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Abstract. Training neural networks (NNs) using combinatorial optimization solvers has 
gained attention in recent years. In low-data settings, the use of state-of-the-art mixed inte-
ger linear programming solvers, for instance, has the potential to exactly train an NN while 
avoiding computing-intensive training and hyperparameter tuning and simultaneously 
training and sparsifying the network. We study the case of few-bit discrete-valued neural 
networks, both binarized neural networks (BNNs) whose values are restricted to 61 and 
integer-valued neural networks (INNs) whose values lie in the range {�P, : : : , P}. Few-bit 
NNs receive increasing recognition because of their lightweight architecture and ability to 
run on low-power devices: for example, being implemented using Boolean operations. 
This paper proposes new methods to improve the training of BNNs and INNs. Our contri-
bution is a multiobjective ensemble approach based on training a single NN for each possi-
ble pair of classes and applying a majority voting scheme to predict the final output. Our 
approach results in the training of robust sparsified networks whose output is not affected 
by small perturbations on the input and whose number of active weights is as small as 
possible. We empirically compare this BeMi approach with the current state of the art in 
solver-based NN training and with traditional gradient-based training, focusing on BNN 
learning in few-shot contexts. We compare the benefits and drawbacks of INNs versus 
BNNs, bringing new light to the distribution of weights over the {�P, : : : , P} interval. 
Finally, we compare multiobjective versus single-objective training of INNs, showing that 
robustness and network simplicity can be acquired simultaneously, thus obtaining better 
test performances. Although the previous state-of-the-art approaches achieve an average 
accuracy of 51:1% on the Modified National Institute of Standards and Technology data 
set, the BeMi ensemble approach achieves an average accuracy of 68.4% when trained with 
10 images per class and 81.8% when trained with 40 images per class while having up to 
75.3% NN links removed.
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1. Introduction
State-of-the-art deep neural networks (NNs) contain a huge number of neurons organized in many layers, and they 
require an immense amount of data for training (LeCun et al. 2015). The training process is computationally 
demanding and is typically performed by stochastic gradient descent algorithms running on large Graphics 
Processing Unit (GPU)-based or even tensor processing unit (TPU)-based clusters. Whenever the trained (deep) 
neural network contains many neurons, the network deployment is also computationally demanding. However, in 
some real-life applications, extensive GPU-based training might be infeasible, training data might be scarce with 
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only a few data points per class, or the hardware using the NN at inference time might have a limited computa-
tional power as, for instance, whenever the NN is executed on an industrial embedded system (Blott et al. 2019).

Binarized neural networks (BNNs) were introduced in Hubara et al. (2016) as a response to the challenge of run-
ning NNs on low-power devices. BNNs contain only binary weights and binary activation functions, and hence, 
they can be implemented using only efficient bit-wise operations. However, the training of BNNs raises interesting 
challenges for gradient-based approaches because of their combinatorial structure. In previous works (Toro Icarte 
et al. 2019), it was shown that the training of a BNN can be performed by using combinatorial optimization solvers; 
a hybrid constraint programming (CP) and mixed integer programming (MIP) approach outperformed the stochas-
tic gradient approach proposed by Hubara et al. (2016) if restricted to a few-shot learning context (Vanschoren 
2019). The work of Toro Icarte et al. (2019) has been furthered by a number of authors more recently as we survey in 
the next section.

Indeed, combinatorial approaches (principally, MIP) for training neural networks, both discrete and continuous, have 
been employed in the literature as demonstrated in subsequent works (e.g., Kurtz and Bah 2021, Patil and Mintz 2022). 
MIP optimization has been explored in the machine learning community, such as in Li et al. (2020), Huang et al. (2023), 
and Ye et al. (2023) for instance. Various architectures and activation functions have been utilized in these studies. 
Solver-based training has the advantage that, in principle, the optimal NN weights can be found for the training data 
and that network optimization (e.g., pruning) or adversarial hardening can be performed.

The main challenge in training an NN by an exact MIP-based approach is the limited amount of training data that can 
be used because otherwise, the size of the optimization model explodes. In the recent work of Thorbjarnarson and 
Yorke-Smith (2023), the combinatorial training idea was further extended to integer-valued neural networks (INNs). 
Exploiting the flexibility of MIP solvers, the authors were able to (i) minimize the number of neurons during training 
and (ii) increase the number of data points used during training by introducing an MIP batch training method.

We remark that training an NN with an MIP-based approach is more challenging than solving a verification 
problem, such as in Fischetti and Jo (2018) and Anderson et al. (2020), even if the structure of the nonlinear con-
straints modeling the activation functions is similar. In NNs verification (Khalil et al. 2019), the weights are given as 
input, whereas in MIP-based training, the weights are the decision variables that must be computed.

We note several lines of work aimed at producing compact and simple NNs that maintain acceptable accuracy (e.g., 
in terms of parameter pruning (Serra et al. 2020, Yu et al. 2022, Cai et al. 2023, ElAraby et al. 2023), loss function improve-
ment (Tang et al. 2017), gradient approximation (Sakr et al. 2018), and network topology structure (Lin et al. 2017)).

In the context of MIP-based training and optimization of NNs, this paper proposes new methods to improve the 
training of BNNs and INNs. In summary, our contributions are (i) the formulation of an MILP model with a multi-
objective target that consists of already existing single-objective steps in a lexicographic order; (ii) the implementa-
tion of an ensemble of few-bits NNs, in which each of them is specialized in a specific classification task; and (iii) 
the proposal of a voting scheme inspired by a one-versus-one (OVO) strategy, tailored specifically for the con-
structed ensemble of NNs. Our computational results using the Modified National Institute of Standards and Tech-
nology (MNIST) and the Fashion-MNIST data set show that the BeMi1 ensemble permits us to use for training up to 
40 data points per class thanks to the fact that the OVO strategy results in smaller MILPs, reaching an average accu-
racy of 81.8% for MNIST and 70.7% for Fashion-MNIST. In addition, thanks to the multiobjective function that 
minimizes the number of links (i.e., the connections between different neurons), up to 75% of weights are set to zero 
for MNIST, and up to 48% of weights are set to zero for Fashion-MNIST. We also perform additional experiments 
on the Heart Disease data set, reaching an average accuracy of 78.5%. A preliminary report of this work appeared at 
the Learning and Intelligent Optimization 2023 conference (Bernardelli et al. 2023). This paper better motivates and 
situates our approach in the state of the art, develops our ensemble approach for INNs (not only BNNs), presents 
more extensive and improved empirical results, and analyzes the distribution of INN weights.

1.1. Outline
The remainder of this paper is as follows. Section 2 situates our work in the literature. Section 3 introduces the nota-
tion and defines the problem of training a single INN with the existing MIP-based methods. Section 4 presents the 
BeMi ensemble, the majority voting scheme, and the improved MILP model to train a single INN. Section 5 presents 
the computational results on the MNIST, Fashion-MNIST, and Heart Disease data sets. Finally, Section 6 concludes 
the paper with a perspective on future work.

2. Related Works
Recently, there has been growing research interest in studying the impact of machine learning on improving tradi-
tional operations research methods (e.g., see Bengio et al. 2021 and Cappart et al. 2023), in designing integrated 
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predictive and modeling frameworks as in Bergman et al. (2022), or in embedding a pretrained machine learning 
model into an optimization problem (e.g., see Lombardi and Milano 2018, Mistry et al. 2021, and Tsay et al. 2021). In 
this work, we take a different perspective, and we study how an exact MILP solver can be used for training machine 
learning models: more specifically, to train (binary or integer) neural networks. In the following paragraphs, we 
first review two recent applications to MILP solvers in the context of neural networks (i.e., weight pruning and NN 
verification), and later, we review the few works that have tackled the challenge of training an NN using an exact 
solver.

2.1. MIP-Based Neural Networks Pruning
Recent works have shown interesting results on pruning a trained neural network using an optimization approach 
based on the use of MIP solvers (Serra et al. 2020, Good et al. 2022, Yu et al. 2022, Cai et al. 2023, ElAraby et al. 2023). 
When pruning a trained neural network, the weights are fixed, and the optimization variables represent the deci-
sion to keep or remove an existing weight different from zero.

2.2. MIP-Based Neural Networks Verification
Another successful application of exact solvers in the context of neural networks is for tackling the verification 
problem: that is, to verify under which conditions the accuracy of a given trained neural network does not deterio-
rate. In other words, in NN verification, the optimization problem consist of finding adversarial examples using a 
minimal distortion of the input data. The use of MIP solvers for this application was pioneered in Tjeng et al. (2018) 
and later studied in several papers, such as Fischetti and Jo (2018), Tjeng et al. (2018), Anderson et al. (2020), Botoeva 
et al. (2020), and Tjandraatmadja et al. (2020). For a broader discussion of the use of the polyhedral approach to veri-
fication, see Huchette et al. (2023, section 4). In NN verification, the weights of the NN are given as input, and the 
optimization problem consists of assessing how much the input can change without compromising the output of 
the network. Indeed, verification is also a different optimization problem than the exact training that we discuss in 
the following sections.

2.3. Exact Training of Neural Networks
The utilization of MIP approaches for training neural networks has already been explored in the literature, primar-
ily in the context of few-shot learning and NNs with low-bit parameters (Toro Icarte et al. 2019, Thorbjarnarson and 
Yorke-Smith 2023). One of the main advantages of these approaches is the ability to simultaneously train and opti-
mize the network architecture. Although the modeling that defines the structure of the neural network is rigid and 
heavily relies on the discrete nature of the parameters, the choice of the objective function provides more flexibility 
and allows for the optimization of various network characteristics. For instance, it enables the minimization of the 
number of connections in a fixed architecture network, thereby promoting lightweight architectures.

From now on, by INN, we indicate a general NN whose weights take value in the set {�P, : : : , P}, where integer 
P � 1. Notice that this choice includes the special case of BNNs (pà1). When referring to an INN with p>1, we will 
write nontrivial INN.

By incorporating the power of both CP and MIP, the study of Toro Icarte et al. (2019) showcased the effectiveness 
of leveraging combinatorial optimization methods for training BNNs in a few-shot learning context. Two types of 
objective functions were selected to drive the optimization process. The first objective function aimed at promoting 
a lightweight architecture by minimizing the number of nonzero weights. This objective sought to reduce the over-
all complexity of the neural network, allowing for efficient computation and resource utilization. Note that with 
this choice, pruning is not necessary; the possibility of setting a weight to zero is equivalent to removing the corre-
sponding weight (i.e., connection). In contrast, the second objective function focused on enhancing the robustness 
of the network, particularly in the face of potential noise in the input data. Robustness here refers to the ability of 
the network to maintain stable and reliable performance even when the input exhibits variations or disturbances. 
The research of Thorbjarnarson and Yorke-Smith (2023) extends the single-objective approach of Toro Icarte et al. 
(2019) to the broader class of integer-valued neural networks. In addition to leveraging the objectives of architec-
tural lightness and robustness, a novel objective aimed at maximizing the number of correctly classified training 
data instances is introduced. It is worth noting that this type of objective shares some similarities with the goals pur-
sued by gradient descent methods, albeit with a distinct formulation. An interesting observation is that this objec-
tive formulation remains feasible in practice, ensuring that a valid solution can be obtained. We remark that both 
papers propose single-objective models that involve training a single neural network to approximate a multiclassifi-
cation function.

Ensembles of neural networks are well known to yield more stable predictions and demonstrate superior gener-
alizability compared with single neural network models (Wang et al. 2023). In this paper, we aim to redefine the 
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concept of structured ensemble by composing our ensemble of several networks, each specialized in a distinct task. 
Given a classification task over k classes, the main idea is to train k(k�1)

2 INNs, where every single network learns to 
discriminate only between a given pair of classes. When a new data point (e.g., a new image) must be classified, it is 
first fed into the k(k�1)

2 trained INNs, and later, using a Condorcet-inspired majority voting scheme (Young 1988), the 
most frequent class is predicted as output. This method is similar to and generalizes the support vector machine 
and OVO approach (Bishop and Nasrabadi 2006), whereas it has not yet been applied within the context of neural 
networks to the best of our knowledge.

For training every single INN, our approach extends the methods introduced in Toro Icarte et al. (2019) and 
Thorbjarnarson and Yorke-Smith (2023), as described above.

3. Few-Bit Neural Networks
In this section, we formally define a binarized neural network and an integer-valued neural network using the nota-
tion as in Toro Icarte et al. (2019) and Thorbjarnarson and Yorke-Smith (2023), whereas in the next section, we show 
how to create a structured ensemble of INNs.

3.1. Binarized Neural Networks
The architecture of a BNN is defined by a set of layers N à {N0, N1, : : : , NL}, where Nl à {1, : : : , nl}, and nl is the 
number of neurons in the lth layer. Let the training set be X :à {(x1, y1), : : : , (xt, yt)} such that xi 2 Rn0 and yi 2
{�1, +1}nL for every i 2 T à {1, 2, : : : , t}. The first layer N0 corresponds to the size of the input data points xk. Regarding 
nL, we make the following consideration. For a classification problem with |I | classes, we set nL :à dlog[2] |I |e. For the 
case |I | à 2, therefore, nL will be equal to one. This is consistent with binary classification problems as the two classes 
can be represented as +1 and �1. When |I | à 4, then nL will be equal to two, and the four classes will be represented by 
(+1, +1), (+1, �1), (�1, +1), and (�1, �1). When |I | is a power of two, the procedure generalizes in an obvious man-
ner. However, when the number of classes is not a power of two, we still choose nL as the nearest integer greater than or 
equal to the base-2 logarithm of that number, with the caveat that a single network may opt not to classify. For example, 
if |I | à 3, then nLà2; (+1, +1) will be associated with the first class, (+1, �1) will be associated with the second class, 
and (�1, +1) will be associated with the third class, whereas (�1, �1) will be interpreted as “unclassified.”

The link between neuron i in layer Nl�1 and neuron j in layer Nl is modeled by weight wilj 2 {�1, 0, +1}. 
Note that the binarized nature is encoded in the 61 weights, whereas when a weight is set to zero, the corre-
sponding link is removed from the network. Hence, during training, we are also optimizing the architecture 
of the BNN.

The activation function is the binary function
ρ(x) :à 2 · 1(x � 0)� 1, (1) 

that is, a sign function reshaped such that it takes 61 values. Here, the indicator function 1(p) outputs +1 if proposi-
tion p is verified and outputs 0 otherwise. This choice for the activation function has been made in line with the liter-
ature (Hubara et al. 2016).

In this paper, we aim to build different MILP models for the simultaneous training and optimization of a network 
architecture. To model the activation function (1) of the jth neuron of layer Nl for data point xk, we introduce a 
binary variable uk

lj 2 {0, 1} for the indicator function 1(p). To rescale the value of uk
lj in {�1, +1} and model the acti-

vation function value, we introduce the auxiliary variable zk
lj à (2uk

lj� 1). For the first input layer, we set zk
0j à xk

j ; for 
the last layer, we account in the loss function for whether zk

Lh is different from yk
h. The definition of the activation 

function becomes

zk
lj à ρ

X

i2Nl�1

zk
(l�1)iwilj

 !

à 2 · 1
X

i2Nl�1

zk
(l�1)iwilj � 0

 !

� 1 à 2uk
lj� 1:

Notice that the activation function at layer Nl gives a nonlinear combination of the output of the neurons in the pre-
vious layer Nl�1 and the weights wilj between the two layers. Section 4.1 shows how to formulate this activation 
function in terms of mixed integer linear constraints. We remark that the modeling we propose has already been 
presented in the literature by Toro Icarte et al. (2019).

The choice of a family of parameters W :à {wilj}l2{1, : : : , L}, i2Nl�1, j2Nl 
determines the function

fW : Rn0 ! {61}nL :
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The training of a neural network is the process of computing the family W such that fW classifies correctly both the 
given training data (that is, fW(xi) à yi for i à 1, : : : , t) and the new unlabeled testing data.

In the training of a BNN, we follow two machine learning principles for generalization: robustness and simplicity 
(Toro Icarte et al. 2019). In doing so, we target two objectives. (i) The resulting function fW should generalize from 
the input data and be robust to noise in the input data. (ii) The resulting network should be simple: that is, with the 
smallest number of nonzero weights that permit us to achieve the best accuracy.

Regarding the robustness objective, there is an argument that deep neural networks have inherent 
robustness because minibatch stochastic gradient-based methods implicitly guide toward robust solutions 
(Kawaguchi et al. 2017, Keskar et al. 2017, Neyshabur et al. 2017). However, as shown in Toro Icarte et al. 
(2019), this is false for BNNs in a few-shot learning regime. On the contrary, MIP-based training with an 
appropriate objective function can generalize very well (Toro Icarte et al. 2019, Thorbjarnarson and Yorke- 
Smith 2023), but it does not apply to large training data sets because the size of the MIP training model is 
proportional to the size of the training data set.

One possible way to impose robustness in the context of few-shot learning is to maximize the margins of the neu-
rons; that is, fixing one neuron, we aim at finding an ingoing weights configuration such that for every training 
input, the entry of the activation function evaluated at that neuron is confidently far away from the discontinuity 
point. Intuitively, neurons with larger margins require larger changes to their inputs and weights before changing 
their activation values. This choice is also motivated by recent work showing that margins are good predictors for 
the generalization of deep convolutional NNs (Jiang et al. 2019).

Regarding the simplicity objective, a significant parameter is the number of connections (Moody 1991). The train-
ing algorithm should look for an NN fitting the training data while minimizing the number of nonzero weights. 
This approach can be interpreted as a simultaneous compression during training, and it has been already explored 
in recent works (Serra et al. 2021, Roger et al. 2022).

3.1.1. MIP-Based BNN Training. In Toro Icarte et al. (2019), two different MIP models are introduced: the Max-Margin 
(MM), which aims to train robust BNNs, and the Min-Weight (MW), which aims to train simple BNNs. These two mod-
els are combined with a CP model into the two hybrid methods HW and HA in order to obtain a feasible solution 
within a fixed time limit. Toro Icarte et al. (2019) employ CP because their MIP models do not scale as the amount of 
training data increases. We remark that in that work, the two objectives, robustness and simplicity, are never opti-
mized simultaneously.

3.1.2. Gradient-Based BNN Training. In Hubara et al. (2016), a gradient descent-based method is proposed, consist-
ing of a local search that changes the weights to minimize a square hinge loss function. Note that a BNN trained 
with this approach only learns 61 weights. An extension of this method that exploits the same loss function but 
admits zero-value weights, called GDt, is proposed in Toro Icarte et al. (2019) to facilitate the comparison with the 
other approaches.

3.2. Integer Neural Networks
A more general discrete NN can be obtained when the weights of the network lie in the set {�P, �P + 1, : : : , �1, 
0, 1, : : : , P� 1, P}, where P is a positive integer. The resulting network is called INN, and by letting pà1, we obtain 
the BNN presented in the previous subsection. The activation function ρ�and the binary variables uk

lj are defined as 
above. The principles leading the training are again simplicity and robustness.

An apparent advantage of using more general integer neural networks lies in the fact that the parameters 
have increased flexibility while still maintaining their discrete nature. Additionally, by appropriately selecting 
the parameter P, one can determine the number of bits used for each parameter. For instance, pà 1 corresponds 
to one bit, pà 3 corresponds to two bits, pà 8 corresponds to three bits, and in general, P à 2n�1 corresponds to 
n-bits.

3.2.1. MIP-Based INN Training. In Thorbjarnarson and Yorke-Smith (2023), three MIP models are proposed in 
order to train INNs. The first model, Max-Correct, is based on the idea of maximizing the number of corrected pre-
dicted images. The second model, Min-Hinge (MH), is inspired by the squared hinge loss (compare with Hubara et al. 
2016). The last model, Sat-Margin (SM), combines aspects of both of the first two models. These three models always 
produce a feasible solution but use the margins only on the neurons of the last level, hence obtaining less 
robust NNs.
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3.2.2. Relations to Quantized Neural Networks. By using an exact MIP solver for training INNs, we are dealing 
directly with the problem of training a quantized neural network, where all of the weights are restricted to 
take values over a small domain as discussed above. For instance, as reviewed in Gholami et al. (2022), there 
is a growing trend in training NNs using floating point numbers in low precision: that is, using only as few as 
eight bits per weight (see, for example, Banner et al. 2018). However, most of the work in the machine learning 
literature either focuses on the impact of low-precision arithmetic on the computation of the (stochastic) gra-
dient and in the backpropagation algorithm or focuses on how to quantize a trained NN by minimizing the 
deterioration in the accuracy. In our work, we take a different perspective on quantization methods because 
we do not rely on a gradient-based method to train our INN, but we model and directly solve the problem 
of training the NN using only a restricted number of integer weights, which is called integer-only quantization 
in Gholami et al. (2022). Moreover, by using an exact MIP solver, we can directly find the optimal weights of 
our (small) INN without running the risk of being trapped into a local minima as stochastic gradient- 
based methods.

4. The BeMi Ensemble
This section first introduces a multiobjective mixed-integer linear programming (MILP) model that allows for a 
simultaneous training and optimization for an INN (Section 4.1), and then, it proposes a method for combining a 
set of neural networks for classification purposes (Section 4.2).

4.1. A Multiobjective MILP Model for Training INNs
For ease of notation, we denote with L :à {1, : : : , L} the set of layers, and we denote with L2 :à {2, : : : , L}, LL�1 :à
{1, : : : , L� 1} two of its subsets. We also denote with b :àmaxk2T, j2N0{ |xk

j | } a bound on the values of the training data.

4.1.1. The Multiobjective Target. A few MIP models are proposed in the literature to train INNs efficiently. In this 
work, to train a single INN, we use a lexicographic multiobjective function that results in the sequential solution of 
three different state-of-the-art MIP models: the Sat-Margin (described in Thorbjarnarson and Yorke-Smith 2023), the 
Max-Margin (described in Toro Icarte et al. 2019), and the Min-Weight (described in Toro Icarte et al. 2019). The first 
model SM maximizes the amount of confidently correctly predicted data. The other two models, MM and MW, aim to 
train an INN following two principles: robustness and simplicity. Our model is based on a lexicographic multiob-
jective function. First, we train an INN with the model SM, which is fast to solve and always gives a feasible solution. 
Second, we use this solution as a warm start for the MM model, training the INN only with the images that SM cor-
rectly classified. Third, we fix the margins found with MM, and we minimize the number of active weights with MW, 
finding the simplest INN with the robustness found by MM.

4.1.2. Problem Variables. The critical part of our model is the formulation of the nonlinear activation function (1). 
We use an integer variable wilj 2 {�P, �P + 1, : : : , P} to represent the weight of the connection between neuron i 2
Nl�1 and neuron j 2Nl. Variable uk

lj models the result of the indicator function 1(p) that appears in the activation 
function ρ(·) for the training instance xk. The neuron activation is actually defined as 2uk

lj � 1. We introduce auxiliary 
variables ck

ilj to represent the products ck
ilj à (2uk

lj� 1)wilj. Note that although in the first layer, these variables share 
the same domain of the inputs, from the second layer on, they take values in {�P, �P + 1, : : : , P}. Finally, the auxil-
iary variables ŷk represent a predicted label for the input xk, and variables qk

j are used to take into account the data 
points correctly classified.

The procedure is designed such that the parameter configuration obtained in the first step is used as a warm start 
for the MM. Similarly, the solution of the second step is used as a warm start for the solver to solve MW. In this case, 
the margins lose their nature as decision variables and become deterministic constants derived from the solution of 
the previous step.

4.1.3. Sat-Margin Model. We first train our INN using the following SM model:

max
X

k2T

X

j2NL

qk
j (2a) 

s:t: qk
j à 1 ) ŷk

j · yk
j �

1
2 ∀j 2 NL, k 2 T, (2b) 
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qk
j à 0 ) ŷk

j · yk
j 

1
2� ✏̂ ∀j 2 NL, k 2 T, (2c) 

ŷk
j à

2
P · (nL�1 + 1)

X

i2NL�1

ck
iLj ∀j 2 NL, k 2 T, (2d) 

uk
lj à 1 )

X

i2Nl�1

ck
ilj � 0 ∀l 2 LL�1, j 2 Nl, k 2 T, (2e) 

uk
lj à 0 )

X

i2Nl�1

ck
ilj  �✏ ∀l 2 LL�1, j 2 Nl, k 2 T, (2f) 

ck
i1j à xk

i · wi1j ∀i 2 N0, j 2 N1, k 2 T, (2g) 

ck
ilj à (2uk

(l�1)j � 1)wilj ∀l 2 L2, i 2 Nl�1, j 2 Nl, k 2 T, (2h) 

qk
j 2 {0, 1} ∀j 2 NL, k 2 T, (2i) 

wilj 2 {�P, �P + 1, : : : , P} ∀l 2 L, i 2 Nl�1, j 2 Nl, (2j) 

uk
lj 2 {0, 1} ∀l 2 LL�1, j 2 Nl, k 2 T, (2k) 

ck
i1j 2 [�P · b, P · b] ∀i 2 N0, j 2 N1, k 2 T, (2l) 

ck
ilj 2 {�P, �P + 1, : : : , P} ∀l 2 L2, i 2 Nl�1, j 2 Nl, k 2 T, (2m) 

with ✏̂ :à ✏
2P·(nL�1+1). The objective function (2a) maximizes the number of data points that are correctly classified. 

Note that ✏ is a small quantity standardly used to model strict inequalities. The implication Constraints (2b) and 
(2c) and Constraints (2d) are used to link the output ŷk

j with the corresponding variable qk
j appearing in the objective 

function. The implication Constraints (2e) and (2f) model the result of the indicator function for the kth input data. 
Constraints (2g) and the bilinear Constraints (2h) propagate the results of the activation functions within the neural 
network. We linearize all these constraints with standard big-M techniques (Williams 2013).

The solution of Model (2a)–(2m) gives us the solution vectors cSM, uSM, wSM, ŷSM, qSM. We then define the set

T̂ à {k 2 T |qk
j SM à 1, ∀j 2NL} (3) 

of confidently correctly predicted images. We use these images as input for the next Max-Margin, and we use the vec-
tor of variables cSM,uSM, wSM to warm start the solution of MM.

4.1.4. Max-Margin Model. The second level of our lexicographic multiobjective model maximizes the overall mar-
gins of every single neuron activation, with the ultimate goal of training a robust INN. Starting from the model SM, 
we introduce the margin variables mlj, and we introduce the following Max-Margin model:

max
X

l2L

X

j2Nl

mlj (4a) 

s:t: (2g)–(2m) ∀k 2 T̂,
X

i2NL�1

yk
j ck

iLj � mLj ∀j 2 NL, k 2 T̂, (4b) 

uk
lj à 1 )

X

i2Nl�1

ck
ilj � mlj ∀l 2 LL�1, j 2 Nl, k 2 T̂, (4c) 

uk
lj à 0 )

X

i2Nl�1

ck
ilj  �mlj ∀l 2 LL�1, j 2 Nl, k 2 T̂, (4d) 

mlj � ✏ ∀l 2 L, j 2 Nl: (4e) 
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Again, we can linearize Constraints (4c) and (4d) with standard big-M constraints. This model gives us the solution 
vectors cMM, uMM,wMM,mMM. We then evaluate vMM as

viljMM à
0 when wiljMM à 0,
1 otherwise,

∀l 2 L, i 2Nl�1, j 2Nl:

�
(5) 

4.1.5. Min-Weight Model. The third level of our multiobjective function minimizes the overall number of nonzero 
weights: that is, the connections of the trained INN. We introduce the new auxiliary binary variable vilj to model the 
presence or absence of the link wilj. Starting from the solution of model MM, we fix m̂ àmMM, and we pass the solution 
cMM,uMM, wMM,vMM as a warm start to the following MW model:

min
X

l2L

X

i2Nl�1

X

j2Nl

vilj (6a) 

s:t: (2g)–(2m) ∀k 2 T̂,
X

i2NL�1

yk
j ck

iLj � m̂Lj ∀j 2NL, k 2 T̂, (6b) 

uk
lj à 1)

X

i2Nl�1

ck
ilj � m̂lj ∀l 2 LL�1, j 2Nl, k 2 T̂, (6c) 

uk
lj à 0)

X

i2Nl�1

ck
ilj  �m̂lj ∀l 2 LL�1, j 2Nl, k 2 T̂, (6d) 

�vilj · P  wilj  vilj · P ∀l 2 L, i 2Nl�1, j 2Nl, (6e) 

vilj 2 {0, 1} ∀l 2 L, i 2Nl�1, j 2Nl: (6f) 

Note that whenever vilj is equal to zero, the corresponding weight wilj is set to zero because of Constraint (6e), and 
hence, the corresponding link can be removed from the network.

4.1.6. Lexicographic Multiobjective. By solving the three models SM, MM, and MW sequentially, we first maximize 
the amount of input data that is correctly classified; then, we maximize the margin of every activation function, and 
finally, we minimize the number of nonzero weights. The solution of the decision variables wilj of the last model MW 
defines our classification function fW : Rn0 ! {61}nL .

4.2. The BeMi Structure
Having explained the various MIP models of INNs, we next introduce our ensemble approach for MIP-based train-
ing of INNs.

4.2.1. Ensemble. Define P :à {{i, j} s:t: i ≠ j, i, j 2 I} as the set of all of the subsets of the set I that have cardinality 2, 
where I is the set of the classes of the classification problem. Then, our structured ensemble is constructed in the 
following way. 

1. We train an INN denoted by N ij for every {i, j} 2 P (i.e., for each possible pair of elements of I ).
2. When testing a data point, we feed it to our list of trained INNs, obtaining a list of predicted labels; namely, 

we obtain the predicted label eij from the network N ij.
3. We then apply a majority voting system.
The idea behind this structured ensemble is that given an input xk labeled l (à yk), the input is fed into n

2

◆ 
net-

works where n�1 of them are trained to recognize an input with label l. If all of the networks correctly classify the 
input xk as l, then at most, n�2 other networks can classify the input with a different label l0 ≠ l, and so, the input is 
correctly labeled with the most occurring label l. With this approach, if we plan to use r 2 N inputs for each label, 
we are feeding each of our INNs a total of 2 · r inputs instead of feeding n · r inputs to a single large INN. Clearly, 
when training the networks N ij and the network N ik, the inputs of the class i are the same, so we only need a total 
of r inputs for each class. When n� 2, it is much easier to train our structured ensemble of INNs than train one large 
INN because of the fact that the MILP model size depends linearly on the amount of input data.
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4.2.2. Majority Voting System. After the training, we feed one input xk to our list of INNs, and we need to elaborate 
on the set of outputs.
Definition 1 (Dominant Label). For every b 2 I , we define

Cb à {{i, j} 2 P |eij à b}, 

and we say that a label b is a dominant label if |Cb | � |Cl | for every l 2 I . We then define the set of dominant labels
D :à {b 2 I |b is a dominant label}:

Using this definition, we can have three possible outcomes. 
a. There exists a label i 2 I such that D à {i}) our input is labeled as i.
b. There exist j, k 2 I such that D à {j, k}) our input is labeled as ejk.
c. There exist more than two dominant labels ) our input is not classified.
Although case (a) is straightforward, we can label our input even when we do not have a clear winner: that is, 

when we have trained an INN on the set of labels that are the most frequent (i.e., case (b)). Note that the pro-
posed structured ensemble alongside its voting scheme can also be exploited for regular NNs.
Definition 2 (Label Statuses). In our labeling system, when testing an input, seven different cases (herein called 
label statuses) can arise. The statuses names are of the form “number of the dominant labels + fairness of the pre-
diction.” The first parameter can be one, two, or o, where o means “other cases.” The fairness of the prediction is 
C when it is correct or I when it is incorrect. The superscripts related to I0 and I00 only distinguish between the 
different cases. These cases are described through the tree diagram in Figure 1.

The cases in which the classification algorithm classifies correctly are, therefore, only (1C) and (2C). Note that 
every input test will fall into exactly one label status.

Example 1. Let us take I à {bird, cat, dog, frog}. Note that in this case, we have to train 
⌘4

2
✓
à 6 networks:

N {bird, cat}, N {bird, dog}, N {bird, frog}, N {cat, dog}, N {cat, frog}, N {dog, frog}, 

where the first one distinguishes between bird and cat, the second one distinguishes between bird and dog, and so 
on. A first input could have the following predicted labels:

e{bird, cat} à bird, e{bird, dog} à bird, e{bird, frog} à frog,

e{cat, dog} à cat, e{cat, frog} à cat, e{dog, frog} à dog:

Figure 1. Tree Diagram of Label Statuses 
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We would then have

Cbird à {{bird, cat}, {bird, dog}}, Ccat à {{cat, dog}, {cat, frog}},

Cdog à {{dog, frog}}, Cfrog à {{bird, frog}}:

In this case, D à {bird, cat} because |Cbird | à |Ccat | à 2 > 1 à |Cdog | à |Cfrog | , and we do not have a clear winner; 
however, because |D | à 2, we have trained a network that distinguishes between the two most voted labels, and 
so, we use its output as our final predicted label, labeling our input as e{bird, cat} à bird. If bird is the right label, we 
are in label status (2C); if the correct label is cat, we are in label status (2I0). Otherwise, we are in label status 
(2I00).
Example 2. Let us take I à {0, 1, : : : , 9}. Note that in this case, we have to train 

⌘10
2
✓
à 45 networks and that 

|Cb |  9 for all b 2 I . Hence, an input could be labeled as follows:
C0 à ({0, i})ià1, 2, 3, 5, 7, 8, C1 à ({1, i})ià5, 6, C2 à ({2, i})ià1, 5, 8,

C3 à ({3, i})ià1, 2, 4, 5, C4 à ({4, i})ià0, 1, 2, 5, 6, 7, 9, C5 à ({5, i})ià6, 7,

C6 à ({6, i})ià0, 2, 3, 7, C7 à ({7, i})ià1, 2, 3,

C8 à ({8, i})ià1, 3, 4, 5, 6, 7, C9 à ({9, i})ià0, 1, 2, 3, 5, 6, 7, 8:

Visually, we can represent an input being labeled as above with the scheme in Figure 2. In Figure 2, we have 
omitted the name of each element of the set Ci for simplicity; for example, the dots above C1 in Figure 2 represent 
the sets {1, 5}, {1, 6}. Because D à {9}, our input is labeled as nine. If nine is the right label, we are in label status 
(1C); if nine is the wrong label, we are in label status (1I). If instead, Ĉj à Cj, j à 0, : : : , 7, and

Ĉ8 à ({8, i})ià1, 3, 4, 5, 6, 7, 9, Ĉ9 à ({9, i})ià0, 1, 2, 3, 5, 6, 7, 

then |D̂ | à | {4, 8, 9} | à 3 so that our input was labeled as �1. If the correct label is four, eight, or nine, we are in 
label status (mI0); otherwise, we are in label status (mI00). Lastly, if Cj à Cj, j 2 {0, 1, 2, 4, 5, 6, 7, 8}, and

C3 à ({3, i})ià1, 2, 4, 5, 9, C9 à ({9, i})ià0, 1, 2, 5, 6, 7, 8, 

then |D | à | {4, 9} | à 2, and because {4, 9} 2 C4, our input is labeled as four. If four is the correct label, we are in label 
status (2C). If nine is the correct label, we are in label status (2I0). Otherwise, we are in label status (2I00). Note that 
for brevity, in this example we used the notation ({j, i})iài1, : : : , in à {{j, i1}, : : : , {j, in}}, j, i1, : : : , in 2 {0, : : : , 9}.

5. Empirical Study
Having introduced the BeMi approach, we now undertake a series of six experiments in order to explore the follow-
ing questions. 

Experiment 1. What is the impact of a threefold multiobjective model compared with a twofold or single- 
objective model? (Recall Section 4.)

Experiment 2. How does the BeMi ensemble compare with the previous state-of-the-art MIP models for training 
BNNs in the context of few-shot learning?

Experiment 3. How does the BeMi ensemble scale with the number of training images, considering two different 
types of BNNs?

Experiment 4. How does the BeMi ensemble perform on various data sets, comparing the running time, the 
average gap to the optimal training MILP model, and the percentage of links removed?

Figure 2. (Color online) Example of Voting Scheme 
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Experiment 5. What are the performance differences between a nontrivial INN and a BNN? Do INNs exhibit 
particular weight distribution characteristics? A state-of-the-art comparison is also provided.

Experiment 6. How does the BeMi ensemble perform on a continuous, low-dimensional data set comparing 
BNNs and nontrivial INNs? Do INNs exhibit the same weight distribution characteristics found in Experiment 5?

5.1. Data Sets
Three data sets are adopted for the experiments. We use first the standard MNIST data set (LeCun et al. 1998) for a 
fair comparison with the literature, and second, we use the larger Fashion-MNIST data set (Xiao et al. 2017). For 
these two MNIST data sets, we test our results on 800 images for each class in order to have the same amount of test 
data for every class. Note that the MNIST data set has 10,000 test data, but they are not uniformly distributed over 
the 10 classes. For each experiment, we report the average over five different samples of images (i.e., we perform 
five different trainings, and we report the average over them while testing the same images). The images are sam-
pled uniformly at random in order to avoid overlapping between different experiments. Beyond MNIST, we use 
the Heart Disease data set (Janosi et al. 1988) from the University of California, Irvine (UCI) repository. Table 1 sum-
marizes the data sets.

5.2. Implementation Details
As the solver, we use Gurobi version 10.0.1 (Gurobi Optimization LLC 2023) to solve our MILP models. The solver 
parameters are left to the default values if not specified otherwise. Apart from the first experiment, where we chose 
to consider every model equally, the fraction of time given to each step of the multiobjective model has been chosen 
accordingly to the importance of finding a feasible and robust solution. All of the MILP experiments were run on an 
high-performance computing cluster running CentOS using a single node per experiment. Each node has an Intel 
CPU with eight physical cores working at 2.1 GHz and 16 GB of RAM. In all of our experiments concerning integer- 
value data sets, we fix the value ✏ à 0:1. Notice that because of the integer nature of the weights, the image of the 
activation function, and other data, setting ✏ equal to any number smaller than one is equivalent. When using 
continuous-value data sets, we fix the value ✏ à 1 · 10�6 in accordance with the default variable precision tolerance 
of the Gurobi MILP solver we will use. The source code is available on GitHub (Bernardelli et al. 2024).

5.3. Time Limit Management
Concerning the time limits for the different optimization models, the following choices have been made. In Experi-
ments 1 and 6, the time limit is equally distributed between the three models to have a fair comparison. In Experi-
ments 2, 3, 4, and 5, the majority of the imposed time limit was given to the first two models. The first model 
ensures the feasibility of the whole pipeline and maximizes the number of correctly classified images in the training 
phase, and it was considered important in the context of few-shot learning because we do not have lots of images as 
training inputs. The second model was given a bigger time limit too because preliminary results, also shown in pre-
vious works, highlight the fact that the maximization of the margin ensures a better test accuracy with respect to 
the minimization of the links. In addition to this, the overall time limits have been chosen based on two criteria. 
Where comparisons with the literature are made, the selection ensures a fair comparison. In the remaining cases, 
the choice of time limit has been empirical, aiming to highlight the algorithm’s quality.

5.4. Experiment 1
The goal of the first experiment is to study the impact of the multiobjective model composed of SM, MM, and MW with 
respect to the models composed of SM and MM, the one composed of SM and MW, and the one composed of only SM.

The results refer to a BNN specialized in distinguishing between digits 4 and 9 of the MNIST data set. These two 
digits were chosen because their written form can be quite similar. Indeed, among all 10 digits, digits 4 and 9 are 
very often mistaken for each other as is shown in the confusion matrix in Appendix B.

Table 1. Details of the Different Data Sets Exploited in the Experiments

Data set
Number 
of classes

Input 
dimension Data values

No. of 
training set

No. of 
test set

MNIST 10 28⇥ 28 Integers 60,000 10,000
Fashion-MNIST 10 28⇥ 28 Integers 60,000 10,000
Heart disease 2 13 Continuous 920� x x
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The NN architecture consists of two hidden layers and has [784, 4, 4, 1] neurons. The architecture is chosen to 
mimic the one used in Toro Icarte et al. (2019): that is, [784, 16, 16,10] but with fewer neurons. The number of train-
ing images varies between 2, 6, and 10, whereas the test images are 800 per digit and therefore, 1,600 in total. The 
imposed time limit is 30 minutes, and it is equally distributed in the steps of each model: 30minutes for the SM 
model, 15minutes+15minutes for the SM+MW model, 15 minutes+15 minutes for the SM+MM model, and 
10 minutes+10minutes+10minutes for the SM+MM+MW model.

Figure 3(a) compares the test accuracy of the four hierarchical models, showing how the MM model ensures an 
increase in accuracy, whereas the MW allows the network to be pruned without performance being affected. Figure 
3(b) displays the percentages of nonzero weights of the three trained models. Note that in this case, the training 
accuracy is always 100%, and so, we did not add it to the plot. Also, the dotted lines in Figure 3 represent the aver-
age accuracy obtained over five instances, whereas the shaded areas in Figure 3 highlight the range between the 
minimum and maximum values. This will be the case for every other plot if not specified otherwise. The MW step 
allows the number of nonzero weights to drop without accuracy being affected, hence resulting in an effective 
pruning. This behavior is also observed for other couples of digits, even the ones that are easier to distinguish, 
namely one and eight. Results of this experiment are reported in Appendix B.

Based on these reasons, for the remaining experiments, we will exclusively employ the model that incorporates 
all three steps.

5.5. Experiment 2
The goal of the second experiment is to compare the BeMi ensemble with the following state-of-the-art methods: 
the pure MIP model in Toro Icarte et al. (2019), the hybrid CP-MIP model based on Max-Margin optimization (HA) in 
Toro Icarte et al. (2019), the gradient-based method GDt introduced in Hubara et al. (2016) and adapted in Toro 
Icarte et al. (2019) to deal with link removal, and the Min-Hinge model proposed in Thorbjarnarson and Yorke-Smith 
(2023). For the comparison, we fix the setting of Toro Icarte et al. (2019), which takes from the MNIST up to 10 
images for each class for a total of 100 training data points and which uses a time limit of 7,200 seconds to solve their 
MIP training models.

In our experiments, we train the BeMi ensemble with 2, 6, and 10 samples for each digit. Because our ensemble 
has 45 BNNs, we leave for the training of each single BNN a maximum of 160 seconds (because 160 · 45 à 7, 200). In 
particular, we give a 75-second time limit to the solution of SM, a 75-second time limit to MM, and a 10-second time 
limit to MW. In all of our experiments, whenever the optimum is reached within the time limit, the remaining time is 
added to the time limit of the subsequent model. We remark that our networks could be trained in parallel, which 
would highly reduce the wall-clock run time. For the sake of completeness, we note that we are using 45 · (784 · 4 +
4 · 4 + 4 · 1) à 142, 020 parameters (all of the weights of all the 45 BNNs) instead of the 784 · 16 + 16 · 16 + 16 · 10 à
12, 960 parameters used in Toro Icarte et al. (2019) for a single large BNN. Note that in this case, the dimension of 
the parameter space is 312, 960(Å 106, 183), whereas in our case, it is 45 · 33, 156(Å 101, 507). In the first case, the solver has 

Figure 3. (Color online) The SM+MM+MW Model Achieves the Same Accuracy as the SM+MM Model, Outperforming the SM 
Model, While Having the Smallest Percentage of Nonzero Weights Apart from the SM+MW Model, Which Has an Almost-Zero 
Percentage of Nonzero Weights but also Has a Lower Accuracy of the Models That Maximize the Margins 

(a) (b)

Notes. The dotted lines represent the average accuracy obtained over five instances, whereas the shaded areas highlight the range between the 
minimum and maximum values. (a) Test accuracy of different models. (b) Simplicity of different models.
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to find an optimal solution between all of the 106, 183 different parameter configurations, whereas with the BeMi 
ensemble, the solver has to find 45 optimal solutions, each of which lives in a set of cardinality 101, 507. This signifi-
cantly improves the solver performances. We remark that a parameter configuration is given by a weight assign-
ment Ŵ à (ŵijl)ijl because every other variable is uniquely determined by Ŵ .

Figure 4 compares the results of our BeMi ensemble with the four other methods presented above. Note that the 
pure MIP model in Toro Icarte et al. (2019) can handle a single image per class in the given time limit, and so, only 
one point is reported, and note also that for the minimum hinge model MH presented in Thorbjarnarson and Yorke- 
Smith (2023), only the experiment with 10 digits per class was performed. We report the best results reported in the 
original papers for these four methods.

The BeMi ensemble obtains an average accuracy of 68%, and it outperforms all other approaches when 2, 6, or 10 
digits per class are used. Note that our method attains 100% accuracy on the training set; that is, the SM model cor-
rectly classifies all the images. In this case, the first model is not needed to ensure feasibility, but it serves mainly as 
a warm start for the MM model.

5.6. Experiment 3
The goal of the third experiment is to study how our approach scales with the number of data points (i.e., images) 
per class and how it is affected by the architecture of the small BNNs within the BeMi ensemble. For the number of 
data points per class, we use 10,20,30, 40 training images per digit. We use the layers N a à [784, 4, 4, 1] and N b à
[784, 10, 3, 1] for the two architectures. Although the first architecture is chosen to be consistent with the previous 
experiments, the second one can be described as an integer approximation of [N, log2N, log2(log2N), 
log2(log2(log2N))]. Herein, we refer to Experiments 3a and 3b as the two subsets of experiments related to the archi-
tectures N a and N b. In both cases, we train each of our 45 BNNs with a time limit of 290seconds for model SM, 
290seconds for model MM, and 20 seconds for model MW for a total of 600seconds (i.e., 10 minutes for each BNN).

Figure 5(a) shows the results for Experiments 3a and 3b. The dotted line and the dashed line in Figure 5(a) refer 
to the two average accuracies of the two architectures, whereas the colored areas in Figure 5(a) include all the accu-
racy values obtained as the training instances vary. The two architectures behave similarly, and the best average 
accuracy exceeds 81%.

Table 2 reports the results for the BeMi ensemble, where we distinguish among images classified as correct, 
wrong, or unclassified. These three conditions refer to different label statuses specified in Definition 2. The correct 
labels are the sums of the statuses (1C) and (2C); the wrong labels are the sums of the statuses (2I0), (2I00), and (1I); 
and the unclassified labels (n.l.) are the sums of the statuses (oI0) and (oI00). Notice that the vast majority of the test 
images have only one dominant label and so, fall into statuses (1C) or (1I). The unclassified images are less than 
2.31%.

5.7. Experiment 4
The goal of the fourth experiment is to revisit the questions of Experiments 3a and 3b with the two architectures N a 
and N b using the more challenging Fashion-MNIST data set.

Figure 4. (Color online) Comparison of Published Approaches vs. BeMi in Terms of Accuracy over the MNIST Data Set Using 
Few-Shot Learning with 2, 6, and 10 Images per Digit 
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Figure 5(b) shows the results of Experiments 3a and 3b. As in Figure 4, the dotted line and the dashed line in 
Figure 5(b) represent the average percentages of correctly classified images, whereas the colored areas in Figure 
5(b) include all accuracy values obtained as the instances vary. For the Fashion-MNIST, the best average accuracy 
exceeds 70%.

Table 3 reports detailed results for all Experiments 2 and 3. The first two columns in Table 3 give the data set and 
the architecture, the third column in Table 3 reports the total number of links (i.e., the total number of w variables) 
for each architecture, and the fourth column in Table 3 specifies the number of images per digit used during train-
ing. The fifth column in Table 3 reports the run time for solving model SM. Note that the time limit is 290 seconds; 
hence, we solve exactly the first model, consistently achieving a training accuracy of 100%. The remaining five col-
umns are as follows. Gap (percentage) refers to the mean and maximum percentage gaps at the second MILP model 
(MM) of our lexicographic multiobjective model as reported by the Gurobi MIPgap attribute. The column links (per-
centage) indicates the percentage of nonzero weights after the solution of the second model MM and after the solu-
tion of the last model MW. The column active links indicates the total number of nonzero weights after the solution 
of the last model MW. The results show that the run time and the gap increase with the size of the input set. However, 
for the percentage of removed links, there is a significant difference between the two data sets; for MNIST, our third 
model MW removes around 70% of the links, whereas for the Fashion-MNIST, it removes around 50% of the links. 
Note that in both cases, these significant reductions show how our model is also optimizing the BNN architecture. 
Furthermore, note that even if the accuracy of the two architectures is comparable, the total number of nonzero 
weights of N a is about half the number of nonzero weights of N b.

5.8. Experiment 5
The goal of the fifth experiment is to compare the performances of BNNs and nontrivial INNs. The results refer to 
five different runs of an INN of architecture [784, 4, 4, 1] specialized in distinguishing between digits 4 and 9 of the 
MNIST data set. The number of training images varies between 2, 6, 10, 20, 30, and 40, whereas the test images are 
800 per digit and therefore, 1,600 in total. The imposed time limit is 290seconds+290seconds+20 seconds.

As Figure 6 shows, different INNs are comparable not only in the average accuracy, represented by the dotted 
line, but also in the maximum and minimum accuracy as reported by the shaded areas.

Table 2. Percentages of MNIST Images Classified as Correct, Wrong, or Unclassified and Percentages of Label Statuses for 
the Architecture N a à [784, 4, 4, 1]

Images per class

Classification (%) Label status (%)

Correct Wrong n.l. (1C) (1I) (2C) (2I0) (2I00) (oI0) (oI00)

10 70.12 27.65 2.23 68.43 24.53 1.69 1.21 1.91 1.88 0.35
20 75.37 22.32 2.31 73.79 19.33 1.58 1.39 1.60 2.02 0.29
30 80.90 17.46 1.64 79.64 15.01 1.26 1.25 1.20 1.46 0.18
40 81.66 16.68 1.66 80.34 14.36 1.32 1.09 1.23 1.45 0.21

Notes. The vast majority of the test images have only one dominant label, and so, they fall into status (1C) or (1I). The unclassified images (n.l.) 
are less than 2.31%.

Figure 5. (Color online) Average Accuracy for the BeMi Ensemble Tested on Two Architectures, Namely N a à [784, 4, 4, 1] and 
N b à [784, 10, 3, 1], Using 10, 20, 30, 40 Images per Class 

(a) (b)

Notes. (a) MNIST. (b) Fashion-MNIST.

Bernardelli et al.: MILP Training of Few-Bit Neural Networks 
14 INFORMS Journal on Computing, Articles in Advance, pp. 1–21, © 2024 INFORMS 

 



In order to study why different values of P lead to comparable accuracy, we report the weight distributions of the 
INNs whose accuracy is depicted in Figure 6. Table 4 highlights not only the role of the MW model but also the 
extreme-valued nature of the distributions. In fact, it can be seen that apart from the percentage of weights set to 
zero, the vast majority of the remaining weights have a value of either P or �P, with less than 1.67% of the weights 
attaining one of the other intermediate values. We remark that this type of phenomenon is recurrent in the literature 
under the name of magnitude pruning; see Han et al. (2015), Morcos et al. (2019), and Blalock et al. (2020). In our set-
ting, such a phenomenon occurs spontaneously.

5.9. Experiment 6
The goal of the sixth experiment is to study the impact of the multiobjective model and the weight distributions 
over a different data set, namely the Heart Disease data set by Janosi et al. (1988).

Table 5 reports the average accuracy and weight distributions of this experiment. The average was performed 
over five instances, and for each instance, 200 data samples were used, where 80% was used for the training and 

Figure 6. (Color online) Comparison of Accuracy for Different Values of P 

Note. Note how using an exponentially larger research space, namely using values of P greater than one, does not improve the accuracy.

Table 3. Aggregate Results for Experiments 2 and 3

Data set Layers Total links
Images per 

class
Model SM time 

(seconds)

Gap (%) Links (%)

Active linksMean Max (MM) (MW)

MNIST 784, 4, 4, 1 3,156 10 3.00 12.06 20.70 49.13 29.21 921.80
20 6.47 14.81 22.18 54.70 28.41 896.60
30 10.60 16.04 24.08 56.44 30.46 961.40
40 15.04 15.98 26.22 57.92 29.27 923.80

784, 10, 3, 1 7,873 10 6.04 4.52 7.37 49.28 24.72 1,946.20
20 15.01 5.46 8.40 54.97 24.40 1,921.00
30 22.68 5.92 11.00 56.73 26.96 2,122.60
40 33.97 6.21 20.87 58.29 24.66 1,941.40

Fashion-MNIST 784, 4, 4, 1 3,156 10 4.83 13.34 26.48 87.75 58.76 1,854.40
20 9.77 14.05 28.91 90.73 59.97 1,892.60
30 36.10 19.95 136.33 92.41 58.12 1,834.20
40 72.15 30.36 333.70 93.57 59.46 1,876.60

784, 10, 3, 1 7,873 10 11.42 4.87 9.14 87.90 51.57 4,060.20
20 21.46 5.11 9.86 91.05 52.29 4,116.80
30 35.12 6.30 40.07 92.78 52.62 4,142.80
40 52.37 8.99 56.14 94.01 53.38 4,202.60

Notes. The fifth column reports the run time to solve the first model SM. Gap (percentage) refers to the mean and maximum percentage gaps at 
the second MILP model MM. The column links (percentage) indicates the percentage of nonzero weights after the solution of models MM and MW. 
The column active links indicates the total number of nonzero weights after the solution of model MW, as always averaged over five instances.
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20% was used for the test. All the networks have the same architecture, namely [13, 5, 1], and each network’s 
imposed time limit is 60 minutes, equally distributed in the steps of each model: 60 minutes for the SM model, 
30 minutes+30 minutes for the SM+MM model, and 20 minutes+20 minutes+20 minutes for the SM+MM+MW 
model.

Table 4. Weight Distributions of the INNs Whose Accuracy Is Depicted in 
Figure 6

Value of P
Images 

per class w à�P w à 0 w à P Others

1 2 4.06 73.66 22.28 —
6 4.75 73.70 21.55 —
10 5.15 74.02 20.83 —
20 7.12 61.31 31.57 —
30 6.21 74.89 18.90 —
40 13.16 64.98 21.86 —

3 2 3.86 75.91 20.15 0.08
6 4.60 73.46 21.63 0.31
10 6.25 73.50 19.72 0.53
20 12.48 69.58 17.19 0.75
30 13.06 74.00 11.89 1.05
40 13.99 65.51 19.31 1.19

7 2 3.90 75.89 20.10 0.11
6 4.46 73.40 21.76 0.38
10 8.82 68.00 22.60 0.58
20 12.46 65.56 21.06 0.92
30 14.99 73.82 9.95 1.24
40 18.05 70.90 9.40 1.65

15 2 3.69 75.89 20.30 0.12
6 4.68 73.31 21.64 0.37
10 5.53 73.28 20.61 0.58
20 7.43 69.34 22.19 1.04
30 13.76 67.64 17.23 1.37
40 17.34 70.86 10.13 1.67

Notes. The column w à�P indicates the percentage of weights that are equal to �P and so on. 
The networks have different values but similar extremal weight distributions, where less than 
2% of the weights attain a value that is not P, �P, or zero, indicated as others.

Table 5. Average Accuracy and Weight Distribution for the Heart Disease Data Set

Models Value of P
Average 
accuracy w à�P w à 0 w à P Others

SM 1 74.00 35.43 45.14 19.43 —
3 75.00 21.43 27.43 16.57 34.57
7 77.00 27.43 14.86 16.86 40.85
15 77.00 18.86 11.71 12.86 56.57

SM+MM 1 75.00 14.57 18.29 67.14 —
3 75.50 10.57 13.43 63.14 12.86
7 73.50 12.29 9.43 52.57 25.71
15 78.50 11.71 5.71 46.86 35.72

SM+MM+MW 1 75.50 9.43 27.43 63.14 —
3 76.00 5.43 25.43 57.43 11.71
7 73.50 7.43 18.57 49.71 24.29
15 78.50 8.57 13.43 45.71 32.29

Notes. The column average accuracy depicts the average percentage of correctly classified test data. 
The column w à�P indicates the percentage of weights that are equal to �P and so on. For each value 
of P, the best result in terms of accuracy with respect to the model is in bold. Notice that in the majority 
of the cases, the multiobjective function performs better than the single-objective one. Notice also that 
even if the percentage of the nonzero and nonextremal weights, indicated as others, is higher than the 
one obtained with the MNIST data set, the distribution is still not uniform.
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6. Conclusion and Future Work
This paper introduced the BeMi ensemble, a structured architecture of INNs for classification tasks. Each network 
specializes in distinguishing between pairs of classes and combines different approaches already existing in the lit-
erature to preserve feasibility while being robust and simple. These features and the nature of the parameters are 
critical to enabling neural networks to run on low-power devices. In particular, BNNs can be implemented using 
Boolean operations and do not need GPUs to run.

The output of the BeMi ensemble is chosen by a majority voting system that generalizes the one-versus-one 
scheme. Notice that the BeMi ensemble is a general architecture that could be employed using other types of neural 
networks.

An interesting conclusion from our computational experiments is a counterintuitive result: that the greater flexi-
bility in the search space of INNs does not necessarily result in better classification accuracy compared with BNNs. 
We find it noteworthy that our computational evidence supports the idea that simpler BNNs are either superior or 
equal to INNs in terms of accuracy.

A current limitation of our approach is the strong dependence on the randomly sampled data used for training. 
In future work, we plan to improve the training data selection by using a k-medoids approach, dividing all images 
of the same class into disjoint nonempty subsets and considering their centroids as training data. This approach 
should mitigate the dependency on the sampled training data points.

Second, we also plan to better investigate the scalability of our method with respect to the number of classes of 
the classification problem training fewer BNNs, namely one for every J 2Q ⇢ P, with |Q | ⌧ |P | . Besides the data 
sets that we exploited, in the future, we intend to investigate data sets more appropriate for the task of few-shot 
learning (Brigato et al. 2022).

Third, another possible future research direction is to exploit the generalization of our ensemble, allowing us to 
have networks that distinguish between m classes instead of two, where the total number of classes of the problem 
is n�m. Note that the definitions of this generalization are presented in Appendix A.

Fourth, an interesting future research direction is stochastic/robust optimization and scenario generation in the 
following sense. In the case of MNIST/Fashion-MNIST, for example, the images can be seen as samples of many 
unknown probability distributions, one for each class; if one would like to train a neural network with an MIP using 
few images, the selection of these samples with which the training is performed is crucial, and so, the study of this 
problem from a stochastic point of view could lead to interesting results.
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Appendix A. Generalization of the Ensemble
The definition of the ensemble introduced in Section 4.2 can be generalize as follows. Define P(I )m as the set of all the subsets of 
the set I that have cardinality m, where I is the set of the classes of the classification problem. Then, our structured ensemble is 
constructed in the following way. 

1. We set a parameter 1 <m  n à |I | .
2. We train an INN denoted by N J for every J 2 P(I)m.
3. When testing a data point, we feed it to our list of trained INNs, namely (N J )J2P(I )m

, obtaining a list of predicted labels 
(eJ )J2P(I)m

.
4. We then apply a majority voting system.
Note that we set m> 1; otherwise, our structured ensemble would have been meaningless. Whenever màn, our ensemble is 

made of one single INN. When mà 2, we are using the one-versus-one scheme presented in the paper.
The idea behind this structured ensemble is that given an input xk labeled l (à yk), the input is fed into 

⌘ n
m
✓

networks, where ⌘ n� 1
m� 1

✓
of them are trained to recognize an input with label l. If all of the networks correctly classify the input xk, then at most 

⌘ n� 1
m� 1

✓
�
⌘ n� 2

m� 2
✓

other networks can classify the input with a different label. With this approach, if we plan to use r 2 N 
inputs for each label, we are feeding our INNs a total of m · r inputs instead of feeding n · r inputs to a single large INN. When 
m⌧ n, it is much easier to train our structured ensemble of INNs rather than training one large INN.

A.1. Majority Voting System.
After the training, we feed one input xk to our list of INNs, and we need to elaborate on the set of outputs.

Definition A.1 (Dominant Label). For every b 2 I , we define

Cb à {J 2 P(I)m |eJ à b}, 
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and we say that a label b is a dominant label if |Cb | � |Cl | for every l 2 I . We then define the set of dominant labels

D :à {b 2 I |b is a dominant label}:
Using this definition, we can have three possible outcomes. 

a. There exists a label b 2 I such that D à {b}) our input is labeled as b.
b. There exist b1, : : : , bm 2 I , bi ≠ bj for all i ≠ j such that D à {b1, : : : , bm}, so D 2 P(I )m ) our input is labeled as e{b1, : : : , bm}

à eD.
c. |D | ≠ 1 ∧ |D | ≠ m ) our input is labeled as z ∉ I .
Although case (a) is straightforward, we can label our input even when we do not have a clear winner: that is, when we have 

trained an INN on the set of labels that are the most frequent (i.e., case (b)). Note that the proposed structured ensemble along-
side its voting scheme can also be exploited for regular NNs.

Definition A.2 (Label Statuses). In our labeling system, when testing an input, seven different cases, herein called label statuses, 
can arise. The status names are of the form “number of the dominant labels+ fairness of the prediction.” The first parameter can 
be 1, m, or o, where o means “other cases.” The fairness of the prediction is C when it is correct or I when it is incorrect. The sub-
scripts related to I0 and I00 only distinguish between different cases. These cases are described through the following tree dia-
gram (Figure A.1).

The reason behind this generalization is the following. Suppose we have trained an NN to distinguish between three different 
classes: c1, c2, c3. If one class is added to the problem, namely c4, instead of discarding the trained NN, one could train three other 
NNs, namely the one that distinguishes between c1, c2, c4; another one for c1, c3, c4; and the last one for c2, c3, c4, and use the major-
ity voting scheme. Note that the training of the smaller networks is linked to smaller MILPs; in fact, if we plan to use 10 input 
data for each class, we need 40 input data in total, but every network is fed with only 30 of them. Moreover, the training of the 
three additional NNs can be done in parallel, saving computational time.

Appendix B. Complement to Experiment 1
We first performed an experiment with the BeMi ensemble trained with 40 images per digit, and we reported the results in 
a confusion matrix, depicted in Figure B.1. This gave us an idea of what digits were easy or difficult to distinguish between. 
We then replicate Experiment 1 with a different couple of digits, namely one and eight, which are easier to distinguish 
than some other digits, like four and nine. Results are depicted in Figure B.2. We can draw the same conclusions of 
Experiment 1.

Figure A.1. Tree Diagram of Generalized Label Statuses 
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Endnote
1 Acronym from the last names of the two young authors who had this intuition.
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