ) over the parameter spaceΘ with respect to the loss function. This
is done with algorithms for continuous non-convex optimization, which take gradient

123

L. Scavuzzo et al.

descent as their base. Some examples of commonly-used algorithms are AdaGrad [35]
or Adam [67]. For reinforcement learning, the situation is more complex, in the sense
that several learning paradigms are available for approximating the value function and
learning the optimal policy.3

Hyper-parameters There is a number of additional parameters that influence the learn-
ing process that are not part of the parameters θ to be learned. These meta-level
parameters are called hyper-parameters. Examples of hyper-parameters are the num-
ber of iterations of the optimization algorithm, the learning rate, the size of the learned
function, etc. Tools exist to automatically tune hyper-parameters given a validation
dataset (see below).

Train, validation and test datasets The data used to tune the parameters of mapping
f is called the training data. The data used to estimate the performance of f in an
unbiased way, and to tune the hyper-parameters, is called the validation data. Finally,
the data used to evaluate the final trained and optimised mapping is called the test set.
These sets must be disjoint.

Data collection The learner makes use of the available training data to improve its
behaviour. This data can be gathered all at once during an initial data collection phase,
before training starts. Alternatively, several data collection and training steps can be
run in an alternating fashion.

OverfittingWe say a learned model suffers from overfitting when the performance on
the training set is distinctively better than the performance on the test set. In other
words, the model is unable to generalise to data unseen during the training phase.
This phenomenon occurs when the chosen model is too large (in terms of number of
parameters) for the task, or the amount of relevant data is too limited for the size of
the model being learned. See Goodfellow et al. [48] for a discussion of methods to
avoid overfitting.

Online versus offline learning Whenever we can distinguish separate training and
execution phases we speak of offline learning. That is, in offline learning, we perform
the data collection and learning as a separate, preliminary, once and for all process.
After that, the learned function is fixed and used without further tuning. This training
phase can be computationally costly but this cost is not reflected in the execution
time (often called inference time) of the algorithm, which is typically the metric of
interest to the end user. In fact, this can be seen as doing the heavy work upfront while
alleviating the effort at the moment of execution.

In contrast, in an online learning setting, data becomes available during execution.
Learning must therefore happen dynamically as each data sample becomes available,
and in parallel to themain process. This has the great advantage of generating a function
that is highly adaptive. On the other hand, it entails adding the cost of learning to the
cost of execution and further there is usually less available data.

3 A general discussion of those paradigms is outside the scope of the article and special cases will be
discussed while surveying specific results from the literature, see Sect. 3.

123

Machine learning augmented branch and bound…

3 Learning tasks

So far, we have introduced the elements of the B&B algorithm for MILP, and intro-
duced general terminology in machine learning. This section presents different ways
to formulate a learning task within the B&B algorithm. We split this discussion by
considering each major solver component separately.

Before getting into the details, two considerations are required. First, throughout
the section we will use the symbol X to abstractly denote a representation of an MILP
instance. This representation may include data coming from the problem description
(such as in Eq.1) and from the B&B process. Section4 discusses, in more detail,
approaches to build such a representation. Second, it is important to highlight that
the learning tasks that we describe next might be associated with different levels of
required generalization. More precisely, the ML models are often trained on data
belonging to MILP instances in the same class, for example, set covering, knapsack,
etc. In other words, the characteristics of the constraint matrix in (1) are leveraged
to obtain accurate predictions, so the generalization power of the resulting models is
generally restricted to that specific MILP class used for training. However, we will
also review cases in which learning happens instance by instance or extends outside of
a known MILP distribution. We will highlight these differences throughout the entire
review of the learning tasks.

3.1 Primal heuristics

Primal heuristics play a crucial role in quickly finding feasible solutions and conse-
quently improving the primal bound z̄ in the early stages of the solve. In the context of
primal heuristics, ML techniques can be of interest to leverage common structures in
the instances. A number of methodologies have been proposed for this purpose (Table
1). Conceptually, they can be split into three main approaches: (a) guiding a heuris-
tic search with a starting predicted solution, (b) solution improvement via a learned
neighborhood selection criterion, and (c) learning a schedule to pre-existing heuristic
routines. These methodologies are summarized in Fig. 3 and will be discussed in more
detail in the following. At the end of the section, Table 2 presents a summary of the
reviewed work and their main characteristics.

An important class of primal heuristics are the so-called Large Neighborhood
Search (LNS) [94] heuristics. The idea is to optimize an auxiliary MILP of smaller
size, constructed by reducing the feasible region of the original MILP. This is typi-
cally done by fixing the value of some of the variables and optimizing the rest. Another
strategy is to search over the neighborhood of a solution x̂ by imposing the constraint

∑
j :x̂ j=0

x j +
∑
j :x̂ j=1

(1 − x j) ≤ η , (9)

with η the parameter that controls the neighborhood size. This is known as local
branching [39]. The reader is referred to Fischetti and Lodi [40] for a survey on the
use of LNS heuristics in MILP.

123

L. Scavuzzo et al.

Fig. 3 Three learning problems related to primal heuristics: a predict a reference solution and search in its
neighborhood, b neighborhood selection—which and/or how many variables to unfix and re-optimize, c
heuristic scheduling—which heuristics to run and/or for how long

3.1.1 Solution prediction to guide the search

Some authors explore the idea of using predictions of the optimal solution. The goal is
to produce a (partial) assignment of the binary variables4 in a binary or mixed binary
MILP, that can then be used to guide the search. This idea has been implemented in
different ways, both in terms of how to obtain the predictions and how to use them.
Let us start by discussing the latter.

Ding et al. [34] use a local branching constraint (see Eq. 9) with respect to predicted
values of a subset J ⊆ B of the binary variables. This restricts the search to a neigh-

4 Note that the focus on binary variables is justified because, in most well-established instance collections,
binary variables account for the great majority of integer variables. As an example, more than 68% of the
instances in the MIPLIB [76] are purely binary, and in the remaining ones, more than 90% of the integer
variables are in fact binary. See, e.g., Nair et al. [78] for extensions to integer variables.

123

Machine learning augmented branch and bound…

Table 1 Three methods to define the target probability distribution pT , given a collection D(X) =
{x̂(1), x̂(2), . . . , x̂(K)} of feasible solutions to problem X

Authors Target

Ding et al. [34] pT (x j = 1|X) = x̂(1)
j for every j s.t

x̂(k)
j = x̂(1)

j for all k ∈ {1, . . . , K }
Nair et al. [78] pT (x̂(k)|X) = e−cT x̂(k)

/
∑K

i=1 e
−cT x̂(i)

and pθ (x̂|X) := ∏n
j=1 pθ (x j = x̂ j |X)

Khalil et al. [65] pT (x j = 1|X) = 1
K

∑K
k=1 x̂

(k)
j

The goal is to learn a function pθ (x j = 1|X) that represents the probability that variable x j takes value 1
given problem X by imitating the target probablity pT (x j = 1|X)

borhood of the predicted partial solution. In contrast, both Nair et al. [78] and Khalil
et al. [65] propose to fix the variables in J to their predicted value and hand over this
partial assignment to an MILP solver that optimizes over the remaining variables. In
MILP terminology, this corresponds to a warm start. Khalil et al. [65] further use the
predictions to guide node selection (see Sect. 3.4).

The question still remains as to how to obtain these predictions. This problem is
naturally formulated as a supervised learning task, where the desired output is the
optimal solution. However, optimal solutions to be used as labels in the training phase
are costly to obtain and do not capture information about the regionwhere they lie. The
aforementioned work of Ding et al. [34], Nair et al. [78], Khalil et al. [65] make use
of a set of feasible (not necessarily optimal) solutions to learn predictions. This is, the
learning process starts with a data collection phase that, for each instance X , gathers a
set of feasible solutions D(X) = {x̂(1)

, x̂(2)
, . . . , x̂(K)}. Once the data collection phase

is finished, the prediction task can be formulated as learning a probability distribution
pθ (x j = 1|X) that represents the probability that variable x j takes value 1 given
problem X , and is parametrized by θ . The parameters are tuned to make the behavior
of these functions resemble as closely as possible that of a target probability distribution
pT (x j = 1|X). Table 1 summarizes the proposed targets.

3.1.2 Solution improvement via neighborhood selection

Alternatively to solution prediction, onemay be interested in learning a destroy heuris-
tic criterion. That is, given an initial feasible solution x̂, we select a subset of the integer
variables to be re-optimized, leaving the remaining integer variables fixed. This pro-
cess can be run iteratively. The goal is to identify substructures of the problem that
can be used to decompose it into smaller, more manageable sub-problems.

Following this line, Song et al. [95] learn to partition the set of integer variables I
into K disjoint subsets {Si }Ki=1 such that I = S1 ∪ ... ∪ SK . They iteratively unfix and
reoptimize the variables in each subset, fixing the rest to the value in the best known
solution. The variable subsets are of fixed size, which means that the variables simply
need to be classified into the subset they belong to. Alternatively, Wu et al. [104], Son-
nerat et al. [96] and Huang et al. [58] propose a method to select a single flexible-sized

123

L. Scavuzzo et al.

subset of variables to unfix. Their approach resembles the value-prediction method-
ology discussed in the previous section. However, instead of predicting the value that
a variable takes in an optimal solution, they aim at predicting whether the variable
is already assigned to its optimal value in the current best solution x̂. The number
of unfixings is learnt implicitly through the conditionally-independent probabilities
pθ (x̂ j = x∗

j |X) from which they sample variable unfixings. While Wu et al. [104] use
a reinforcement learning algorithm to train their policy, Sonnerat et al. [96] explicitly
calculate the best solution at most η unfixings away from x̂ and use it as a target
unfixing policy. Huang et al. [58] follow a similar approach, while also providing
the learner with negative examples. This means variable unfixings that do not lead to
a sufficiently large improvement, as compared to the best. This provides additional
information for the learner to distinguish good and bad unfixings.

The methods of Song et al. [95], Wu et al. [104], Sonnerat et al. [96] and Huang et
al. [58] were compared against continuously running the MILP solvers they use as a
subroutine. Given the same amount of time, the ML-assisted methods are able to find
better solutions. Interestingly, using a random selection of the variables to unfix often
results in a performance improvement compared to running the solver continuously.
This highlights the fact that MILP solvers are typically tuned to optimize different
performance metrics, such as the optimality gap, which means that a significant part of
the computational effort is spent in, e.g., obtaining good dual bounds. Nonetheless, the
proposed methods provide a relevant methodology to make use of the MILP solver in
a black-boxmanner when the goal is to obtain high-quality but not necessarily optimal
solutions in a short amount of time.

Related to this line of work, Liu et al. [74] point out that the optimal value of the
neighborhood size parameter η is strongly dependent on the class of instances being
solved. They work in the context of local branching and propose to learn two policies.
A first policy fini t (X), obtained in a supervised way, determines an appropriate neigh-
borhood size η0 for a first iteration. Another policy fa(X), obtained by RL, decides
how to adapt the neighborhood size in successive iterations given the previous solver
statistics. Compared to the simple neighborhood size selection proposed in Fischetti
and Lodi [39], these two policies close the primal gap (see Eq. 3) faster, especially
when combined together. Their computational experiments demonstrate that these
selection rules have great generalization ability across different instance sizes and
types, especially for fa(X), also across different classes of instances, proving the
wide applicability of their approach.

3.1.3 Learning to schedule heuristics

Whether they use ML or not, many successful primal heuristics for MILP have been
proposed. Experimentally, we observe that no single heuristic dominates the others on
all problems [55]. Their performance is highly dependent on the problem, and even
on the solving stage. A new decision problem arises: given a collection of primal
heuristics, which one should be run? In a broader sense, heuristic scheduling also tries
to answer questions such as how frequently should heuristics be run, or under what
computational budget. In this section, we review the line of research on using learning
methods to answer such questions.

123

Machine learning augmented branch and bound…

Hendel [54] proposes Adaptive Large Neighborhood Search (ALNS), a heuristic
that, whenever called, makes a choice among eight Large Neighborhood Search meth-
ods. This choice is framed as a Multi Armed Bandit problem [23], an online learning
methodology that learns a selection policy per instance. The learned policy is based
on the observed (a posteriori) performance of the chosen heuristics. This simple for-
mulation encapsulates the classical exploitation versus exploration dilemma: we must
balance running heuristics that have performed well in the past with running heuris-
tics whose performance is unknown because they have not been selected a sufficient
number of times. The author uses the α-UCB algorithm [23] with a reward function
that combines several aspects of a heuristic’s performance: whether an incumbent was
found, the objective improvement and the computational time the heuristic needs. The
experiments on MIPLIB 2017 [46] show a considerable improvement in the primal
integral (see Eq. 5), as well as a speed-up. The Multi Armed Bandit formulation was
also used by Hendel et al. [55] and Chmiela et al. [27], who extend it to new types of
heuristics.

Chmiela et al. [26] take a different perspective: instead of a selection policy per
instance, they create a prioritization order that applies to a given class of instances.
In fact, these authors’ method constructs a schedule that assigns both a priority and
a computational budget to each heuristic. In contrast with the abovementioned work
of Hendel et al. [55] and Chmiela et al. [27], which use online learning, the schedule
is now crafted offline, after a data collection phase where different heuristics are
evaluated. They formulate a MIQP that minimizes the computational budget while
finding feasible solutions for a large fraction of the B&B nodes, and they solve this
using a greedy heuristic.

The proposed method produces schedules for a number of different heuristics,
which result in improvements in the primal integral compared to default SCIP and
even a version of the solver that has been manually tuned for the considered class of
instances.

Other than deciding which heuristics to run and for how long, there is the question
of when to run them. The work discussed so far uses conventional rules to decide at
which nodes heuristics will be run. The methodology proposed by Khalil et al. [64]
is to instead build a mapping between B&B nodes and a yes/no decision for running
each heuristic.

This decision problem is challenging. Even with perfect knowledge of when a
heuristic will be successful, a run-when-successful rule does not necessarily minimize
solving time. Khalil et al. [64] analyze the competitive ratio of such a rule compared to
anoptimal offlinedecisionpolicy.They then imitate the imperfect run-when-successful
rule by learning to predict when a heuristic will succeed.

Their computational study shows the effectiveness of this method: heuristics are
called less often, but with a higher success rate, resulting in a better primal integral.
This effect is even stronger when the policy is trained on data coming from the same
instance class.

123

L. Scavuzzo et al.

Table 2 Summary of different learning approaches for primal heuristic management

ML paradigm Online/offline Model

Ding et al. [34] SL Offline GNN

Nair et al. [78] SL Offline GNN

Khalil et al. [65] SL Offline GNN

Song et al. [95] SL & RL Offline PCA [49]+NN

Wu et al. [104] RL, policy gradient Offline GNN

Sonnerat et al. [96] SL, imitation Offline GNN

Huang et al. [58] SL, contrastive Offline GNN

Liu et al. [74] SL & RL Offline GNN

Hendel [54] Multi-Armed Bandit Online –

Chmiela et al. [27] Multi-Armed Bandit Online –

Chmiela et al. [26] Greedy heuristic Offline –

Khalil et al. [64] SL, classification Offline Logistic regression

We use the acronyms SL for supervised learning and RL for reinforcement learning

3.1.4 Future outlook

The success of most of the approaches discussed in Sect. 3.1 is rooted in the ability
of learning within the distribution of specific classes of MILP instances. Generalizing
outside of a specific class, has proven so far difficult. This is certainly the main chal-
lenge for the integration of ML-augmented primal heuristics within MILP solvers.
Studies like the one in Liu et al. [74] indicate that some significant generalization
is achievable, especially in the context of algorithms that sequentially adapt while
exploring the solution space as in classical RL schemes. This is a promising direction
that, however, conflicts with the MILP solver’s general need of executing (extremely)
fast primal heuristics. Further, in the context of solution prediction, the case of gen-
eral integer variables has been comparatively less studied; see Nair et al. [78] for a
discussion of how to treat this case.

3.2 Branching

Branching is one of the core mechanisms on which the B&B algorithm operates. The
branching rule, i.e., the criterion used to select a variable for branching, has been
identified as having a critical impact on performance [2, 73]. Computational studies
have served to identify a number of metrics that are good indicators of how a variable
will perform. Notably, state-of-the-art branching rules look at the change in objective
value in the resulting children nodes. More specifically, let zLPi be the objective value
of the current node i and let zLPi+ and zLPi− be the objective values of the two nodes
resulting from branching on candidate variable xk . This variable will be scored using
a combination5 of Δ+ := zLPi+ − zLPi and Δ− := zLPi− − zLPi . These values can be

5 For example, the variable’s score can be computed asmax{Δ+, 10−8}·max{Δ−, 10−8}. See, e.g. Achter-
berg [1] for a discussion.

123

Machine learning augmented branch and bound…

explicitly calculated for each candidate at the moment of branching (thus solving two
LPs per candidate). Such strategy, known as strong branching, was introduced in the
context of the travelling salesman problem [10] and later standardised by CPLEX.

Strong branching is known to produce small B&B trees, but at high computational
cost per branching. Alternatively, one can attempt to estimate the objective change
based on past values, once they become naturally available through node processing. In
particular, solvers typically store the values ofΔ+ andΔ− normalized by the variable’s
fractionality, and keep track of the per-variable average, known as pseudocosts. The
so-called reliability branching rule [3] performs strong branching at the top of the tree
as an initialization phase, and then switches to using pseudocosts as soon as a variable
has been branched on enough times. The initialization phase is not only important to
build a branching history, but also because branching decisions have the most impact
at the top of the tree. This is because judicious branching decisions here can lead to
much smaller tree sizes, due to the earlier finding of feasible solutions and the stronger
pruning of nodes.

In this section, we will discuss different approaches to learning to branch. Their
common goal is to learn a function that maps a description of the candidate variables
to scores.We note that alternative strategies exist, such as learning a weighting scheme
for a portfolio of branching rules (see, e.g., Balcan et al. [12]). Ultimately, the objective
is to minimize the solving time, which typically entails a favorable balance among
different sub-targets. For example, (i) being computationally cheap, (ii) generating
small trees as a result of their scoring, and (iii) adapting to the different situations that
may arise. These objectives are often at odds with each other. At the end of the section,
Table 3 presents a summary of the reviewed work and their main characteristics.

3.2.1 A first approach to learning from strong branching

There is a well-established body of research on fast approximations of the strong
branching rule. This idea was first explored by Alvarez et al. [7] who propose to learn
a prediction of the strong branching score of each variable. The predictor is learned
offline (see Sect. 2) and tested on both heterogeneous and homogeneous instance col-
lections. The experiments of Alvarez et al. [7] show that the method achieves the
desired objective of imitating strong branching decisions without the large computa-
tional overhead. Indeed, when compared with strong branching on a fixed number of
nodes, the closed gap is only moderately worse, indicating that the branching deci-
sions are of high quality. Simultaneously, for a fixed time, the method explores a
much larger number of nodes and closes a greater proportion of the gap, therefore
achieving an overall better trade-off. However, reliability branching still outperforms
the learned branching rule in closed optimality gap. The experimental results seem to
indicate that the former makes smarter decisions, and is on average faster in making
them. It is interesting to note that the method of Alvarez et al. [7] performs better on
homogeneous instance collections, i.e., when the problems in the training and the test
set are of the same type.

123

L. Scavuzzo et al.

3.2.2 Online learning to branch

The results presented in Alvarez et al. [7] call for several reflections. First, experi-
ments seem to indicate that performing strong branching at the top of the tree, where
branching decisions have themost impact, is highly advantageous. Second, the authors
already point towardsmore adaptation to the problem structure as a promising direction
of improvement.

These ideas are studied in Khalil et al. [63] and the follow-up work of Alvarez
et al. [6]. Independently, these authors proposed to use online learning with a strong
branching initialization at the top of the tree. One key difference is that, while Alvarez
et al. [6] continue to frame learning to branch as a prediction task (i.e., predicting
the strong branching score of a variable), Khalil et al. [63] formulate the task as that
of ranking. Indeed, one does not necessarily need to accurately predict the variables’
scores, but rather which variables have relatively better ones. The latter task is easier
from a learning perspective.

Framing an online learning task allows to learn a specializedMLmodel per instance,
in this case a simple linear function. Khalil et al. [63] analyse their learned models
by studying the weight assigned to each of the features. The first question they ask
is: are the learned models obtained for each of the instances similar? Their analysis
concludes that there is only a weak correlation among the models. This supports
the idea that adaptation plays a key role. In spite of the learned models being quite
different, they were able to identify some features that are often given high importance
(large absolute weight), such as the product of the pseudocosts, and data related to the
constraint matrix. For a more detailed discussion of this analysis see Khalil [62].

3.2.3 Offline learning with structure specialization

Alvarez et al. [6] and Khalil et al. [63] use a linear mapping from variable features to
output. This offers the advantage of interpretability and low computational cost. The
more complex GNNmodel proposed by Gasse et al. [44] (see Sect. 4 for a description)
has proven to be remarkably effective in representing MILPs for the task of variable
selection and beyond. The GNN architecture that we presented in Sect. 2.1 consists
of a number of parametric function compositions that enable learning more complex
relations between input and output. They also require a larger amount of training data,
which rules out the online learning methodology previously discussed. In order to
still ensure some level of specialization, Gasse et al. [44] propose a middle point: they
argue that in many realistic cases instances of the same class are routinely solved. This
justifies learning a branching rule per instance type, as a sensible trade-off between
a completely general rule (such as the one in Alvarez et al. [7]) and a completely
instance-tailored rule (like in Alvarez et al. [6], Khalil et al. [63]).

Gasse et al. [44] propose training this GNN to imitate strong branching via behav-
ioral cloning [86]. In short, this means that we again disregard the actual variable
scores and focus on learning relative magnitudes among them. Through this approach
the authors were able to outperform reliability branching, marking a breakthrough in
the learning to branch literature. Building on this work, Gupta et al. [50, 51] propose
modifications of the original loss function that further improve the performance of the

123

Machine learning augmented branch and bound…

learned model. Nair et al. [78] test the methodology of Gasse et al. [44] on a variety
of instance types, including heterogeneous sets. Seyfi et al. [93] additionally propose
a mechanism that incorporates information about past branchings into the scoring
system.

3.2.4 Towards a general branching rule

We have discussed methodologies that specialize to certain combinatorial structures
(such as Gasse et al. [44]) or that yield a custom strategy per instance (e.g., Khalil
et al. [63]). As discussed at the beginning of this section, these methodologies are a
response to the great difficulty of learning one unique policy on an heterogeneous set of
instances. Zarpellon et al. [106] argue that, while learning such a general policy poses
a big challenge, it is possible to overcome it by using a representation of the search
tree to inform variable selection. Their hypothesis is that there is a higher-order shared
structure amongMILPs, even among those with different combinatorial structure, and
that this shared structure can be captured in the space of B&B trees. To test this they
define a set of features describing the state of the search which, together with variable
descriptors, are mapped into scores.We discuss these features in more detail in Sect. 4.
The experiments in Zarpellon et al. [106] show that, while the model of Gasse et al.
[44] struggles to learn over a heterogeneous data distribution, adding the tree context
is beneficial to the generalisation performance of the model. Lin et al. [72] take this
idea one step further and propose to keep a record of the features in [106] at each node
where branching was performed. At every step, branching decisions are informed by
this historical data, which is carefully aggregated and combined with the descriptions
of the variables.

The work in [72, 106] highlights the potential of using solver statistics to influence
branching decisions. It is unclear how the features proposed in Zarpellon et al. [106]
are used to score branching candidates, since neural networks lack explainability.
Nonetheless, this information certainly opens the door to branching rules that switch
among different behaviors at different parts of the tree, or stages of the solving process.
It is important to note that reliability branching still outperforms both Zarpellon et al.
[106] and Lin et al. [72], perhaps because of the overhead of computing and processing
these comprehensive descriptors. Nonetheless, this work calls for further research on
exploiting tree information.

3.2.5 Expert-free learning to branch

So far, we have discussed methods for building fast approximations of strong branch-
ing. The general consensus is that strong branching yields relatively small B&B trees
compared to other classic branching strategies, and it is therefore advantageous to try
to imitate it. This idea can be challenged with two arguments. First, as pointed out
by Gamrath and Schubert [42], standard implementations of strong branching benefit
from using data obtained as a by-product of the score calculation, such as bound tight-
enings and other statistics. A rule that imitates strong branching cannot profit from
such side-effects, which means that, even in the case of perfect emulation, the imita-
tor’s performance would be worse than expected. Second, strong branching relies on

123

L. Scavuzzo et al.

Table 3 Summary of different learning approaches for branching

ML paradigm Online/offline Model

Alvarez et al. [7] SL, regression Offline ExtraTrees

Alvarez et al. [6] SL, regression Online Linear

Khalil et al. [63] SL, ranking Online Linear

Gasse et al. [44] SL, imitation Offline GNN

Etheve et al. [37] RL, Q-learning Offline NN

Scavuzzo et al. [90] RL, policy gradient Offline GNN

Zarpellon et al. [106] SL, imitation Offline NN

Lin et al. [72] SL, imitation Offline Transformer

We use the acronym SL for supervised learning and RL for reinforcement learning

the LP relaxation for scoring variables, which can provide little information in cases
when the optimal LP objective value does not change with branching. In such cases
strong branching cannot be considered a reliable expert. In the absence of a better
alternative to strong branching, the following question arises: can we learn branching
rules without expert knowledge? This question is addressed by Etheve et al. [37] and
Scavuzzo et al. [90], who use RL to learn branching rules from scratch. Etheve et al.
[37] prove that when using a depth-first-search (DFS) node traversal, branching to
minimize the size of each subtree is equivalent to minimizing the size of the entire
B&B tree. Scavuzzo et al. [90] build upon this and define a new framework for learn-
ing to branch, the tree MDP, which encodes the intuition that branching decisions
have a larger impact on the subtree they create than in other parts of the B&B tree.
The computational study in Scavuzzo et al. [90] compares one such RL methodol-
ogy against the imitation learning method of Gasse et al. [44]. The experiments show
that on instances where strong branching performs very well, the imitation method
of Gasse et al. [44] is superior. Yet, when strong branching struggles, the RL-based
method is able to find a better branching strategy, proving the point that expert-free
learning is of great interest in certain cases.

The branching strategies proposed in Etheve et al. [37] and Scavuzzo et al. [90]
do not follow demonstrations by another rule. One may therefore wonder if there is
an interpretation for the learned behavior. It is unfortunately difficult to answer this
question, because the architectures they use are not interpretable.

3.2.6 Future outlook

Adaptiveness The computational studies suggest that no single branching rule out-
performs others universally across all instances. Consequently, a desirable approach
involves a rule that dynamically adapts its behavior to the specific characteristics of
each situation. One way in which one can introduce such adaptiveness is by control-
ling the distribution of data samples that the model uses for learning. Some authors
propose to specialize to each given instance. This means that a set of parameters θ is
generated for each new instance, obtained by allowing the ML model to only see data
coming from that instance. Another possibility is to use data samples coming from

123

Machine learning augmented branch and bound…

instances of the same problem class. This gives us parameters θ that specialize to a
given class and work well, on average, on different instances with shared combinato-
rial structure. We can therefore achieve adaptiveness on different scales. We can also
understand adaptiveness of a branching rule as some sort of mechanism to change its
behavior on different parts of the search process. Some progress has also been made
in this regard by investigating different statistical measures that can inform branching
(see Sect. 3.2.4). Yet, little is understood about how these metrics are used or in which
ways we can further enhance performance without sacrificing speed.

Expert guidance The strong branching heuristic has been used by many as an expert
from which we can learn effective decision-making. The claim that strong branching
is a desirable strategy to follow has recently been challenged, with some notable
examples of instances where strong branching scores provide no useful information.
Interesting research directions include identifying new experts, new strategies to better
imitate them, or, conversely, more efficient approaches to learning without expert
knowledge. The latter case is what is referred to in Bengio et al. [15] as experience:
there is no clear mathematical understanding of what should be statistically learned
(the expert), so exploration should be performed. In turn, this clearly calls for RL
methods that are also natural candidates to extend the work in Zarpellon et al. [106],
Lin et al. [72] and exploit tree information.

New directions The work we surveyed showcases the potential in mixing the extensive
body of domain knowledge in variable selection with new learning techniques. Still a
lot of open questions remain. For example, little attention has been directed towards
highlighting important subsets of variables, as opposed to choosing a single one at
each node. Khalil et al. [66] propose an approach to finding such important subsets, in
this case the so-called backdoors [33], and show promise in using them as prioritized
branching candidates. Another relevant gap is the absence of expert knowledge for
certain classes of MILPs. In any case, it is clear that new ML-based methods need
to build upon the pre-existing knowledge on variable selection to achieve a fruitful
combination.

3.3 Cutting planes

Cutting plane routines are another essential part of modern MILP solvers. They tend
to work in rounds, also called separation rounds. Given an LP-relaxation solution
xLP , one round consists of generating a number of valid cuts from different families,
selecting a subset of themvia a selection criterion, adding themandfinally resolving the
LP relaxation, where xLP will now be infeasible. A good selection criterion is critical
to improving the LP relaxation while avoiding an excessive number of cuts, which
would slow down LP solving as well as lead to numerical instability [9, 31]. Several
metrics have been proposed for the purpose of scoring cuts (see, e.g., Wesselmann and
Stuhl [101] for an overview). For example, the objective parallelism, measured as the
cosine of the angle between the objective function and the cut, or the cutoff distance,
measured as the distance between the cut and theLP-relaxation solution.More recently

123

L. Scavuzzo et al.

the question of cut selection has been addressed with ML-driven predictions, which is
the topic of this section. We review different work in this area and, at the end, present
in Table 4 a summary of the different methodologies and their main characteristics.
For further discussion of ML for cut selection in MILP and beyond we refer to Deza
and Khalil [32].

As noted in Sect. 1.2, cuts are typically more heavily applied at the root node, and
for this reason the work that we survey focuses on cut selection at the root node. Still,
there is no obstacle to applying these methods in other nodes. However, it is unclear
whether using cuts outside the root node is computationally beneficial (see Berthold
et al. [19] for a discussion of this topic).

3.3.1 Single-cut selection

Tang et al. [97] and Paulus et al. [84] frame the task of cut selection as an MDP. At
each step k, a single cut ck is selected from a cutpool Ck , after which the LP relaxation
is resolved. In particular, let C be a collection of cuts, and let z(C) be the result of
solving the root LP relaxation after adding all cuts in C. The metric of interest to these
authors is the LP-bound improvement attained by a cut c at step k, defined as

Δk(c) := z ({c1, . . . , ck−1, c}) − z ({c1, . . . , ck−1}) .

This MDP model is summarized in Fig. 4a, where we use the abbreviation zk =
z ({c1, . . . , ck}).

Paulus et al. [84] use imitation learning. Their expert is the result of explicitly
calculatingΔk(c) for each possible cut c in the cutpoolCk , and then picking the cutwith
highestΔk . This means that their approach is greedy: they look at bound improvement
one step ahead. Their computational studies show that this greedy heuristic that they
aim to imitate is in fact very effective in improving the LP bound after T cuts have
been added, compared to other selection heuristics.

Another approach is that of Tang et al. [97], who use RL with reward Rk = Δk(ck).
Due to to the discount factor (see Eq.7), this RL strategy offers the possibility to learn
less greedy policies, and doing so without explicitly computing Δk(c) for each k and
c ∈ Ck . However, many RL algorithms are known to suffer from sample inefficiency
and lack of generalization [36, 68]. Paulus et al. [84] compare their approach to the
one of Tang et al. [97] and to SCIP’s v.7.0.2 default rule. They use the sum of gaps as
a metric (lower value is better)

SG :=
T∑

k=1

z∗ − zk
z∗ − z0

, (10)

with T = 30 being the total number of cuts added, and z∗ being the pre-computed
optimal solution. Notice that this metric is constructed in a way that might favour
greedy policies.6 The computational results favor the method of Paulus et al. [84]. The

6 This can be seen through the following example. Without loss of generality, let z∗ = 1 and z0 = 0.
Consider the following cases using two cuts: (i) one with z1 = 1/2 and z2 = 3/4, and (ii) one with z1 = 0

123

Machine learning augmented branch and bound…

Fig. 4 Three models for learning to cut: a Tang et al. [97], Paulus et al. [84], bWang et al. [100], c Turner
et al. [98]. Here PD(tmax) refers to the primal-dual integral (see Sect. 1.3)

authors also show promising results in solving time when their method is incorporated
into SCIP and instances are solved to optimality, though they do not include root node
processing time.

3.3.2 Multi-cut selection

A potential criticism to the cut selection models is that solvers usually add more than
one cut per round, in order to reduce the number of times the LP needs to be resolved.
In fact, historically this proved crucial to the efficiency of cutting plane routines [11,
30]. Having information about the LP solution after the addition of each cut is therefore
unrealistic. Paulus et al. [84] do not include root node processing times in their report,
a metric under which their method is likely unfavored. Furthermore, metrics like the
one in Eq.10 encourage greedy bound improvements, whereas in practice cuts can
work together to achieve a better bound improvement at the end of the round. In
other words, the optimality gap closed after a full separation round is likely a more
informative metric.

To address the potential interactions among cuts,Wang et al. [100] propose a policy
that decides the fraction of cuts from the pool to be selected, and scores ordered subsets
of this size. See Fig. 4b for a summary of this selection model. The authors train the
policy with an RL algorithm and use end-of-run statistics like solving time as the
reward. This requires solving an MILP to optimality for each training sample. While
this allows to learn a mapping from cut selection to actual solver performance (instead
of the root node bound improvement, which is just a proxy for performance) this
sample collection comes at a great computational cost.

and z2 = 1. In the first case, we have SG = 3/4, and in the latter, SG = 1. The first choice is therefore
preferred, even though the second one closes the gap completely.

123

L. Scavuzzo et al.

A third model to learning cut selection is proposed in the work of Turner et al. [98]
(see Fig. 4c). The procedure builds upon SCIP’s default strategy, a rule that has been
carefully curated through computational studies [1, 101]. This rule combines four cut
scoring functions si : Rn+1 → R+, i = 1, . . . , 4 via a convex combination

s(c, μ) = μ1s1(c) + μ2s2(c) + μ3s3(c) + μ4s4(c) ,

4∑
i=1

μi = 1, μi ≥ 0, i ∈ {1, 2, 3, 4} .

Cuts are then selected sequentially based on their score (the higher the better)
and their parallelism to already selected cuts (too ‘parallel’ cuts are discarded). We
refer to Turner et al. [98] for the definition of the scoring functions si , i = 1, . . . , 4.
The problem of choosing a good set of parameters μ ∈ R4 has been studied from a
learning theoretical perspective by Balcan et al. [13]. As a next step, Turner et al. [98]
argue, through both theoretical and computational arguments, in favor of adapting the
coefficients μ to the instance being solved, as opposed to a unique, static choice. One
of their experiments consists of finding a custom set of parameters μ per instance
through grid search. While impractical, this experiment uncovers the large potential
for improvement when adapting the value of μ. In order to exploit this potential in a
more realistic way, Turner et al. [98] devise a policy that, given an instance, chooses
custom parameters μ, and they train it via RL. The computational study shows that
the learned policy is competent in its task, outperforming random selection in terms
of closed optimality gap at the root node. However, and perhaps surprisingly, their
policy does not perform consistently better than SCIP’s default settings when it comes
to final solving time.

3.3.3 Beyond scoring

Cut scoring for selection is an essential part of cut management. Yet, there are other
important decisions. Wang et al. [100] incorporate the number of cuts added as a
decision that the policy must make. Very recently, Li et al. [71] defined a learning
task for separator configuration. The objective is to select a subset of the available
separators. Only the selected separators will then be active and contribute to the cut-
pool, meaning that this selection step happens before the cut selection phase. Li et al.
[71] propose a methodology to overcome the high dimensionality of the configura-
tions space, which is 2M ·R , with M the number of separators and R the number of
cutting rounds. Their experimental findings show a lot of promise. More research into
adapting other parametric choices could provide further insights.

3.3.4 Future outlook

Measuring performance What is the purpose of the cutting routines? One is inclined
to believe that cuts should strengthen the LP relaxation, hence bringing the LP bound
closer to the optimal value. However, will this result in a faster solve? Turner et al.

123

Machine learning augmented branch and bound…

Table 4 Summary of different learning approaches for cut management

ML paradigm Online/offline Model

Tang et al. [97] RL, evolutionary strategies Offline Attention + LSTM

Paulus et al. [84] SL, imitation Online GNN

Wang et al. [100] RL, policy gradient Offline LSTM + NN + Pointer

Turner et al. [98] RL, policy gradient Offline GNN

Li et al. [71] Contextual bandits Offline GNN

We use the acronym SL for supervised learning and RL for reinforcement learning

[98] experimentally measure the (kind of folklore) fact that a better root LP bound
does not always translate into a shorter solving time. Other than the clear influence of
the number of added cuts, many solver components can be affected by the cut choice
resulting in different performance. Wang et al. [100] address this by incorporating
solving time as a reward signal, instead of root LP bound. However, observing final
performance comes at great computational cost, which could be prohibitive for larger
instances. More research is needed on how to efficiently navigate this trade-off.

Multi-cut roundsThe selectionmodel of Tang et al. [97] and Paulus et al. [84] adds one
cut at a time, resolving theLP at each iteration. Theirwork constitutes an important step
towards learning cut selection rules. However, in a practical setting, such procedure
is unlikely to outperform models that do limited LP resolving by adding multiple cuts
at once. Going forward, models like the one of Wang et al. [100] or Turner et al. [98]
have more potential for improvement.

3.4 Node selection

Primal heuristics have the clear goal of improving the best known MILP-objective
value (primal bound). Analogously, branching rules and cutting routines are typically
designed to improve the dual bound. Node selection policies have the difficult task of
balancing both goals, which are often at odds. As usual, a better node selection rule is
one that results in the shortest solving time. This is typically associated with smaller
search trees. For that, one needs to avoid processing nodes that could be pruned if the
optimal solution was known in advance. Finding a good (or even optimal) solution
fast makes that task easier to accomplish.

One strategy is to first process nodes with the best (lowest) known lower bound.
This is called best first search (BFS) and has the benefit of quickly improving the
dual bound. Note that for all B&B trees there is a node selection policy of BFS
type7 that minimizes the number of processed nodes [1]. However, it is well known
that such an approach delays finding good (or even optimal) solutions. The depth
first search (DFS) strategy prioritizes children or siblings of the node that was last
processed. This approach sequentially provides more constrained sub-MIPs therefore
increasing the chances of finding feasible solutions both naturally and via primal

7 There can be more than one BFS policy because of ties.

123

L. Scavuzzo et al.

Table 5 Summary of different learning approaches for node selection

ML paradigm Online/offline Model

He et al. [53] SL, imitation Offline Linear

Yilmaz and Yorke-Smith [105] SL, imitation Offline NN

Labassi et al. [70] SL, classification Offline GNN

Khalil et al. [65] SL, classification Offline GNN

We use the acronyms SL for supervised learning

heuristics. Furthermore, DFS has the added benefit of faster node processing times, on
account of the similarity between sub-problems that are solved consecutively, which
usually differ in one variable bound change. In practice, node selection rules alternate
between both behaviors, while considering other statistics about branching that allow
for estimating the cost of integrality.8

Different methodologies have been proposed for learning a node selection strategy
over a homogeneous instance set (see Table 5 for an overview). He et al. [53] propose
to learn from a node selection oracle that always chooses to process the node that is on
a path to the optimal solution. This requires knowledge of the optimal solution during
the training process, but not at test time. Similarly, Yilmaz and Yorke-Smith [105]
prioritize nodes that contain high-quality solutions using a policy that always picks
a child of the current node and uses an ML-based prediction to choose among these
children. Once the dive is finished, they propose different ways in which the next node
can be selected. Labassi et al. [70] learn a function that compares any two nodes in the
tree. This can be used to substitute lower bounds as the proxy of a node’s potential.
The learned comparison function can be used in combination with different selection
strategies, such as picking the child node with highest potential. Finally, Khalil et al.
[65] guide the search based on a prediction of the optimal solution. They look at the
fixed variables at each node andmeasure the similarity between the fixed and predicted
values. This favors nodes where the partial solution aligns with the predicted solution.

3.4.1 Future outlook

The experimental results of the papers surveyed above show promise, yet the margins
of improvement remain small. Often, an effective heuristic schedule and branching
strategy are much more crucial and, when chosen correctly, make the impact of the
node selection strategy relatively small. Still, it is interesting to observe that ML has
opened new opportunities in an area where research has been pretty much inexistent
for decades. This suggests that there is some potential for looking at an “old" problem
from a different perspective and with new tools. For example, one could pair different
node selection strategies with restarts [8], i.e., changing the node selection in a more
dramatic way over time.

8 The literature in node selection is not extensive, good discussions can be found for example in [1, 4].

123

Machine learning augmented branch and bound…

3.5 Configuration decisions

MILP solvers are highly parametric. To illustrate this, consider SCIP version 8.0.0: it
has more than 2000 parameters that the user can tune. A good parameter configuration
that suits the instances being solved (for example a certain class of instances) can
have a crucial effect on the solving process. Again, we can look at this problem with
a Machine Learning lens: we can base certain parametric decisions on a prediction
given by an ML model. One can see this as falling under the realm of Automatic
Algorithm Configuration (AAC). However, AACmethods typically entail configuring
a large number of parameters at the same time (see, e.g. Hutter et al. [59]). Here, we
are interested in the use of ML to answer a single parametric question or, at least,
one question at a time. Furthermore, and contrary to other AAC methodologies, the
ML models make use of a description of the instance. These models are trained on
a heterogeneous collection of instances and allow for instance-dependent parameter
prescriptions, as opposed to a single configuration for the given instance distribution.
Some work in this area is summarized in Table 6. Notice that the aforementioned work
of Turner et al. [98] on cut selection can also be seen under this light. The work of
Hendel et al. [55] can be further highlighted as a dynamic parameter setting scheme.
They update the pricing rule throughout the search depending on the observed runtime
in the already processed nodes.

This avenue of research has already fostered considerable success. Notably, the
method presented in Berthold andHendel [18] is used by default in FICOXpress v.8.9.
The great potential of customised configurations is highlighted in problems where the
preprocessing techniques have a broader impact, such as in mixed integer nonlinear
programming. A prime example of this is Bonami et al. [21, 22], where the authors
prescribe for each mixed integer quadratic programming instance if the quadratic
objective function should be linearised or not. However, note that preprocessing has
been shown to be the single most impactful component of MILP solvers [2, 5], hence
the use ofML to configure theMILP algorithmic decisions based on the characteristics
of an instance or a class of instances has a strong potential.

3.5.1 Future outlook

Related to the work discussed in this section is the line of research dedicated to
predicting search completion (see, e.g., Fischetti et al. [41], Hendel et al. [56]) by
using a range of solver statistics. This is an established field with contributions to
state-of-the-art solvers, e.g., the incorporation of a search completion estimation in
SCIP version 7. These predictions can be used to trigger a restart [8], a technique that
has gained a lot of attention and that allows to reconfigure algorithmic decisions based
on the evolution of theB&B.Following this line of thought, one can envision that, in the
future,MLmodels such as the ones inTable 6 canbe usednot just during preprocessing,
but also to prescribe a change in strategy during the solve. This is especially appealing
because before a restart some (sometimes) extensive data collection has happened,
data to be leveraged by ML.

Along the same lines, it is worth mentioning the recent attempts to leverage data to
better solve sequences of MILP instances that differ very little one from another. This

123

L. Scavuzzo et al.

Ta
bl
e
6

Fi
ve

ex
am

pl
es

of
us
in
g
M
L
to

se
ta

so
lv
er

pa
ra
m
et
er

C
om

po
ne
nt

Q
ue
st
io
n

O
pt
io
ns

K
ru
be
r
et
al
.[
69

]
G
en
er
al

Sh
ou

ld
th
e
D
an
tz
ig
-W

ol
fe

de
co
m
po

si
tio

n
be

us
ed
?

Y
es

/n
o

H
en
de
le
ta
l.
[5
5]

L
P
so
lv
er

W
hi
ch

si
m
pl
ex

pr
ic
in
g
ru
le
to

us
e?

D
ev
ex

/s
te
ep
es
t/

qu
ic
k-
st
ar
ts
te
ep
es
t

B
er
th
ol
d
an
d
H
en
de
l[
18
]

Pr
es
ol
ve

W
hi
ch

sc
al
in
g
m
et
ho
d
to

ap
pl
y?

St
an
da
rd

/C
ur
tis
-R
ei
d

B
er
th
ol
d
et
al
.[
19
]

C
ut
tin

g
Sh

ou
ld

cu
ts
be

ap
pl
ie
d
ou

ts
id
e
th
e
ro
ot

no
de
?

Y
es

/n
o

T
ur
ne
r
et
al
.[
98

]
C
ut
tin

g
H
ow

sh
ou

ld
cu
ts
co
re
s
be

w
ei
gh

te
d?

μ
∈R

4 ≥0
T
he

M
L
m
od

el
is
re
sp
on

si
bl
e
fo
r
an
sw

er
in
g
a
si
ng

le
pa
ra
m
et
ri
c
qu

es
tio

n
by

ch
oo

si
ng

on
e
of

th
e
av
ai
la
bl
e
op

tio
ns

123

Machine learning augmented branch and bound…

has been the focus of the 2023 MIP challenge [20], and again it pertains to effectively
configure an MILP solver, i.e., its algorithmic decisions, by exploiting data associated
with instance similarities and data collected from previous runs. For the challenge,
several classes of instances were proposed, where the instances in each class differ
very little, for example, only in the coefficients of the objective function. The solver
that won the competition [83] was able to leverage the data of the (previous) runs, for
example, the pseudocosts for making better branching decisions.

Many open questions in this vast research area still exist, making this a promising
area of future work.

4 Problem representation

The standard form of Mixed Integer Linear Programs is the one presented in Eq.1.
Given A ∈ Qm×n , c ∈ Qn , b ∈ Qm and the partition (A,B, C) of the variables,
an MILP solver can start solving the instance. The ML contributions to the solving
process surveyed in Sect. 3 also require information about the problem, but the data
{A, c, b, (A,B, C)} may be insufficient or unfit for the task at hand. In this section we
review different methodologies to construct a representation X of the problem being
solved. This representation is the input to a parameterized policy f (X , θ) to be trained
for a specific task.

Let us start by listing the desirable properties of a representation.

1. Permutation invariance9 permuting the order of the variables and/or constraints
should leave the representation unchanged.

2. Scale invariance: scale invariance is preferred to keep values within controlled
ranges, which helps the learning process. This can be achievedwith a normalization
step.

3. Size invariance: the size of the representation should not depend on the size of the
instance. This is, we require a fixed-sized description of each element that needs
representation, e.g., each variable or each node.

4. Low computational cost: low cost of extracting, storing and processing the data.

In the following,wewillmake a distinctionwith respect to descriptors that represent
general properties of the MILP and descriptors that relate to a specific variable or
constraint. These descriptors may be static in nature or they may dynamically change
during the solving process. We will also discuss global descriptions of the process
versus local (subproblem) properties. Note that some approaches use no description
of the instance, and instead learn exclusively from the performance metric (see, e.g.,
Chmiela et al. [26], Hendel [54]).

9 Note that permutation invariance is an issue beyond the ML context. The performance of MILP solvers
can be affected by a change in the order of the variables or constraints. Such seemingly irrelevant changes
that have an impact on the solution process are a known issue called performance variability: (see Lodi and
Tramontani [75]).

123

L. Scavuzzo et al.

Fig. 5 The bipartite graph representation of an MILP

4.1 The bipartite graph representation

MILPs can be represented as a bipartite graph, as shown in Fig. 5. This graph is
constructed as follows: each constraint and each variable have a corresponding repre-
sentative node. A constraint node is connected to a variable node if the corresponding
variable has a non-zero coefficient in the corresponding constraint. Each node has an
associated vector descriptor. The advantage of using a graph representation is that this
data structure can be parsed by a Graph Neural Network (GNN, see Sect. 2.1 for a
formal definition). This type of architecture automatically handles inputs of different
sizes. The data aggregation step that ensures size invariance is one of the learnable
mappings (function comb in Definition 3). This is, instead of manually engineering
a mechanism to aggregate information, this mechanism is automatically learned. The
use of GNNs for combinatorial optimization has experienced a rise in popularity in
recent years [24] because of their ability to capture the structural properties of the
instances without excessive engineering.

4.2 Representing variables individually

Some of the learning tasks discussed in Sect. 3 require a description of each variable
individually. Clearly, branching rules fall under this category. This is also the case for
prediction-driven heuristics and neighborhood selection policies, for which variables
are mapped to values or probabilities. In this section, we will discuss three important
approaches to building variable representations and how they relate to the different
approaches of Sect. 3.

A straightforward approach to building variable representations is to gather a num-
ber of descriptors into a vector representation for each variable. Khalil et al. [63]
propose a number of such descriptors, including different statistics about the set of
constraints in which each variable participates. These statistics aggregate informa-
tion whose length would otherwise depend on the problem size. For example, for a
variable j ∈ I, using the constraint coefficients {ai j }mi=1 would yield a vector whose
length depends onm, which is undesirable. On the contrary, using the average of these

123

Machine learning augmented branch and bound…

coefficients gives a size-independent descriptor. This is a necessary step but calls to
question which statistics should be included or excluded in this feature engineering
step.

Alternatively, one can use the bipartite graph representation of the MILP as
described in Sect. 4.1. Gasse et al. [44] were the first to use such representation to
make predictions about variables, using a GNN as a mapping. The descriptors asso-
ciated to the elements in the graph include structural information, such as constraint
coefficients. This data is not given in the form of aggregated statistics like before.
Instead, the aggregation function is part of the learnable mappings of the GNN (see
Definition 3). Apart from the structural information, both Khalil et al. [63] and Gasse
et al. [44] include information about the LP solution and other basic variable features
such as their objective coefficient or variable type. Zarpellon et al. [106] take a different
perspective, stressing the importance of historical data collected during the B&B tree.
This strategy resembles SCIP’s default branching rule, which considers information
about past branchings, collected conflicts or cutoffs. The representation used in Zarpel-
lon et al. [106] includes this variable information and, additionally, global information
about the search tree. They argue that such a description can uncover shared structures
among very diverse MILPs (see Sect. 3.2). The information collected includes statis-
tics about the node being processed, tree composition and shape, and bound statistics,
with a particular focus on unprocessed nodes.

These three approaches to MILP variable representation are compared in Table
7. We report on features that describe variables individually, therefore excluding the
complete list of tree features of Zarpellon et al. [106] (which can be found in their
appendix). Table 7 showcases that, while some common features exist, the different
representations have distinct focuses.

Most of the work surveyed in Sect. 3 uses the graph representation of Gasse et
al. [44], either exactly (e.g., [51, 90, 96]) or with small modifications of the variable
descriptors (e.g., [65, 74, 104]).Hybridmodels also exist. In particular,Gupta et al. [50]
propose extracting the Gasse et al. [44] representation at the root node and the Khalil et
al. [63] representation in the rest of the nodes of the search tree. The reason is that,while
the graph representation is rich, it is also computationally expensive. Gasse et al. [44]
overcome this by using a GPU (graphics processing unit) to accelerate the execution
of their learned function. Such computation on GPUs is common practice in the ML
community, but one could argue that it is unrealistic to require the availability of a
GPU.The hybridmodel ofGupta et al. [50] reuses the rich but expensive representation
of the root node in combination with the features of Khalil et al. [63] that are cheap
and update the description at every node. This proves very effective, with their best
performing model outperforming both reliability branching and the model of Gasse
et al. [44] when executed without GPU acceleration.

4.3 Representing constraints individually

Analogously to variables, a description of the problem’s constraints may be needed.
Here, we refer both to original problem constraints and additional valid constraints
that can be added as cuts. A constraint representation is necessary in two cases. First

123

L. Scavuzzo et al.

Table 7 Three key approaches to variable descriptors

Basic Khalil et al. Gasse et al. Zarpellon et al.

Objective coefficient ✔ ✔

Upper/lower bound ✔

Type ✔

Structural

of constraints the variable is in ✔ Implied

Min and max ratios ai j to bi ✔ Implied

Min and max ratios ai j to
∑

k ak j ✔ Implied

Stats for constraint degrees ✔ Implied

Stats for constraint coefficients ✔ Implied

Stats for active constraints ✔ Implied

LP solution

LP basis status ✔

LP sol value ✔ ✔

LP sol at bound ✔

LP sol fractionality ✔ ✔

LP sol reduced cost ✔

LP sol age ✔

Root LP sol value ✔

Incumbent

Incumbent value ✔

Average incumbent value ✔ ✔

Tree statistics

Average branching depth ✔

Conflict score ✔

Conflict length score ✔

Average conflict length ✔

Pseudocost score ✔ ✔

Pseudocost count stats ✔

Average inference score ✔

Average number of inferences ✔

Average cutoff score ✔

Average cutoffs of variable ✔ ✔

of implications derived ✔

of cliques of variable ✔

Features marked as ‘implied’ do not appear explicitly as a variable descriptor, but can be inferred from the
bipartite graph representation

123

Machine learning augmented branch and bound…

and undoubtedly, whenever the task requires a decision over said constraints (e.g.,
which cuts to add). Second, the bipartite graph representation of MILPs discussed in
the previous section (see Fig. 5) also calls for a description of the constraints, even in
the case where they are to be aggregated at a later stage.

Gasse et al. [44] first proposed the bipartite graph representation using a small num-
ber of descriptors for the constraint nodes. In particular, they use the cosine similarity10

with the objective coefficients, the constraint right-hand-side, and LP information such
as basis status and dual bound. This type of concise descriptions of the constraints is
frequently used for the learning tasks associated with branching or primal heuristics.

In the case of cut selection, a more detailed description is preferred. Paulus et al.
[84] extend the graph representation of Gasse et al. [44] with metrics that are typically
considered in cut selection, such as violation, objective parallelism or sparsity. Wang
et al. [100] describe each cut with a single vector of classical cut scores (see. e.g.,
[101]). In the case of Turner et al. [98], the classical cut scores are intrinsically taken
into account in the definition of their learning task (see Sect. 3.3). For this reason, they
use a graph representation of the model with a small amount of variable and constraint
descriptors.

4.4 Representing a (sub-)MILP

To conclude, it is worth observing that some decision tasks are formulated at an
instance or node level, therefore needing a global representation of the MILP and
perhaps also the solving process. One possible approach is to aggregate variable and
constraint descriptors coming from the bipartite graph representation. Liu et al. [74]
use the average of the variable descriptors, while Labassi et al. [70] concatenate the
average variable descriptors and the average constraint descriptors.

Other approaches include the one of Khalil et al. [64], who, in the context of
scheduling of primal heuristics, build a vector representation of the current node. This
representation includes comparisons to the root node and context on the node’s position
within the tree. Great focus is put on information coming from the LP solution, such
as the objective value, average fractionalities, and statistics on the constraint activity.
Berthold et al. [18, 19] build representations that are more specialized to the particular
configuration task.We refer to their work for amore detailed discussion of the problem
descriptors.

4.5 Outlook

In this section, we have reviewed different methodologies that build a suitable rep-
resentation of MILPs that can be parsed by learning models. This includes both the
selection of relevant data and data structures. At the beginning of the section, we
anticipated the desired properties of such representations. All of the presentedmethod-
ologies ensure permutation invariance and, to some degree, try to normalize data to
establish some scale invariance without excluding important information.We also dis-

10 The cosine similarity between two vectors a and b of the same length is defined as a · b/||a||2||b||2,
that is, their dot product divided by the product of their norms.

123

L. Scavuzzo et al.

cussed the importance of the graph representation to handle input of different sizes. In
the following, we elaborate on the importance of Graph Neural Networks for MILP
representation, as well as the determining trade-off between model expressivity and
speed.

Expressivity versus speed In the context of machine learning, model size refers to
the number of parameters and operations that define the mapping function f (·, θ).
Larger models allow us to learn more complex relationships between input and output.
However, there is a clear trade-off between model size and computational cost of
execution and training. In stark contrast to other fields of application of ML, such as
large language models [81] or strategic game playing [99] where the goal is super-
human performance, the computational cost per execution of theMLmodel is decisive
to whether or not it will beat its competitors, i.e., already highly efficient optimization
software. It is desirable for the MILP representation to ensure low computational cost,
both in terms of data extraction and processing. The work discussed in Sect. 3 shows
that navigating this trade-off is an active field of research, with promising results in
both small (e.g., [63]) and large models (e.g., [44]), as well as in compressing ML
models without compromising the accuracy of their predictions (e.g., [50]).

The case for graph neural networks GNNs offer a powerful representation tool for
MILP. They enable instance parsing with less feature engineering, as well as size
and permutation invariance. Computationally, they have shown excellent performance
across different tasks. Yet, we have limited understanding of the reasons behind this
success. Some recent studies have uncovered some of the factors that contribute to the
success of GNNs.

Chen et al. [25] study the separation and representation power of GNNs for LP. In
particular, they study this in the context of three prediction tasks: predicting feasibility,
boundedness, and the optimal solution vector for LP. The separation power is the ability
of GNNs to distinguish different instances, i.e., their ability to output different results
when given two different instances as input. Chen et al. [25] prove that given two
LPs, if no GNN11 can distinguish them, then both LPs have the same status in terms
of feasibility and boundedness. Furthermore, they both have the same minimum-l2-
norm optimal solution up to a permutation. Finally, they also show that the three
tasks mentioned above can in fact be approximated using GNNs. Continuing this
line of work, Qian et al. [88] prove that GNNs can be used to reproduce interior point
methods. In particular, they show that there exists aGNNusingO(m)message-passing
operations (see Definition 3), with m the number of constraints, that can replicate any
one iteration of the algorithm by Nocedal and Wright [80]. They show the same
result for the more practical algorithm by Gondzio [47]. Notably, this is true when
representing the LP using a modified version of the aforementioned bipartite graph
representation (see Fig. 5), where a new node is added and connected to all variable and
constraint nodes. This global node adds alternative routes of communication among
constraint and variable nodes and is said to represent the objective function. Qian et al.

11 The authors consider the family of functions defined in Eq.8, where the combination and aggregation
functions are feed-forward neural networks.

123

Machine learning augmented branch and bound…

Table 8 A list of some of the
most relevant instance
collections

Benchmark Composition Size Source URL

MIPLIB 2017 Mixed 1065 [46]

Cor@l Mixed 364 –

NN verification Homogeneous 3692 [78]

ML4CO_1 Homogeneous 10,000 [45]

ML4CO_2 Homogeneous 10,000 [45]

ML4CO_3 Homogeneous 118 [45]

[88] also provide a computational comparison of different GNN implementations, i.e.,
different comb and aggr functions (see Eq. 8). This is also an active area of research,
with recent works advocating for the so-called graph attention networks (e.g., [72,
93]) and other sophisticated architectures and training methods.

These results shed some light on the representation power of GNNs for MILP and
strengthen the case for using them in the context of optimization problems.

5 Datasets and software

5.1 Datasets

The modelling power of MILP makes it a suitable language for a large range of
applications. With the goal of measuring the performance of different algorithms, the
MILP research community has curated large benchmarks, such as MIPLIB [46], that
provide a heterogeneous set of instances coming from diverse applications. It should
be noted that these benchmarks are considered large for MILP standards, but are
orders of magnitude smaller than typical ML benchmarks. In the light of the methods
surveyed in Sect. 3, which combine an ML component with classical optimization,
there is a renewed need for collections of MILP instances. In this section we provide
an overview of the collections that have been used in the growing body of literature.We
restrict our discussion to benchmarks that are publicly available or whose generation
code is easily accessible.

ML methodologies usually require vast amounts of data. For this reason, it is
common to resort to instance generators, which complement the existing instance
collections. Tables 8 and 9 provide a summary of both commonly used instance col-
lections (with their size specification) and instance generators.

Apart from the size, there is the consideration of the composition of instances.
When implementing a learning-augmented solver component a specification needs
to be made regarding the instances of interest. In machine learning terms, we typi-
cally talk of an instance distribution, where the instances that are outside the scope
of interest are assigned a zero probability of occurring. For some applications, it can
be assumed that the representative instances have a shared combinatorial structure.
The machine learning model is then expected to specialize to this structure. Con-

123

https://miplib.zib.de/
https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/
https://github.com/deepmind/deepmind-research/tree/master/neural_mip_solving
https://github.com/ds4dm/ml4co-competition/blob/main/DATA.md
https://github.com/ds4dm/ml4co-competition/blob/main/DATA.md
https://github.com/ds4dm/ml4co-competition/blob/main/DATA.md

L. Scavuzzo et al.

Table 9 A list of some of the most relevant instance generators

Benchmark Problem type(s) Source

Tang et al. Max-cut [97]

Planning

Packing

Bin packing

Ecole Set cover [87]

Combinatorial auctions

Maximum independent set

Capacitated facility location

MIPLearn Bin packing [89]

Multi-dimensional knapsack

Capacitated p-median

Set cover

Set packing

Stable set

Traveling salesman

Unit commitment

Vertex cover

GISP Generalized independent set [28]

FCMNF Capacitated fixed-charge network flow [57]

versely, some approaches are designed to detect patterns across instances of any class.
Throughout Sect. 3 we have surveyed examples of both situations.

Table 10 summarizes which of the discussed approaches uses a collection of
instances with mixed structures (mixed), and which use the assumption that all
instances belong to the same class (homogeneous). From this we can observe that
configuration decisions are more naturally framed over mixed instance collections
than other tasks, like the more complex matter of branching, where some instance spe-
cialization seems valuable. Table 11 further shows an overview of the homogeneous
datasets used in the work presented in Sect. 3. We can observe a pattern that highlights
differences in the instances, based on which task is more challenging. Instances like
GISP or FCMNF are more commonly chosen as a challenging test bed for primal
heuristics, indicating that for these problems the difficulty lies in finding (optimal)
solutions. On the contrary, branching is usually tested on instances where proving
optimality is the main challenge, such as the ones provided by Ecole.

5.2 Software

In connection to instance generators, there has been increasing interest in developing
libraries that help the process of data generation, training and testing in the context of
ML-augmented MILP solving. Some examples of these are the library Ecole [87], or

123

Machine learning augmented branch and bound…

Table 10 Classification of the
literature based on whether they
use a mixed or an homogeneous
instance collection (or both)

Mixed Homogeneous

Primal heuristics

Ding et al. [34] �
Nair et al. [78] � �
Khalil et al. [65] �
Song et al. [95] �
Wu et al. [104] �
Sonnerat et al. [96] � �
Liu et al. [74] � �
Huang et al. [58] �
Khalil et al. [64] � �
Chmiela et al. [26] �
Hendel [54] �

Branching

Khalil et al. [63] �
Gasse et al. [44] �
Gupta et al. [50] �
Etheve et al. [37] �
Nair et al. [78] � �
Zarpellon et al. [106] �
Gupta et al. [51] �
Scavuzzo et al. [90] �

Cut selection

Tang et al. [97] �
Paulus et al. [84] �
Wang et al. [100] � �
Turner et al. [98] �
Li et al. [71] � �

Node selection

He et al. [53] �
Yilmaz and Yorke-Smith [105] �
Labassi et al. [70] �

Configuration decisions

Kruber et al. [69] �
Hendel et al. [55] �
Berthold and Hendel [18] �
Berthold et al. [19] �
Turner et al. [98] �

123

L. Scavuzzo et al.

Table 11 Common homogeneous instance collections and where they are used

Ecole NNv GISP FCMNF Tang et al Other

Primal heuristics

Ding et al. [34] �
Nair et al. [78] � �
Khalil et al. [65] � �
Song et al. [95] �
Wu et al. [104] �
Sonnerat et al. [96] � �
Liu et al. [74] � �
Huang et al. [58] � �
Khalil et al. [64] �
Chmiela et al. [26] �

Branching

Gasse et al. [44] �
Gupta et al. [50] �
Etheve et al. [37] �
Nair et al. [78] � �
Gupta et al. [51] �
Scavuzzo et al. [90] �

Cut selection

Tang et al. [97] �
Paulus et al. [84] � �
Wang et al. [100] � �
Li et al. [71] � � � �

Node selection

He et al. [53] �
Yilmaz and Yorke-Smith [105] �
Labassi et al. [70] � � �

themore recentMIPLearn [89]. Their goal is to provide a standardized platform for the
research community for fast prototyping and testing by removing the barrier of chal-
lenging software implementation. These libraries provide ways to easily implement
learning tasks, such as branching or warm-starting. For an up-to-date specification of
the features they provide we refer to their documentation.

We end the section by remarking that developing software of this type is far from
trivial and present some structural challenges. Depending on the problem representa-
tion (see Sect. 4), one needs to provide an increasingly tight interface with the MILP
solver in order to collect the required data. This is both in the case of offline and (even
more so) online learning. For example, in the case of Ecole, the development in strict
correlation with SCIP has been instrumental. Clearly, in the case one wants to use a

123

Machine learning augmented branch and bound…

commercial solver, a sufficiently tight interface and integration might be impossible to
reach, thus limiting the type of methods one can implement. We extend the discussion
on the challenges in the following section.

6 Conclusions, perspective and challenges

Thework covered in this article testifies to the growing interest in the integration ofML
methodologies within MILP solvers. This is an emerging technology that has already
fostered remarkable success within its short history,12 and is likely to play a key role
in future algorithmic developments. Beyond the discussion of the literature, we have
highlighted some methodological trends and characterised the common grounds with
respect to instance representation, learning algorithms and benchmarking.

Meaningful steps forward have been taken in answering the more pressing research
questions. For example, the literature shows that some learning tasks seem to be for-
mulated more naturally than others over heterogeneous instance collections. In other
cases, an argument can be made in favour of the applicability of specializing to a cer-
tain structure, which makes the learning task easier. Studies like the ones in Zarpellon
et al. [106] and Fischetti et al. [41] indicate that instance representations that describe
the global solution process allow to more easily recognize patters across different
combinatorial structures. This is especially promising because a key challenge for the
integration of ML-augmented methods into MILP solvers is their generalization prop-
erties, at least as long as solvers are conceived as one-configuration-fits-all software.

It is also interesting to note the various efforts to define efficient success metrics
for the different learning tasks, such as imitation targets or reward functions. Solv-
ing instances to optimality is to be avoided because of the computational effort, but
performance proxies that substitute solving time must be carefully chosen.

Already substantial progress has also been made in creating the right environment
for easily implementing and testing ML models for MILP solving. Existing software
infrastructure includes, for example, curated instance generators, code that simplifies
the solver interface and standardized testing procedures. This further helps in evalu-
ating and comparing the different methodologies. Other efforts to bring the research
community together are competitions, likeML4CO [45], which encourage progress in
well-defined tasks as well as fair comparisons among the proposed methods. A signif-
icant challenge resides on the software versus hardware side: many learning methods,
e.g., those relying on neural networks, especially benefit from the use of GPUs, while
MILP technology is inherently CPU based. The CPU versus GPU interaction is cur-
rently a relevant obstacle for ML-augmented MILP.

Overall, a key trend seems to be building more dynamic solving strategies. MILP
solvers generate a plethora of statistics during execution that often go unused. This is
fertile ground for learning algorithms, which can unlock more dynamic solvers that
automatically adapt the solving strategy based on prescriptions derived from such
solving statistics. This poses exciting new questions and challenges.

12 This is the case of methods that have been included in commercial (e.g., [18, 22]) or non-commercial
(e.g., [8, 56]) MILP solvers.

123

L. Scavuzzo et al.

Finally,we remark that the phase thefield is entering now is that of amore systematic
transfer of the proofs of concept discussed in this survey to the MILP software. The
successful transfers reviewed in this article—and recalled at the beginning of this
section—give solid evidence but do not define yet a mature path for such a transfer to
happen because of the challenges above. This is the next, in our opinion achievable,
step to make.

Acknowledgements The authors are indebted to two anonymous referees for helpful comments on the
original version of the article. The third author would like to warmly thank the Government of Canada for
establishing the Canada Excellence Research Chair (CERC) program. It generously supported the “Data
Science for Real-time Decision-making” CERC at PolytechniqueMontréal that the author had the privilege
to lead (2015–2022) and whose fantastic team has been instrumental to shape his knowledge of the topic.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technischen Universität Berlin (2007)
2. Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years of progress. In:

Facets of Combinatorial Optimization: Festschrift forMartin Grötschel, Springer, pp. 449–481 (2013)
3. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)
4. Achterberg, T., Berthold, T., Heinz, S., Koch, T., Wolter, K.: Constraint Integer Programming: Tech-

niques and Applications. ZIB-Report 08-43, Zuse Institute Berlin (2008)
5. Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve reductions in mixed integer

programming. INFORMS J. Comput. 32(2), 473–506 (2020)
6. Alvarez, A.M., Wehenkel, L., Louveaux, Q.: Online learning for strong branching approximation in

branch-and-bound, https://orbi.uliege.be/handle/2268/192361, working paper (2016)
7. Alvarez, A.M., Louveaux, Q., Wehenkel, L.: A machine learning-based approximation of strong

branching. INFORMS J. Comput. 29(1), 185–195 (2017)
8. Anderson, D., Hendel, G., Le Bodic, P., Viernickel, M.: Clairvoyant restarts in branch-and-bound

search using online tree-size estimation. Proc. AAAI Conf. Artif. Intell. 33, 1427–1434 (2019)
9. Andreello, G., Caprara, A., Fischetti, M.: Embedding cuts in a branch and cut framework: a compu-

tational study with {0, 1
2 }-cuts. INFORMS J. Comput. 19, 229–238 (2007)

10. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding cuts in the TSP (a preliminary report).
Technical Report 95-05, DIMACS (1995). https://api.semanticscholar.org/CorpusID:972108

11. Balas, E., Ceria, S., Cornuéjols, G., Natraj, N.: Gomory cuts revisited. Oper. Res. Lett. 19(1), 1–9
(1996)

12. Balcan, M.F., Dick, T., Sandholm, T., Vitercik, E.: Learning to branch. In: International Conference
on Machine Learning, PMLR, pp. 344–353 (2018)

13. Balcan,M.F.F., Prasad, S., Sandholm, T., Vitercik, E.: Sample complexity of tree search configuration:
cutting planes and beyond. Adv. Neural. Inf. Process. Syst. 34, 4015–4027 (2021)

14. Barnhart, C., Laporte, G.: (eds) Transportation, Handbooks in Operations Research andManagement
Science, vol 14. North-Holland (2007)

15. Bengio,Y., Lodi,A., Prouvost,A.:Machine learning for combinatorial optimization: amethodological
tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

16. Berthold, T.: Measuring the impact of primal heuristics. Oper. Res. Lett. 41(6), 611–614 (2013)

123

http://creativecommons.org/licenses/by/4.0/
https://orbi.uliege.be/handle/2268/192361
https://api.semanticscholar.org/CorpusID:972108

Machine learning augmented branch and bound…

17. Berthold, T., Csizmadia, Z.: The confined primal integral: a measure to benchmark heuristic MINLP
solvers against global MINLP solvers. Math. Program. 188(2), 523–537 (2021)

18. Berthold, T., Hendel, G.: Learning to scale mixed-integer programs. Proc. AAAI Conf. Artif. Intell.
35, 3661–3668 (2021)

19. Berthold ,T., Francobaldi, M., Hendel, G.: Learning to use local cuts. (2022). arXiv preprint
arXiv:2206.11618

20. Bolusani, S., Besançon, M., Gleixner, A., Berthold, T., d’Ambrosio, C., Muñoz, G., Paat, J., Tho-
mopulos, D.: TheMIPWorkshop 2023 Computational Competition on Reoptimization. (2023). arXiv
preprint arXiv:2311.14834

21. Bonami, P., Lodi, A., Zarpellon,G.: Learning a classification ofmixed-integer quadratic programming
problems. In: Procedings of the International Conference on Integration of Constraint Programming,
Artificial Intelligence, and Operations Research (CPAIOR), Springer, vol. 15, pp. 595–604 (2018)

22. Bonami, P., Lodi, A., Zarpellon, G.: A classifier to decide on the linearization of mixed-integer
quadratic problems in CPLEX. Oper. Res. 70(6), 3303–3320 (2022)

23. Bubeck, S., Cesa-Bianchi, N., et al.: Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Found. Trends Mach. Learn. 5(1), 1–122 (2012)

24. Cappart, Q., Chételat, D., Khalil, E.B., Lodi, A.,Morris, C., Velic̆ković P,: Combinatorial optimization
and reasoning with graph neural networks. J. Mach. Learn. Res. 24(130), 1–61 (2023)

25. Chen, Z., Liu, J., Wang, X., Yin, W.: On representing linear programs by graph neural networks. In:
Proceedings of the International Conference on Learning Representations, vol. 11 (2023)

26. Chmiela, A., Khalil, E., Gleixner, A., Lodi, A., Pokutta, S.: Learning to schedule heuristics in branch
and bound. Adv. Neural. Inf. Process. Syst. 34, 24235–24246 (2021)

27. Chmiela, A., Gleixner, A., Lichocki, P., Pokutta, S.: Online learning for scheduling MIP heuristics.
In: Proceedings of the International Conference on Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR), Springer, pp. 114–123 (2023)

28. Colombi, M., Mansini, R., Savelsbergh, M.: The generalized independent set problem: polyhedral
analysis and solution approaches. Eur. J. Oper. Res. 260(1), 41–55 (2017)

29. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming Models, Graduate Texts in Mathe-
matics, vol. 271, Springer, pp. 45–84 (2014)

30. Cornuéjols, G., et al.: Revival of the Gomory cuts in the 1990’s. Ann. Oper. Res. 149(1), 63–66 (2007)
31. Dey, S.S., Molinaro,M.: Theoretical challenges towards cutting-plane selection.Math. Program. 170,

237–266 (2018)
32. Deza, A., Khalil, E.B.: Machine learning for cutting planes in integer programming: a survey. In:

International Joint Conference on Artificial Intelligence, ijcai.org, vol. 32, pp. 6592–6600 (2023)
33. Dilkina, B., Gomes, C.P., Malitsky, Y., Sabharwal, A., Sellmann, M.: Backdoors to combinatorial

optimization: feasibility and optimality. In: Proceedings of the InternationalConference on Integration
of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR), Springer,
vol. 6, pp. 56–70 (2009)

34. Ding, J.Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., Song, L.: Accelerating primal solution
findings for mixed integer programs based on solution prediction. Proc. AAAI Conf. Artif. Intell. 34,
1452–1459 (2020)

35. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic
optimization. J. Mach. Learn. Res. 12(7) (2011)

36. Dulac-Arnold, G., Levine, N., Mankowitz, D.J., Li, J., Paduraru, C., Gowal, S., Hester, T.: Challenges
of real-world reinforcement learning: definitions, benchmarks and analysis. Mach. Learn. 110(9),
2419–2468 (2021)

37. Etheve, M., Alès, Z., Bissuel, C., Juan, O., Kedad-Sidhoum, S.: Reinforcement learning for vari-
able selection in a branch and bound algorithm. In: Proceedings of the International Conference on
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR),
Springer, vol. 17, pp. 176–185 (2020)

38. FICO: FICO Xpress Optimizer (2023). https://www.fico.com/en/products/fico-xpress-optimization
39. Fischetti, M., Lodi, A.: Local branching. Math. Program. 98, 23–47 (2003)
40. Fischetti, M., Lodi, A.: Heuristics in Mixed Integer Programming. Wiley Encyclopedia of Operations

Research and Management Science (2010)
41. Fischetti,M., Lodi, A., Zarpellon, G.: LearningMILP resolution outcomes before reaching time-limit.

In: Proceedings of the International Conference on Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR), Springer, pp. 275–291 (2019)

123

http://arxiv.org/abs/2206.11618
http://arxiv.org/abs/2311.14834
https://www.fico.com/en/products/fico-xpress-optimization

L. Scavuzzo et al.

42. Gamrath, G., Schubert, C.: Measuring the impact of branching rules for mixed-integer programming.
In: Operations Research Proceedings 2017: Selected Papers of the Annual International Conference
of the German Operations Research Society (GOR), Freie Universiät Berlin, Germany, September
6–8, 2017, Springer, pp. 165–170 (2018)

43. Gamrath, G., Anderson,D., Bestuzheva,K., Chen,W.K., Eifler, L., Gasse,M., Gemander, P., Gleixner,
A., Gottwald, L., Halbig, K., et al.: The SCIP Optimization Suite 7.0 (2020)

44. Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial optimization with
graph convolutional neural networks. Adv. Neural Inf. Process. Syst. 32 (2019)

45. Gasse,M.,Bowly, S.,Cappart,Q.,Charfreitag, J.,Charlin, L.,Chételat,D.,Chmiela,A.,Dumouchelle,
J., Gleixner, A., Kazachkov, A.M. et al.: The machine learning for combinatorial optimization com-
petition (ML4CO): results and insights. In: NeurIPS 2021 Competitions and Demonstrations Track,
PMLR, pp. 220–231 (2022)

46. Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T., Christophel, P.,
Jarck, K., Koch, T., Linderoth, J., et al.: MIPLIB 2017: data-driven compilation of the 6th mixed-
integer programming library. Math. Program. Comput. 13(3), 443–490 (2021)

47. Gondzio, J.: Interior point methods 25 years later. Eur. J. Oper. Res. 218(3), 587–601 (2012)
48. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
49. Greenacre, M., Groenen, P.J., Hastie, T., d’Enza, A.I., Markos, A., Tuzhilina, E.: Principal component

analysis. Nature Rev. Methods Primers 2(1), 100 (2022)
50. Gupta, P., Gasse, M., Khalil, E., Mudigonda, P., Lodi, A., Bengio, Y.: Hybrid models for learning to

branch. Adv. Neural. Inf. Process. Syst. 33, 18087–18097 (2020)
51. Gupta, P., Khalil, E.B., Chételat, D., Gasse, M., Lodi, A., Bengio, Y., Kumar, M.P.: Lookback for

learning to branch. Trans. Mach. Learn. Res. https://openreview.net/forum?id=EQpGkw5rvL, expert
Certification (2022)

52. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023). https://www.gurobi.com
53. He, H., Daume III, H., Eisner, J.M.: Learning to search in branch and bound algorithms. Adv. Neural

Inf. Process. Syst. 27 (2014)
54. Hendel, G.: Adaptive large neighborhood search for mixed integer programming. Math. Program.

Comput. 14(2), 185–221 (2022)
55. Hendel, G., Miltenberger, M., Witzig, J.: Adaptive algorithmic behavior for solving mixed integer

programs using bandit algorithms. In: Operations Research Proceedings 2018, Springer, Berlin pp.
513–519 (2019)

56. Hendel, G., Anderson, D., Le Bodic, P., Pfetsch, M.E.: Estimating the size of branch-and-bound trees.
INFORMS J. Comput. 34(2), 934–952 (2022)

57. Hewitt, M., Nemhauser, G.L., Savelsbergh, M.W.: Combining exact and heuristic approaches for the
capacitated fixed-charge network flow problem. INFORMS J. Comput. 22(2), 314–325 (2010)

58. Huang, T., Ferber, A.M., Tian, Y., Dilkina, B., Steiner, B.: Searching large neighborhoods for integer
linear programs with contrastive learning. In: International Conference onMachine Learning, PMLR,
pp. 13869–13890 (2023)

59. Hutter, F.,Hoos,H.H., Leyton-Brown,K., Stützle, T.: ParamILS: an automatic algorithmconfiguration
framework. J. Artif. Intell. Res. 36, 267–306 (2009)

60. IBM(2023) IBMILOGCPLEXOptimizer. https://www.ibm.com/products/ilog-cplex-optimization-
studio/cplex-optimizer

61. Karamanov, M., Cornuéjols, G.: Branching on general disjuctions. Math. Program. 128, 403–436
(2011)

62. Khalil, E.: Towards tighter integration of machine learning and discrete optimization. Ph.D. thesis,
Georgia Institute of Technology (2019)

63. Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch in mixed integer
programming. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30(1) (2016)

64. Khalil, E.B., Dilkina, B., Nemhauser, G.L., Ahmed, S., Shao, Y.: Learning to run heuristics in tree
search. In: International Joint Conference on Artificial Intelligence, pp. 659–666 (2017)

65. Khalil, E.B., Morris, C., Lodi, A.: MIP-GNN: A data-driven framework for guiding combinatorial
solvers. AAAI (2022)

66. Khalil, E.B., Vaezipoor, P., Dilkina, B.: Finding backdoors to integer programs: a monte carlo tree
search framework. Proc. AAAI Conf. Artif. Intell. 36, 3786–3795 (2022)

67. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv preprint
arXiv:1412.6980

123

https://openreview.net/forum?id=EQpGkw5rvL
https://www.gurobi.com
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
http://arxiv.org/abs/1412.6980

Machine learning augmented branch and bound…

68. Kirk, R., Zhang, A., Grefenstette, E., Rocktäschel, T.: A survey of zero-shot generalisation in deep
reinforcement learning. J. Artif. Intell. Res. 76, 201–264 (2023)

69. Kruber, M., Lübbecke, M.E., Parmentier, A.: Learning when to use a decomposition. In: Proceedings
of the International Conference on Integration of Constraint Programming, Artificial Intelligence,
and Operations Research (CPAIOR), Springer, vol. 14, pp. 202–210 (2017)

70. Labassi, A.G., Chételat, D., Lodi, A.: Learning to compare nodes in branch and bound with graph
neural networks. Adv. Neural Inf. Process. Syst. (2022)

71. Li, S., Ouyang, W., Paulus, M., Wu, C.: Learning to configure separators in branch-and-cut. Adv.
Neural. Inf. Process. Syst. 36, 60021–60034 (2023)

72. Lin, J., Zhu, J., Wang, H., Zhang, T.: Learning to branch with tree-aware branching transformers.
Knowl.-Based Syst. 252, 109455 (2022)

73. Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies for mixed integer
programming. INFORMS J. Comput. 11, 173–187 (1999)

74. Liu, D., Fischetti, M., Lodi, A.: Learning to search in local branching. Proc. AAAI Conf. Artif. Intell.
36, 3796–3803 (2022)

75. Lodi, A., Tramontani, A.: Performance variability in mixed-integer programming. In: Theory Driven
by Influential Applications, INFORMS, pp. 1–12 (2013)

76. MIPLIB: MIPLIB 2017—The Mixed Integer Programming Library. https://miplib.zib.de/ (2017)
77. Mitchell, T.M.: Machine Learning. McGraw Hill, New York (2017)
78. Nair, V., Bartunov, S., Gimeno, F., von Glehn, I., Lichocki, P., Lobov, I., O’Donoghue, B., Sonnerat,

N., Tjandraatmadja, C.,Wang, P. et al.: Solvingmixed integer programs using neural networks (2020).
arXiv preprint arXiv:2012.13349

79. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley Interscience Series
in Discrete Mathematics and Optimization. Wiley, London (1999)

80. Nocedal, J., Wright, S.J.: Linear programming: Interior-point methods. In: Numerical Optimization,
Springer, chap 14 (2006)

81. OpenAI: Introducing ChatGPT (2022). https://openai.com/blog/chatgpt, [Online; accessed 04-April-
2023]

82. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric
traveling salesman problems. SIAM Rev. 33(1), 60–100 (1991)

83. Patel, K.K.: Progressively strengthening and tuning MIP solvers for reoptimization. (2023). arXiv
preprint arXiv:2308.08986

84. Paulus, M.B., Zarpellon, G., Krause, A., Charlin, L., Maddison, C.: Learning to cut by looking ahead:
cutting plane selection via imitation learning. In: International Conference on Machine Learning,
PMLR, pp. 17584–17600 (2022)

85. Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming. Springer Series in
Operations Research and Financial Engineering, Springer (2006)

86. Pomerleau, D.A.: Efficient training of artificial neural networks for autonomous navigation. Neural
Comput. 3(1), 88–97 (1991)

87. Prouvost, A., Dumouchelle, J., Scavuzzo, L., Gasse, M., Chételat, D., Lodi, A.: Ecole: A gym-
like library for machine learning in combinatorial optimization solvers (2020). arXiv preprint
arXiv:2011.06069

88. Qian, C., Chételat, D., Morris, C.: Exploring the power of graph neural networks in solving linear
optimization problems (2023). arXiv preprint arXiv:2310.10603

89. Santos Xavier, A., Qiu, F., Gu, X., Becu, B., Dey, S.S.: MIPLearn: an extensible framework for
learning-enhanced optimization (2023). https://doi.org/10.5281/zenodo.8018181

90. Scavuzzo, L., Chen, F.Y., Chételat, D., Gasse, M., Lodi, A., Yorke-Smith, N., Aardal, K.: Learning
to branch with tree MDPs. Adv. Neural Inf. Process. Syst. (2022)

91. Schrijver, A.: Theory of Linear and Integer Programming. Wiley Interscience Series in Discrete
Mathematics and Optimization. Wiley, London (1998)

92. Sewak, M.: Deep Reinforcement Learning. Springer, Berlin (2019)
93. Seyfi, M., Banitalebi-Dehkordi, A., Zhou, Z., Zhang, Y.: Exact combinatorial optimization with

temporo-attentional graph neural networks. In: Proceedings of the Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (ECML PKDD), Springer, pp. 268–283
(2023)

123

https://miplib.zib.de/
http://arxiv.org/abs/2012.13349
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2308.08986
http://arxiv.org/abs/2011.06069
http://arxiv.org/abs/2310.10603
https://doi.org/10.5281/zenodo.8018181

L. Scavuzzo et al.

94. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems.
In: International Conference on Principles and Practice of Constraint Programming, Springer, pp.
417–431 (1998)

95. Song, J., Lanka, R., Yue, Y., Dilkina, B.: A general large neighborhood search framework for solving
integer linear programs. Adv. Neural. Inf. Process. Syst. 33, 20012–20023 (2020)

96. Sonnerat, N., Wang, P., Ktena, I., Bartunov, S., Nair, V.: Learning a large neighborhood search
algorithm for mixed integer programs (2021). arXiv preprint arXiv:2107.10201

97. Tang, Y., Agrawal, S., Faenza, Y.: Reinforcement learning for integer programming: learning to cut.
In: International Conference on Machine Learning, PMLR, pp. 9367–9376 (2020)

98. Turner, M., Koch, T., Serrano, F., Winkler, M.: Adaptive cut selection in mixed-integer linear pro-
gramming. Open J. Math. Optim. 4, 5 (2023)

99. Vinyals, O., Babuschkin, I., Chung, J.,Mathieu,M., Jaderberg,M., Czarnecki,W., Dudzik, A., Huang,
A., Georgiev, P., Powell, R., Ewalds, T., Horgan, D., Kroiss, M., Danihelka, I., Agapiou, J., Oh, J.,
Dalibard, V., Choi, D., Sifre, L., Sulsky, Y., Vezhnevets, S., Molloy, J., Cai, T., Budden, D., Paine,
T., Gulcehre, C., Wang, Z., Pfaff, T., Pohlen, T., Yogatama, D., Cohen, J., McKinney, K., Smith, O.,
Schaul, T., Lillicrap, T., Apps, C., Kavukcuoglu, K., Hassabis, D., Silver, D.: AlphaStar: Mastering
the Real-Time Strategy Game StarCraft II. (2019) https://deepmind.com/blog/alphastar-mastering-
real-time-strategy-game-starcraft-ii/

100. Wang, Z., Li, X., Wang, J., Kuang, Y., Yuan, M., Zeng, J., Zhang, Y., Wu, F.: Learning cut selection
for mixed-integer linear programming via hierarchical sequence model. In: International Conference
on Learning Representations (2023) https://openreview.net/forum?id=Zob4P9bRNcK

101. Wesselmann, F., Stuhl, U.: Implementing cutting plane management and selection techniques. In:
Technical Report, University of Paderborn (2012) https://optimization-online.org/?p=12261

102. Wirtz, M., Hahn, M., Schreiber, T., Müller, D.: Design optimization of multi-energy systems using
mixed-integer linear programming: which model complexity and level of detail is sufficient? Energy
Convers. Manage. 240, 114249 (2021)

103. Wolsey, L.A.: Integer Programming. Wiley, London (2020)
104. Wu, Y., Song, W., Cao, Z., Zhang, J.: Learning large neighborhood search policy for integer program-

ming. Adv. Neural. Inf. Process. Syst. 34, 30075–30087 (2021)
105. Yilmaz, K., Yorke-Smith, N.: A study of learning search approximation in mixed integer branch and

bound: node selection in SCIP. AI 2(2), 150–178 (2021)
106. Zarpellon, G., Jo, J., Lodi, A., Bengio, Y.: Parameterizing branch-and-bound search trees to learn

branching policies. Proc. AAAI Conf. Artif. Intell. 35, 3931–3939 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2107.10201
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://openreview.net/forum?id=Zob4P9bRNcK
https://optimization-online.org/?p=12261

	Machine learning augmented branch and bound for mixed integer linear programming
	Abstract
	1 Introduction
	1.1 Mixed integer linear programming
	1.2 MILP solvers
	1.3 Evaluation metrics for MILP
	Optimality gap
	Primal gap and integral
	Primal-dual integral

	2 A brief introduction to machine learning
	2.1 Mapping features to predictions
	2.2 Elements of the learning process

	3 Learning tasks
	3.1 Primal heuristics
	3.1.1 Solution prediction to guide the search
	3.1.2 Solution improvement via neighborhood selection
	3.1.3 Learning to schedule heuristics
	3.1.4 Future outlook

	3.2 Branching
	3.2.1 A first approach to learning from strong branching
	3.2.2 Online learning to branch
	3.2.3 Offline learning with structure specialization
	3.2.4 Towards a general branching rule
	3.2.5 Expert-free learning to branch
	3.2.6 Future outlook

	3.3 Cutting planes
	3.3.1 Single-cut selection
	3.3.2 Multi-cut selection
	3.3.3 Beyond scoring
	3.3.4 Future outlook

	3.4 Node selection
	3.4.1 Future outlook

	3.5 Configuration decisions
	3.5.1 Future outlook

	4 Problem representation
	4.1 The bipartite graph representation
	4.2 Representing variables individually
	4.3 Representing constraints individually
	4.4 Representing a (sub-)MILP
	4.5 Outlook

	5 Datasets and software
	5.1 Datasets
	5.2 Software

	6 Conclusions, perspective and challenges
	Acknowledgements
	References

