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A B S T R A C T

The way how the uncertainties are represented by sets plays a vital role in the performance of robust
optimization (RO). This paper presents a novel approach leveraging machine learning (ML) techniques to
construct data-driven uncertainty sets from historical uncertainty data for RO problems. The proposed method
integrates Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Gaussian Mixture Model
(GMM), and Principle Component Analysis (PCA) systematically to eliminate the influence of uncertainty
scenarios with low occurrence probability and generate a nonconvex uncertainty set that is a union of
multiple basic subsets (box or ellipsoid) without sacrificing its computational tractability. In addition to
presenting a comprehensive algorithm for uncertainty set development, this paper offers detailed guidelines
for parameter tuning and performance analysis. By harnessing the well-established ML packages scikit-
learn, a Python-based toolkit for implementing the proposed approach is also provided. Furthermore, a
computationally efficient solution for a two-stage linear RO problem with the proposed data-driven uncertainty
set is derived, alongside establishing a probabilistic guarantee of constraint satisfaction for out-of-sample
uncertainties. Extensive numerical experiments, conducted on both synthetic and real-world datasets as
well as an optimization-based control problem, are performed to demonstrate the efficacy of the proposed
methodology.
1. Introduction

Optimization under uncertainties is ubiquitous in real-world en-
gineering problems and has attracted significant research attention.
There are two primary approaches – stochastic optimization and robust
optimization – to enhance the robustness and reliability of deterministic
optimization models amidst uncertainties [1–4]. Within the framework
of stochastic optimization, the exact distributional information about
uncertainties is deployed, and the expected performance towards the
uncertainty distribution is optimized. In reality, however, the distri-
butional information of uncertainties is usually not available, and
obtaining this information is also a non-trivial task. One popular solu-
tion to solve the implementation difficulty of stochastic optimization
is the scenario-based approach [5,6]. However, to ensure constraint
satisfaction with a high confidence level, the scenario-based approach
entails a large number of scenario-induced hard constraints, which
leads to computational challenges. As an effective alternative, robust
optimization (RO) models uncertainties via uncertainty sets without
the distributional information of uncertainties and focuses on opti-
mizing the worst-case performance [1,3,4]. Due to its effectiveness in
constraint satisfaction and computational tractability, RO has gained
increased popularity.

∗ Corresponding author.
E-mail address: y.li-39@tudelft.nl (Y. Li).

A crucial component of RO problems is the uncertainty set, which
significantly influences both the computational complexity and conser-
vatism of the corresponding RO problems. Common types of uncertain
sets include box, ellipsoid, polyhedral and intersections or unions of
these basic sets [3,4,7–9]. These conventional methods for constructing
uncertainty sets are straightforward to implement and allow for some
reduction in the conservatism of the optimal solution through careful
adjustment of the set coefficients. However, the selection of these
coefficients typically depends on domain-specific knowledge. More-
over, these methods are generally based on the assumption that each
dimension of uncertainties is independently and asymmetrically dis-
tributed, which restricts their efficiency in handling correlations among
uncertainties and scalability for high-dimensional uncertainties [10].

With the availability of abundant historical uncertainty data and
the development of machine learning (ML) techniques, data-driven
RO approaches have attracted increasing attention in reducing the
conservatism of RO. The main idea of these approaches is to exploit
ML techniques, especially unsupervised learning such as support vector
clustering (SVC), kernel density estimation (KDE) and principle com-
ponent decomposition, to extract the latent patterns of uncertainties,
which are subsequently used for constructing uncertainty sets. It should
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be pointed out that many dominant ML techniques do not apply to
ata-driven RO problems due to the utilization of nonlinear functions,

e.g., radial basis function and sigmoid function, which are widely
adopted in ML algorithms but might dramatically degrade the compu-
ational tractability of the resulting RO problems with such data-driven
ncertainty sets.

Recent literature explores different methods for constructing data-
riven uncertainty sets in RO. In [10–12], a kernel-based support

vector clustering (K-SVC) method using a novel piece-wise linear kernel
s proposed to develop a non-parametric polyhedral uncertainty set.
ubsequently, [13] proposed replacing the piece-wise linear kernel
ith a deep neural network (DNN) to construct a more compact,

though non-convex, uncertainty set. However, the DNN-based sets lead
o substantially longer computation times in solving the correspond-

ing RO problems, particularly, even single-stage linear RO problems
with NN-based uncertainty sets involve solving mixed-integer quadratic
programs iteratively. In [14,15], the Dirichlet process mixture model
is utilized to extract hidden patterns in uncertainty data through a
ariational inference algorithm, which involves complicated nonconvex
ptimization that degrades its applicability. In [16], PCA is applied to

develop a polyhedral uncertainty set by decomposing the uncertainty
into uncorrelated components. However, this method fails to detect
low-probability uncertainties, which might result in a conservative un-
certainty set. In [17–19], by combining principle components analysis
(PCA) with kernel density estimation (KDE), the resultant uncertainty
et is able to exclude low-probability uncertainties within the tails of
he approximated probability distribution. In [20,21], PCA is combined

with cutting plane methods to reduce the conservatism of the resulting
uncertainty set by excluding redundant uncertainty scenarios.

Although the above PCA-based uncertainty sets are computation-
ally efficient due to their polyhedral structure, this simple structure
also sacrifices their applicability to complicated and irregular uncer-
tainty distributions. In [22,23], the PCA-KDE-based approach proposed
in [17] is further combined with KMeans clustering to construct un-
certainty sets that are applicable to disjunctive uncertainties. However,
s will be shown in our simulation results, although this combination
ffers increased flexibility for handling irregular uncertainty distri-
utions, its performance might be degraded due to the limitation

inherent to the KMeans and KDE approaches and lacks robustness
gainst complicated datasets.

In summary, a common limitation of the above data-driven ap-
roaches is their inability to effectively balance between the complexity
nd the conservatism of the uncertainty set, and to adapt to compli-
ated uncertainty distributions. Most of these methods either yield a
ompact uncertainty set that demands high computational resources
or solving the resulting RO problems, or they produce a computa-
ionally efficient uncertainty set that, however, lacks adaptivity to
omplex uncertainty distributions. Besides, while some literature ex-
lored the framework of unifying multiple subsets as in this work,
heir approaches fail to adapt to complicated uncertainty distributions
ue to the improper selection and integration of ML techniques. In
ddition, most of the existing works only use simple synthetic datasets
or performance evaluation, which might fail to truly reflect the ac-
ual practical performance when applied to complex real-world data.
urthermore, detailed guidelines as well as easy-to-use toolkits for the
xisting approaches are not available.

Motivated by the above discussions, this paper proposes an ML-
nabled data-driven approach for a two-stage adaptive RO problem.
he major contributions of this paper are summarized as follows:

• An ML-based approach is proposed to develop data-driven uncer-
tainty sets by leveraging DBSCAN, GMM and PCA. The resulting
uncertainty set is compact regardless of irregular uncertainty dis-
tributions and is computationally efficient in solving the resulting
RO problems.
2 
• Detailed guidelines for parameter tuning, performance analysis
and possible limitations of applying the proposed data-driven
uncertainty set are provided to facilitate its practical usage. A
Python-based toolkit to implement the proposed approach is de-
veloped [24].

• The conventional affine decision rule is extended to the proposed
uncertainty set by exploiting the union of multiple subsets prop-
erty for a two-stage linear RO problem to give a less conservative
solution. A probabilistic guarantee of constraint satisfaction for
out-of-sample uncertainties is derived.

• The effectiveness of the proposed approach is extensively vali-
dated using both synthetic and real-world datasets as well as an
optimization-based control problem.

The remainder of this paper is organized as follows. Section 2 intro-
duces the ML techniques used in our work and details the algorithm
for developing data-driven uncertainty sets, including guidelines for
parameter tuning and performance analysis. Section 3 investigates a
two-stage linear RO problem employing the proposed uncertainty set.
Section 4 presents three case studies to demonstrate the efficacy of our
roposed approach. Finally, conclusions are drawn in Section 5.

Notation. Boldface lowercase letters are used to denote vectors, and
boldface uppercase letters denote matrices. Calligraphic uppercase let-
ters denote sets. For a given vector/matrix, [⋅]𝑘 refers to its 𝑘th el-
ement/row. The max/min operators applied to vectorized objective
functions imply elementwise maximization/minimization across each
function. Equalities/inequalities between two vectors hold element-
wise.

2. Data-driven uncertainty set construction and analysis

In this section, we will employ ML techniques to construct data-
riven uncertainty sets from historical uncertainty data with the aim
f reducing the conservatism of the resulting RO problem while pre-
erving computational efficiency. Specifically, we propose an integrated
ramework combining Density-Based Spatial Clustering of Applications
ith Noise (DBSCAN), Gaussian Mixture Model (GMM), and Principle
omponent Analysis (PCA) to reveal hidden patterns in uncertainty

data.

2.1. DBSCAN

DBSCAN is a density-based clustering algorithm that groups data
nto clusters based on high-density areas, which are separated by re-
ions of low density [25]. In contrast to centroid-based or distribution-
ased clustering methods, such as KMeans, which typically identify
pherical or convex clusters, DBSCAN is capable of discovering clusters
f arbitrary shapes. In addition, DBSCAN can detect low-probability

data samples: data samples residing in low-density areas will not be as-
signed to any clusters. As a result, in this work, we will adopt DBSCAN
to remove low-probability uncertainty samples, thereby reducing the
onservatism of our proposed data-driven uncertainty set.

There are two main parameters for DBSCAN: 𝜖 and 𝑀 𝑖𝑛𝑃 𝑡𝑠. 𝜖
determines the maximum distance between two samples for one to
be considered as a neighbor of the other. Given a data point 𝐩, its
𝜖-Neighborhood is defined as 𝑁𝜖(𝐩) = {𝐪 ∶ dist(𝐩,𝐪)} ≤ 𝜖. 𝑀 𝑖𝑛𝑃 𝑡𝑠
represents the minimum number of neighbors a sample must have to
be classified as a core point. Namely, |𝑁𝜖(𝐩)| ≥ 𝑀 𝑖𝑛𝑃 𝑡𝑠 if 𝐩 is a core
point. For a core point 𝐩, any data samples that are density-reachable
from 𝐩 will be grouped in the same cluster. The data samples that do not
belong to any clusters will be classified as noise. Generally, increasing
𝜖 results in fewer samples being classified as outliers, whereas increas-
ing 𝑀 𝑖𝑛𝑃 𝑡𝑠 tends to identify more outliers. For further details about

25,26].
DBSCAN, please see [
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2.2. Gaussian mixture model clustering

Gaussian mixture model (GMM) clustering, which is a distribution-
based clustering approach, assumes all given data samples are gener-
ated from a mixture of a finite number of Gaussian distributions. Each
istribution in the mixture is characterized by a set of parameters:

the mixing probability 𝜋𝑘, mean 𝝁𝑘 and covariance 𝜮𝑘 of the 𝑘th
model. Given 𝑛 data samples {𝐮1,… ,𝐮𝑛}, these unknown parameters
are estimated by maximizing the following log-likelihood function
𝑛

𝑖=1
log

( 𝐾
∑

𝑘=1
𝜋𝑘𝜙(𝐮𝑖,𝝁𝑘,𝜮𝑘)

)

(1)

where 𝐾 is the total number of Gaussian distributions, and 𝜙(𝐮𝑖,𝝁𝑘,𝜮𝑘)
is the multivariate Gaussian density function of the 𝑘th Gaussian model.
The optimal value of the parameters (𝜋𝑘,𝝁𝑘,𝜮𝑘) can be computed via
Expectation Maximization algorithm [27]. Based on the parameters
(𝜋𝑘,𝝁𝑘,𝜮𝑘), all data samples can be clustered into 𝐾 groups, and the
ata samples in the same group are assigned with an identical label 𝑘.
he label for a given data sample 𝐮𝑖, denoted as 𝑧𝑖, is ar g max𝑘{𝑝(𝑧𝑖 =
|𝐮𝑖)} where

𝑝(𝑧𝑖 = 𝑘|𝐮𝑖) =
𝑝(𝑧𝑖 = 𝑘)𝑝(𝐮𝑖|𝑧𝑖 = 𝑘)

𝑝(𝐮𝑖)
=

𝜋𝑘𝜙(𝐮𝑖, 𝜇𝑘, 𝛴𝑘)
∑𝐾

𝑘=1 𝜋𝑘𝜙(𝐮𝑖, 𝜇𝑘, 𝛴𝑘)
.

In our work, the uncertainty samples will be firstly processed by
BSCAN to remove low-possibility scenarios. Then, GMM clustering
ill be applied to group the remaining uncertainty samples into 𝐾

clusters for subsequent uncertainty subset construction via PCA.

2.3. Principal component analysis

In our work, PCA is utilized to construct box-like uncertainty subsets
based on each uncertainty cluster generated by GMM. This subsection

ill briefly introduce the PCA approach and show how PCA is utilized
n uncertainty set construction. A detailed tutorial about PCA can be
ound in [28].

PCA is a popular data analysis technique for dimension reduction
and enhancing data interpretability. It achieves this by applying a linear
ransformation to the original data so that all features of the new data

representation are mutually uncorrelated.
Assume that there are 𝐾 uncertainty clusters {𝐔1,… ,𝐔𝑘} after

applying DBSCAN and GMM. Then, for each data cluster 𝐔𝑘 = [𝐮T1 ,… ,
𝐮T𝑛𝑘 ]

T ∈ 𝐑𝑛𝑘×𝑚, where 𝑛𝑘 is the number of uncertainty samples and 𝑚 is
the dimension of the uncertainty, we subtract its mean 𝜷𝑘 = 1

𝑛𝑘

∑𝑛𝑘
𝑖=1 𝐮𝑖

rom each sample in the cluster and obtain the centered training dataset
𝐔̄𝑘. For 𝐔̄𝑘, we have the following approximated covariance matrix

𝐂𝐔
𝑘 = 1

𝑛𝑘 − 1 𝐔̄
T
𝑘 𝐔̄𝑘. (2)

By performing eigenvalue decomposition, the covariance matrix 𝐂𝐔
𝑘 can

be decomposed as

𝐂𝐔
𝑘 = 𝐏𝑘𝜦𝑘𝐏T

𝑘 (3)

where 𝐏𝑘 = [𝐩1,… ,𝐩𝑚] ∈ R𝑚×𝑚 is a normalized orthogonal matrix,
and 𝜦𝑘 = diag{𝜆1,𝑘,… , 𝜆𝑚,𝑘} is a diagonal matrix. The columns of 𝐏𝑘,
denoted as 𝐩𝑖, are eigenvectors of 𝐂𝐔

𝑘 , or called principal components.
The diagonal entities 𝜆𝑖,𝑘 of Λ𝑘 are corresponding eigenvalues of 𝐂𝐔

𝑘 .
Based 𝐏𝑘, we have a new matrix 𝐘𝑘 = [𝐲T1 ,… , 𝐲T𝑛𝑘 ]

T ∶= 𝐔̄𝑘𝐏𝑘, which
is a new representation of the uncertainty samples. 𝐲𝑖 ∶= 𝐏T

𝑘 (𝐮𝑖 − 𝜷𝑘)
represents the projection of the centered data sample on the principle
components. For 𝐘𝑘, its covariance matrix is 𝐂𝐘

𝑘 ∶= 1
𝑛𝑘−1

𝐘T
𝑘𝐘𝑘 = Λ𝑘,

which implies that the components of 𝐲𝑖 are uncorrelated since 𝜦𝑘 is
 diagonal matrix. The property of having uncorrelated features in the
ransformed dataset 𝐘𝑘 allows for the adoption of basic sets, e.g., box,
o construct uncertainty subsets for each cluster 𝐔𝑘 to simplify the

omplexity of modeling. l

3 
2.4. Uncertainty sets construction

In this subsection, we will apply the ML techniques detailed previ-
usly to construct a data-driven uncertainty set.

Algorithm 1 Data-driven uncertainty sets construction
Input: training dataset 𝐔train
Output: uncertainty sets 1,⋯ ,𝐾
Parameters: 𝜖, 𝑀 𝑖𝑛𝑃 𝑡𝑠, 𝐾

Extreme Uncertainties Removal
1: select values of 𝜖 and 𝑀 𝑖𝑛𝑃 𝑡𝑠 for DBSCAN
2: apply DBSCAN to 𝐔train to remove extreme scenarios and generate

a cleaned dataset 𝐔clean
Uncertainty Samples Clustering

3: select the parameter 𝐾
4: apply GMM clustering to 𝐔clean to generate 𝐾 clusters {𝐔1,⋯ ,𝐔𝐾}

Box-like Subsets Construction
5: apply PCA to 𝐔𝑘 to generate 𝐘𝑘, 𝐏𝑘 and 𝜦𝑘
6: construct uncertainty sets via (4) and (5)

Given the training set of uncertainties 𝐔train, implementing DBSCAN
nd GMM gives 𝐾 data clusters {𝐔1,… ,𝐔𝐾} to be processed by PCA.
or each uncertainty cluster 𝐔𝑘, following the PCA process introduced
n Section 2.3 yields a new representation 𝐘𝑘 and the mean vector 𝜷𝑘.
ased on the relationship 𝐲𝑖 = 𝐏T

𝑘 (𝐮𝑖 − 𝜷𝑘), for each data cluster 𝐔𝑘, we
onstruct the following uncertainty set:

𝑘 =

{

𝐮
|

|

|

|

|

|

𝐮 = 𝜷𝑘 + 𝐏𝑘𝐰,
∀𝐰 ∶ 𝐲

𝑘
≤ 𝐰 ≤ 𝐲𝑘

}

(4)

with 𝐲
𝑘
∶= min{𝐘𝑘} ∈ R𝑚 and 𝐲𝑘 ∶= max{𝐘𝑘} ∈ R𝑚, where operators

min and max are performed columnwise. Since there are 𝐾 uncertainty
clusters, the final uncertainty set  is the union of 𝐾 subsets as defined
in (4). By reformulating the subset in (4) as linear constraints, the
ncertainty set  can then be compactly written as

 ∶=
𝐾
⋃

𝑘=1
𝑘, 𝑘 ∶=

{

𝐮|𝐃𝑘𝐮 ≤ 𝐝𝑘
}

, (5a)

𝐃𝑘 =
[

𝐏T
𝑘

−𝐏T
𝑘

]

, 𝐝𝑘 =

[

𝐲̄𝑘 + 𝐏T
𝑘𝜷𝑘

−𝐲
𝑘
− 𝐏T

𝑘𝜷𝑘

]

. (5b)

Finally, the construction of the data-driven uncertainty set via DB-
SCAN, GMM and PCA can be expressed as Algorithm 1, and the
orresponding graphical illustration of each component of Algorithm

1 is depicted in Fig. 1.

Remark 1. Instead of constructing box uncertainty subset via (5),
nother natural option of uncertainty subset based on Algorithm 1 is
llipsoid. By implementing steps 1–4 of Algorithm 1, the following

ellipsoidal subset can be constructed

𝑘 =
{

𝐮 ∣ ‖𝜮−1∕2
𝑘 (𝐮 − 𝝁𝑘)‖2 ≤ 𝜚𝑘

}

(6a)

𝜚𝑘 ∶= max
𝐮𝑖∈𝐔𝑘

‖𝜮−1∕2
𝑘 (𝐮𝑖 − 𝝁𝑘)‖2. (6b)

Compared with the box subset, the ellipsoidal subset might be more
uitable to the Gaussian distributed uncertainty clusters. However,
he robust counterpart (RC) of a linear RO problem with ellipsoidal
ncertainty sets is a second-order cone program (SOCP). In contrast,

the robust counterpart of a linear RO problem with a box uncertainty
et remains a linear program (LP), which is supported by more off-the-
helf solvers and can be solved more efficiently, even for significantly
arge-scale problems, than SOCP. One advantage of the ellipsoidal

uncertainty subset is that the robust counterpart problem does not
ntroduce any extra constraints and decision variables to ensure robust
onstraint satisfaction. Conversely, for box uncertainty sets, additional
onstraints and decision variables are introduced in the RC prob-
em, and their numbers are proportional to the number of constraints
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Fig. 1. Graphical illustration of Algorithm 1.
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defining the uncertainty set and the dimension of the uncertainty,
espectively. Therefore, the choice between box and ellipsoidal uncer-
ainty sets should depend on the type of available numerical solvers,
he dimension of the uncertainty as well as the size of the RO problem
o be solved. In our work, we focus on box uncertainty subsets, but all

analysis in this paper for box subsets is also applicable to ellipsoidal
ubsets constructed via (6).

Remark 2. The enhanced performance of the proposed data-driven
uncertainty set stems from the systematic integration of ML techniques
such as DBSCAN, GMM and PCA. DBSCAN allows the approach to filter
out low-probability uncertainties, independent of their locations. In
contrast, many existing methods, such as KDE and K-SVC, primarily ex-
clude extreme uncertainties located at the boundary of the uncertainty
cluster. Moreover, the ability of the PCA-based uncertainty subset in
(5) to reduce conservatism is predicated on the assumption that the
uncertainty variables are correlated and Gaussian-distributed. Unlike
the centroid-based or density-based clustering approaches used in other
existing literature, which fail to ensure this implicit assumption, the
GMM clustering approach adopted in Algorithm 1 generates Gaussian-
istributed data clusters that boost the performance of the subsequent
CA-based subsets.

Remark 3. It should be pointed out that the feature of the proposed
uncertainty set representation as a union of several basic convex subsets
enables a flexible and compact non-convex uncertainty set without
sacrificing the computational tractability of the resulting RO problem.
On the one hand, the convex subset will guarantee the computational
tractability of the resulting RO problem. On the other hand, unify-
ing several subsets increases the flexibility in dealing with irregular
uncertainty distributions and reduces the conservatism of the uncer-
tainty set. In comparison, several existing representative data-driven
approaches for constructing the uncertainty set, such as PCA-KDE, K-
SVC in [10,17], try to find a single convex uncertainty set to ensure
omputational tractability but with sacrificed compactness or a single

nonconvex set, such as DNN in [13], to ensure compactness but with
igh computational demand. In addition, the involved ML techniques
 DBSCAN, GMM and PCA – are available in many ML toolboxes,

such as scikit-learn, and our proposed Algorithm 1 can be easily
mplemented. A Python-based toolkit for implementing our data-driven
ncertainty set is developed in [24].

Remark 4. Since DBSCAN and GMM are used to generate data clusters
or constructing uncertainty subsets, the performance of our proposed

uncertainty set is directly influenced by the effectiveness of these clus-
ering methods. This is particularly challenging with high-dimensional
ncertainty data, where visual evaluation of clustering quality and the
esulting uncertainty set is not feasible. Additionally, high-dimensional
ata can lead to sparse training data, which can further deteriorate
he performance of the ML approaches involved. Moreover, in data-
riven RO problems, the absence of labeled data also complicates the
4 
validation and testing of the performance of data clustering and the
esulting uncertainty set. All these factors make it a complex and

nontrivial task to select proper parameters/hyperparameters, such as
(𝜖 , 𝑀 𝑖𝑛𝑃 𝑡𝑠, 𝐾), in the context of high-dimensional uncertainty data.

2.5. Performance analysis and uncertainty sets calibration

In this subsection, guidelines for tuning the parameters of Algo-
ithm 1 and evaluating the resulting data-driven uncertainty set are

provided. In particular, a probabilistic bound of the data coverage
for out-of-sample uncertainties is introduced, which can be used to
establish a probabilistic guarantee of the out-of-sample performance of
the corresponding RO problem.

In Algorithm 1, there are three parameters to be selected: 𝜖, 𝑀 𝑖𝑛𝑃 𝑡𝑠
and 𝐾. A rule of thumb for selecting 𝑀 𝑖𝑛𝑃 𝑡𝑠 is 𝑀 𝑖𝑛𝑃 𝑡𝑠 ≥ 𝑚 + 1,

here 𝑚 is the dimension of the uncertainty. With a fixed value of
𝑀 𝑖𝑛𝑃 𝑡𝑠, 𝜖 determines how many uncertainty samples are excluded
from the uncertainty set. A smaller 𝜖 results in fewer low-probability
uncertainties included in the uncertainty set. Thus, 𝜖 can be chosen
based on the desired proportion of low-probability uncertainties to be
excluded from the uncertainty set. The parameter 𝐾 is the number of
clusters for GMM clustering, which affects both the conservatism and
the complexity of the resulting data-driven uncertainty sets. While a
larger 𝐾 tends to yield a more compact uncertainty set, it increases
the overall complexity as the total number of constraints defining the
uncertainty set is proportional to 𝐾, and may bias the uncertainty set
towards the training samples.

It is important to note that we assume there are no labeled data to
valuate the clustering performance, unlike typical ML data clustering
asks focusing on high clustering accuracy. Also, accurately clustered
ncertainty data do not necessarily result in a favorable uncertainty

set for corresponding RO problems. Since the complexity of the uncer-
ainty set significantly influences the computational effectiveness of the
orresponding RO problem, the balance between its conservatism and

complexity must be considered when selecting the design parameters
of Algorithm 1.

A suggested sequence of parameter selection for Algorithm 1 is as
follows. Firstly, begin by setting 𝑀 𝑖𝑛𝑃 𝑡𝑠 based on the rule of thumb,

hich is at least one plus the dimension of the uncertainty. Next,
djust 𝜖 to achieve the desired percentage of data coverage for the
ncertainty set. Finally, determine an appropriate value of 𝐾, balancing
he conservatism and complexity of the uncertainty set.

For 2-D or 3-D uncertainty data, we can rely on visual inspection
o find out the proper value of design parameters. However, for high-

dimensional uncertainty data, visualization of the clustering results and
the corresponding uncertainty set is not applicable. As a result, we
should rely on some quantitative indicators to support the selection of
design parameters. In the ML community, there are several available
metrics to evaluate the clustering performance, such as Silhouette
Score, Calinski–Harabasz index, and Davies–Bouldin index, which are
readily available in well-developed ML packages such as scikit-
learn. In this work, we choose the Silhouette Score as an example
to select the number of uncertainty subsets.
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The silhouette Score, whose value belongs to [−1, 1], measures how
imilar each data is to the cluster it belongs to and how different
t is from other remaining clusters. A higher score means dense and
ell-separated clusters, and scores around zero indicate overlapping

lusters. As a result, within an acceptable range of 𝐾, the value with
 larger Silhouette Score is preferable. However, it should be noted
hat selecting 𝐾 purely based on such metrics is not wise because
he complexity and the conservatism of the uncertainty set need to be
alanced.

Recall that the larger the value of 𝐾, the more complex the un-
certainty set becomes, consequently reducing its conservatism. The
level of conservatism of the uncertainty set can be reflected by its
data coverage, typically, a less conservative set tends to have a lower
coverage. For our proposed Algorithm 1, the lower bound of data
coverage in the training set is determined by the parameters 𝜖 and

 𝑖𝑛𝑃 𝑡𝑠. Therefore, a desirable 𝐾 should balance a high Silhouette
Score, a low training data coverage, and maintain a relatively small
value to manage complexity.

Once an uncertainty set is constructed via Algorithm 1, another
aspect that needs to be evaluated is its consistency in both training
and validation/testing sets. Consistency means that the uncertainty sets
hould achieve consistent data coverage in both training and valida-
ion/testing sets so that the uncertainty set is not biased towards the
raining set. If the data coverage percentage of the training set is much
arger than that of the testing set, it implies that the uncertainty sets
re biased towards the training data and one might need to reduce the
umber of data clusters 𝐾 to decrease the complexity of the uncertainty
et.

Furthermore, based on the data coverage in the testing set, the
following lemma is applicable to provide a probabilistic bound of
data coverage for any I.I.D. uncertainty scenarios. The data coverage,
denoted as 𝜌, is defined as the portion of data that is included in the
uncertainty set. 𝜌 = 1 means all data are covered by the uncertainty
et, and 𝜌 = 0 means no data is included in the uncertainty set.

Lemma 1. For 𝑛 I.I.D. samples of testing scenarios {𝐮1,… ,𝐮𝑛}, assuming
hat the data coverage of the uncertainty sets (5) for testing data is 𝜌. Then,
for any random sample of uncertainty 𝐮, the probability that 𝐮 ∈  , denoted
as P𝑢∈ , satisfies
P(P𝐮∈ ≤ 𝜌 − 𝜏) ≤ exp(−2𝑛𝜏2) (7)

with 𝜏 ≥ 0.

Proof. Define a random variable 𝜹(𝑢 ∈  ) as the indicator function
of the random event 𝐮 ∈  . Since the testing scenarios are I.I.D.,
𝛿(𝐮𝑖 ∈  ) are 𝑛 I.I.D. samples of 𝛿(𝐮 ∈  ) with 1

𝑛
∑𝑛

𝑖=1 𝛿(𝐮𝑖 ∈  ) = 𝜌.
Consequently, it follows from Hoeffding’s inequality that the inequality
(7) holds. □

In addition to adopting Lemma 1 to construct a probabilistic guar-
antee of uncertainty coverage for the proposed uncertainty set, the cal-
ibration approach using order statistics calculation introduced in [9] is
lso applicable to our proposed data-driven uncertainty set to develop
robabilistic guarantees of uncertainty coverage.

3. Robust optimization design and performance guarantees

In this section, we consider a linear two-stage RO problem with the
proposed data-driven uncertainty set. The RO problem investigated in
this work has the following structure:

min
𝐱

𝐜T𝐱 + max
𝐮∈

min
𝐳

𝐛T𝐳 (8a)

s.t. 𝐓𝐱 +𝐖𝐳 +𝐌𝐮 ≤ 𝐡, (8b)

𝐮 ∈  (8c)

where 𝐱 ∈ R𝑠 is the first-stage decision variables, 𝐳 ∈ R𝑞 is the second-
tage decision variables, or called recourse decision variables, 𝐮 ∈ R𝑚
 i

5 
is the uncertainty. The uncertainty set  is assumed to be constructed
ia our proposed approach, and can be written in the following format

 ∶=
𝐾
⋃

𝑘=1
𝑘, 𝑘 ∶= {𝐮|𝐃𝑘𝐮 ≤ 𝐝𝑘}. (9)

The row number of (𝐓,𝐖,𝐌) is denoted as 𝑟, (𝐜,𝐛,𝐡) and (𝐓,𝐖,𝐌) are
arameter vectors and matrices with appropriate dimensions, respec-
ively.

Optimization problem (8) is semi-infinite and is computationally
intractable since there are infinitely many constraints to be satisfied.
To achieve a balance between computational burden and optimality,
we adopt the following affine decision rule for the recourse decision
variable 𝐳:

𝐳 = 𝐋𝑘𝐮 + 𝐠𝑘, ∀𝐮 ∈ 𝑘 (10)

where 𝐋𝑘 ∈ R𝑞×𝑚 and 𝐠𝑘 ∈ R𝑞 are decision variables to be optimized.
nlike the conventional decision strategy where only a single decision

ule is imposed for all possible uncertainties in the uncertainty set, such
s the works in [12], the proposed uncertainty set makes it possible

to assign different decision policies (10) for uncertainties residing in
different sets. By exploiting the feature of the proposed uncertainty set
for unifying several subsets, it is possible to reduce the conservatism of
the optimal RO solution.

Theorem 1. For the two-stage robust optimization problem (8), assuming
hat the uncertainty set is defined as (9), and the recourse decision variables
are determined via (10), the optimal solution can be computed by solving
(11).

min
𝐱,𝜂 ,𝐋𝑘,𝐠𝑘
𝝅0,𝑘 ,𝝅𝑖,𝑘

𝐜T𝐱 + 𝜂 (11a)

s.t. 𝐛T𝐠𝑘 + 𝝅T
0,𝑘𝐝𝑘 ≤ 𝜂 , (11b)

𝐃T
𝑘𝝅0,𝑘 = 𝐋T

𝑘𝐛, (11c)

[𝐓𝐱 +𝐖𝐠𝑘 − 𝐡]𝑖 + 𝝅𝑇
𝑖,𝑘𝐝𝑘 ≤ 0, (11d)

𝐃T
𝑘𝝅𝑖,𝑘 = [𝐖𝐋𝑘 +𝐖]𝑖, (11e)

𝝅0,𝑘 ≥ 0, 𝝅𝑖,𝑘 ≥ 0, (11f)

∀𝑘 = 1,… , 𝐾 , ∀𝑖 = 1,… , 𝑟. (11g)

In addition, if the data coverage for 𝑛 I.I.D. testing uncertainty samples is 𝜌,
he probability that the solution of (11) can ensure constraint satisfaction
for a random uncertainty 𝐮 is greater than 𝜌 − 𝜏 with confidence at least
 − exp(−2𝑛𝜏2).

Proof. Substituting the decision policy (10) into (8) and considering
uncertainty sets (9) leads to
min

𝐱,𝐋𝑘 ,𝐠𝑘

{

𝐜T𝐱 + max
1≤𝑘≤𝐾

max
𝐮∈𝑘

𝐛T(𝐋𝑘𝐮 + 𝐠𝑘)
}

(12a)

s.t. 𝐓𝐱 +𝐖𝐠𝑘 + (𝐖𝐋𝑘 +𝐌)𝐮 ≤ 𝐡, (12b)

∀𝐮 ∈ 𝑘, ∀𝑘 = 1,… , 𝐾 . (12c)

The universal constraint satisfaction in (12) can be alternatively refor-
mulated as the following worst-case constraint satisfaction

min
𝐱,𝐋𝑘 ,𝐠𝑘

𝐜T𝐱 + 𝜂 (13a)

s.t. max
𝐮∈𝑘

{

𝐛T𝐋𝑘𝐮
}

+ 𝐛T𝐠𝑘 ≤ 𝜂 , (13b)

𝐓𝐱 +𝐖𝐠𝑘 + max
𝐮∈𝑘

{

(𝐖𝐋𝑘 +𝐌)𝐮
}

≤ 𝐡, (13c)

∀𝑘 = 1,… , 𝐾 . (13d)

For the worst-case constraint satisfaction in (13b), following a stan-
ard procedure in RO [4], the maximization problem max𝐮∈𝑘

{𝐛T𝐋𝑘𝐮}
n Eq. (13b) can be translated into its dual problem:
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Table 1
Approaches considered in the case studies.

Approach Description

Box Box uncertainty set constructed based on the minimal and
maximal value of each data dimension.

CH Convex hull of uncertainty data introduced in [16].

K-SVC Kernel-based support vector clustering method proposed in
[10,11].

KPKDE KMeans-based clustering combined with PCA and KDE
approach proposed in [23].

B-DGP Our proposed Algorithm 1 using box subsets in (5).

E-DG One variant of Algorithm 1 where ellipsoidal uncertainty
subsets are constructed via (6).

min
𝝅0,𝑘

𝐝T𝑘𝝅0,𝑘 (14a)

s.t. 𝐃T
𝑘𝝅0,𝑘 = 𝐋T

𝑘𝐛, 𝝅0,𝑘 ≥ 0 (14b)

where 𝝅0,𝑘 is the Lagrangian multiplier. Consequently, constraint (13b)
an be relaxed as

𝐝T𝑘𝝅0,𝑘 + 𝐛T𝐠𝑘 ≤ 𝜂 ,
𝐃T
𝑘𝝅0,𝑘 = 𝐋T

𝑘𝐛, 𝝅0,𝑘 ≥ 0.

Similarly, constraint (13c) results in constraints (11d)–(11f).
It is clear that any feasible solution of (11) can guarantee constraint

satisfaction for any uncertainty as long as 𝐮 ∈  . Based on the I.I.D.
ssumption of the uncertainty and the data coverage in the testing set, it
ollows from Lemma 1 that P(P𝐮∈ ≤ 𝜌−𝜏) ≤ exp(−2𝑛𝜏2), which implies

that the probability that the solution of (11) guarantees constraint
satisfaction for any randomly generated uncertainty 𝐮 is larger than
− 𝜏 with confidence of at least 1 − exp(−2𝑛𝜏2). This completes the

proof. □

Remark 5. Theorem 1 presents a computationally efficient approxima-
tion of (8) by imposing affine decision policy for the recourse decision
variable and solving a linear program. While the uncertainty set in
(5) is nonconvex, the feature that the uncertainty set is a union of
several basic convex subsets ensures the computational efficiency of the
corresponding RO problem. In addition, since separate decision rules
are applied for each subset, the optimal solution is expected to be less
conservative than the typical RO solution with a single uncertainty set
and a single decision rule, such as [10–12,18]. In addition, beyond
the conventional RO solutions, a probabilistic guarantee of constraint
satisfaction for out-of-sample uncertainties is provided based on the
performance testing of the uncertainty set.

4. Applications

In this section, the performance of our proposed method is com-
pared with several representative data-driven RO approaches. Specifi-
cally, we focus on the following approaches listed in Table 1.

The performance of the above approaches is assessed through three
case studies. For the first two case studies, the performance of the un-
certainty sets is compared in the following aspects: area of uncertainty
set, complexity, and computation time. The complexity of polyhedral
ncertainty sets in our work refers to the number of linear constraints

defining the uncertainty set. This metric, which is generally neglected
in the existing literature, is crucial in influencing the computational
efficiency of the corresponding RO problem. For a linear RO problem
with a polyhedral uncertainty set, the number of decision variables
nd constraints in its robust counterpart problem is proportional to
he number of constraints defining the uncertainty sets. As a result, a
igh complexity of the uncertainty set leads to increased computational
emands for solving the corresponding RO problem. For the last case
6 
study, the performance of the proposed approach is assessed via an
optimal building climate control problem.

In our upcoming case studies, since K-SVC, KPKDE, B-DGP and E-DG
can exclude some uncertainty samples to reduce the conservatism of
the corresponding uncertainty sets, the design parameters of these ap-
proaches are chosen to exclude about 5% extreme uncertainty scenarios
to reduce the conservatism of the resulting data-driven uncertainty sets.
Namely, for the K-SVC approach, the parameter 𝜈 is set as 0.05; for the
KPKDE approach, the confidence level of each feature is selected as
[(1 − 0.95 1

𝑚 )∕2, (1 + 0.95 1
𝑚 )∕2]; for the B-DGP and E-DG approaches, the

parameter 𝜖 is adjusted to identify about 5% of the total uncertainty
samples as outliers. With the same data coverage, the approach with a
smaller set size indicates a less conservative uncertainty set.

All simulations are implemented on an Intel Xeon W-2223 CPU at
.6 GHz with 16G RAM. Optimization problems are modeled using
ython package gurobipy and solved via Gurobi 11.0. The in-
olved ML methods – KDE, DBSCAN, GMM and PCA – are implemented
ia the Python package scikit-learn 1.0.2.

4.1. Case Study 1: synthetic uncertainty data

In this case study, we test the performance of the data-driven
approaches listed in Table 1 for constructing uncertainty sets with
synthetic data. A common assumption about uncertainties is that they
are Gaussian distributed. In reality, due to different working conditions
simultaneously being represented in the dataset, the uncertainties may
follow different Gaussian mixture distributions. In order to reflect
this, we use synthetic uncertainty data that are generated from 4
different two-dimensional Gaussian distributions with 500 scenarios
per distribution.

The uncertainty sets with different data-driven approaches are pre-
sented in Fig. 2, where the uncertainty sets are the shaded regions. The
performance of each data-driven approach is summarized in Table 2. It
can be observed that among all approaches, the Box approach gives the

ost conservative uncertainty set since it does not extract and exploit
the hidden patterns of the uncertainty data. For the CH approach, it is
non-parametric and does not entail any computation to construct the
uncertainty set, see [16] for more details, so that its computation time
is not indicated. However, its non-parametric nature also leads to a
very high complexity. Similarly, while the K-SVC approach can find a
compact uncertainty set by precluding some extreme scenarios, its non-
parametric nature also incurs a high complexity. In addition, the convex
nature of the K-SVC-induced uncertainty set limits its flexibility in
dealing with general nonconvex uncertainty distributions. As indicated
n [10], the number of the support vectors, which determines the
omplexity of the uncertainty set developed by the K-SVC approach, is
nversely proportional to the conservatism of the resultant uncertainty

set. Hence, with the K-SVC approach, a less conservative uncertainty
set implies an uncertainty set with higher complexity. Furthermore,
Table 2 shows that the K-SVC approach takes much longer computation
time than the others since it has to solve a large-scale quadratic pro-
gramming problem. In the KPKDE approach, KMeans-based clustering
fails to produce suitable uncertainty clusters for subsequent PCA and
KDE processes, resulting in a relatively conservative uncertainty set.
This issue arises because the KMeans algorithm groups data based
solely on distances, without considering the data distribution within
the same cluster, whereas PCA implicitly assumes a Gaussian data dis-
tribution. This discrepancy limits the efficiency of the KPKDE approach.
In contrast, our proposed methods B-DGP and E-DG, which combine
GMM and PCA, generate more appropriate data clusters and thus yield
more compact uncertainty sets. Additionally, the utilization of DBSCAN
ensures our proposed uncertainty sets are immune to the influence of
unlikely uncertainties. As shown in Table 2, the B-DGP approach gives
a less conservative uncertainty set compared to the E-DG approach.
This is because, in the E-DG approach, while the ellipsoid subset is
more suitable for Gaussian distributed data, its symmetric structure and
correlated features may also increase its conservatism to some extent.
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Fig. 2. Data-driven uncertainty sets using synthetic data in Case Study 1.
Table 2
Performance summary of different uncertainty sets in Case Study 1.

Existing approaches Our approaches

Box CH K-SVC KPKDE B-DGP E-DG

Uncertainty set size 24.40 20.66 13.10 14.77 12.74 14.26

Complexity
(# of linear
constraints)

4 4001 421 12 12 –

Data coverage 1 1 0.95 0.98 0.97 0.98

Computation
time (s)

< 0.01 – 59.27 0.42 0.62 1.10

4.2. Case Study 2: real-world weather data

In this case study, the approaches listed in Table 1 are evaluated
using real-world weather data. The issue of weather uncertainties is
common in many applications, such as building climate control, re-
newable energy management, greenhouse control, etc. How to properly
construct the uncertainty set of weather conditions is important in these
application problems.

This case study considers the uncertainties in ambient temperature
and solar radiation. The utilized weather data are measured during
Jan. 2023–Dec. 2023 from two weather stations in the Netherlands:
(1) the weather station 344 of Koninklijk Nederlands Meteorologisch
Instituut (KNMI), a scientific institute of the Dutch government, located
in Rotterdam, and (2) the weather station located in The Green Village
(TGV) at TU Delft, which is about 7 km from the KNMI station. The
profiles of corresponding weather data are shown in Fig. 3. The weather
data from KNMI are utilized as predicted weather conditions, and the
data from TGV are used as real local conditions. There are 7416 data
points in total. For the sake of visualization, the weather uncertainties
7 
are scaled so that the maximum absolute value of each feature is 1, and
the scaled data are used for developing uncertainty sets.

The uncertainty sets with different data-driven approaches are
shown in Fig. 4 and Table 3. From Fig. 4, it is clear that the Box
approach is the most conservative since no latent feature of the data
is utilized. The uncertainty set via the CH approach is also very con-
servative due to the inclusion of low-probability uncertainty samples.
For the K-SVC approach, while the size of the uncertainty set is small,
it misses some high-probability scenarios located near the boundary
of the uncertainty distribution for the sake of a convex uncertainty
set. Also, as shown in Table 3, the K-SVC approach takes much longer
computation time than the others and incurs a high complexity. While
the KPKDE approach can exclude low-probability uncertainties to re-
duce the conservatism of the uncertainty set, its performance for this
irregular uncertainty distribution is far from satisfactory. On the one
hand, the KMeans method fails to generate suitable data clusters for
subsequent PCA-KDE-based uncertainty set construction. On the other
hand, the adoption of KDE fails to remove low-probability uncertainty
samples, especially for the uncertainty cluster 5 in Fig. 3(d) where
uncertainty samples are sparsely distributed. Finally, it can be observed
from Fig. 4(e) and 4(f) as well as Table 3 that our proposed B-DGP
and E-DG approaches are more versatile than the others in dealing
with irregular uncertainty distributions and achieve a notable balance
between complexity and conservatism in constructing uncertainty sets.

Remark 6. It should be pointed out that, based on the results of
our case studies, the complexity of the uncertainty set constructed
via K-SVC can be remarkably influenced by numerical errors. The K-
SVC method relies on support vectors to construct the uncertainty
set. Based on the value of corresponding Lagrangian multipliers 𝛼𝑖, all
uncertainty samples are classified into 3 categories: support vectors
with 0 < 𝛼𝑖 < 1

𝑛𝜈 , outliers with 𝛼𝑖 = 1
𝑛𝜈 and interior points with

𝛼 = 0. Due to the existence of numerical errors, all uncertainty samples
𝑖
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Fig. 3. Weather data from KNMI and TGV in Case Study 2.
Fig. 4. Data-driven uncertainty sets using real weather data in Case Study 2.
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Table 3
Performance summary of different uncertainty sets in Case Study 2.

Existing approaches Our approaches

Box CH K-SVC KPKDE B-DGP E-DG

Uncertainty set
size

3.12 1.66 0.25 1.56 0.28 0.34

Complexity
(# of linear
constraints)

4 14 833 1493 24 24 –

Data coverage 1 1 0.95 0.98 0.98 0.98

Computation
time (s)

< 0.01 – 1745.85 2.72 2.95 3.44
8 
may be identified as support vectors, which will dramatically increase
the complexity of the resulting RO problem due to the non-parametric
property of the uncertainty set. To mitigate the influence of numerical
errors, in our case studies, the support vectors are selected based on
0 + 𝜀 < 𝛼𝑖 < 1

𝑛𝜈 − 𝜀, where 𝜀 > 0 is a sufficiently small constant
𝜀 = 1 × 10−8 in our case studies). The choice of 𝜖 might strongly
nfluence the number of support vectors and hence the complexity of
he uncertainty set. In addition, as shown in [10], the number of the
upport vectors is proportional to the parameter 𝜈, which implies a less
onservative uncertainty set derived via the K-SVC approach has more
omplexity, and consequently higher computational burden for solving
he corresponding RO problem. Furthermore, from Table 2 and 3, it can
e observed that the computation time of K-SVC is much larger than the
thers since it entails solving a large-scale QP.
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Remark 7. With the KPKDE approach, uncertainty samples are first
lustered using KMeans. Then, the samples within each cluster are

processed using the PCA method. Subsequently, an uncertainty subset
s constructed based on the confidence intervals derived from the

approximated cumulative density function (CDF) of the PCA-processed
data, tailored to a predefined confidence level. As can be seen in
Fig. 2 and 4, the KMeans clustering used in the KPKDE approach
can result in unsuitable data clusters for constructing PCA-KDE-based
uncertainty sets because PCA implicitly assumes Gaussian distributed
data whereas KMeans fails to generate data clusters satisfying this
assumption. Furthermore, the efficacy of the KPKDE method is sen-
itive to the choice of the hyperparameters: the kernel functions and
ssociated bandwidth. Assuming an ideal approximation of the CDF, an
ncertainty set formulated with a confidence level 𝛾 for each dimension
f the PCA-processed data would give a data coverage 𝛾𝑚, where 𝑚
epresents the uncertainty dimension. Nevertheless, the presence of an
pproximation error in the CDF, quantified as 𝜖, might lead to an actual
onfidence level 𝛾+𝜀. Consequently, the actual data coverage is (𝛾+𝜖)𝑚.
iven values of 𝛾 = 0.98, 𝜖 = 0.01 and 𝑚 = 10, the total error of data
overage is 0.087, which means 8.7% of the uncertainty samples are
nexpectedly included in the uncertainty set.

Remark 8. The importance of using real-world datasets over simple
synthetic datasets for performance evaluation lies in two main factors.
Firstly, the assumption made when generating synthetic datasets may
not accurately represent real-world conditions when applying the ap-
proach to practical problems. For instance, a common assumption in
building climate control is that the weather uncertainties follow Gaus-
sian distributions. However, as illustrated in Fig. 4, our real-world data
is clearly non-Gaussian and is more complex to handle. Second, real-
world data distributions can be far more intricate and irregular than
ynthetic ones. Consequently, data-driven approaches that perform well

on synthetic datasets may experience significant performance degrada-
tion when applied to complex, real-world data. Therefore, conclusions
drawn from synthetic datasets may not generalize to actual practical
scenarios. Additional supporting materials, demonstrating that the per-
formance of the data-driven approaches considered in this paper are
harder to distinguish from each other for simple synthetic datasets, are
provided in [24] to further validate the aforementioned statement.

4.3. Case Study 3: optimization-based building energy control

In this case study, we will investigate the RO design for the optim
zation-based building energy control problem considered in [11]. The

thermal dynamics of buildings are subject to several weather uncer-
tainties, e.g., ambient temperature uncertainty. Properly considering
these uncertainties in building energy control can improve occupants’
comfort and reduce energy usage.

The building thermal dynamics is modeled as the following linear
system

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑢𝑡 + 𝐵𝑣𝑣𝑡 + 𝐵𝑤𝑤𝑡, (16)

where 𝑥𝑡 is the state vector consisting of indoor air temperature, wall
temperature, roof temperature, and floor temperature; 𝑢𝑡 is the heating
ower injection, 𝑣𝑡 is the vector of the predicted value of ambient
emperature and underground temperature, 𝑤𝑡 is the prediction error
f ambient temperature. The system matrices are

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0167 0.0048 0.1245 0.409
0.0005 0.0002 0.0039 0.0044
0.0253 0.0073 0.3321 0.0617
0.0244 0.0070 0.0526 0.3456

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑢 =

⎡

⎢

⎢

⎢

⎢

0.0986
0.0029
0.0288

⎤

⎥

⎥

⎥

⎥

, 𝐵𝑣 =

⎡

⎢

⎢

⎢

⎢

0.2536 0.4596
0.0070 0.9840
0.4450 0.1287

⎤

⎥

⎥

⎥

⎥

, 𝐵𝑤 =

⎡

⎢

⎢

⎢

⎢

0.2536
0.0070
0.4450

⎤

⎥

⎥

⎥

⎥

.

⎣

0.0275
⎦ ⎣

0.4477 0.1225
⎦ ⎣

0.4477
⎦

9 
Fig. 5. Silhouette score and data coverage percentage for different 𝐾 values (# of
clusters) in Case Study 3.

The control objective is to determine the heating power injection 𝑢𝑡
over a finite time window to ensure indoor comfort constraints while
reducing energy consumption in the presence of weather prediction
rrors. As a result, the finite horizon optimal control problem can be
ormulated as

min
𝑢𝑡

∑𝐻
𝑡=0

𝑙𝑡(𝑥𝑡, 𝑢𝑡) (17a)

s.t. 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑢𝑡 + 𝐵𝑣𝑣𝑡 + 𝐵𝑤𝑤𝑡, (17b)

𝑥𝑡 ∈  , 𝑢𝑡 ∈  , (17c)

∀𝑡 = 0, 1,… , 𝐻 − 1, ∀𝑤𝑡 ∈  (17d)

where 𝑙𝑡 is the stage cost function;  and  are the feasible sets of
the states and thermal input, respectively;  is the uncertainty set of
the ambient temperature, which are constructed via the data-driven
approaches in Table 1; 𝐻 is the length of the prediction horizon.

Similarly to [11], the feasible set of states is defined as keeping the
indoor temperature above 21 ◦C during peak occupied hours 7 am–6
pm, and keeping the indoor temperature above 15 ◦C for off-peak hours
to avoid unnecessary energy usage. The length of the prediction horizon
is 𝐻 = 10. The admissible control input set is defined as 0 ≤ 𝑢𝑡 ≤ 150.
The stage cost function is 𝑙𝑡 ∶= 𝑢𝑡 for minimizing energy consumption.
The above finite horizon optimal control problem can be formulated as
an RO problem in the format of (8). The thermal control input 𝑢𝑡 can
be regarded as the recourse decision variable, and the prediction errors
of ambient temperature are uncertainties. While only one uncertainty
factor – ambient temperature – is considered, the dimension of the
uncertainty for the resulting RO problem is 10, which is equal to the
length of the prediction horizon 𝐻 , since all uncertainties within the
prediction horizon need to be considered. To ensure the causality of
input, decision variable 𝐋𝑘 is restricted to be strictly lower triangular.
The control inputs within the prediction horizon are applied in an open-
loop manner. Namely, the control signals are computed via the affine
control policy (10) with the parameters (𝐋𝑘, 𝐠𝑘) updated every 𝐻 time
tep.

The historical weather data used in this case is from KNMI in
Case Study 2. 80% of the uncertainty samples are used for developing
uncertainty sets, and the remaining 20% uncertainty data are used
for implementing simulations of the robust optimization-based control
esign. The data of ambient temperature in Jan. and Feb., during which
eating is needed, are used for simulations. The ground temperature is
et as the annual average ambient temperature.

In this case study, we mainly focus on the following data-driven
approaches: Box, K-SVC, KPKDE, B-DGP and E-DG. Unlike the previous
case studies, this case study considers high-dimensional uncertainties.
Hence evaluating the uncertainty sets visually by plotting the uncer-
tainty sets is not suitable anymore. As introduced in Section 2.5, we
rely on the silhouette score and data coverage measures to find a
suitable value of 𝐾 for Algorithm 1, namely the number of subsets. To
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Fig. 6. Indoor temperature profiles with different data-driven uncertainty sets in Case Study 3.
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ensure the computational efficiency of the resulting RO problem, we
restrict 𝐾 ∈ [2, 7]. The silhouette score and the corresponding training
data coverage of the B-DGP-based uncertainty set with different 𝐾 are
lotted in Fig. 5. It can be observed that 𝐾 = 5 achieves a balance
etween high silhouette score and low data coverage. Hence, we select

𝐾 = 5. For the KPKDE approach, the number of data clusters is
selected as 𝐾 = 2, which is tuned based on the suggestion provided
in [22] to yield the highest Calinski–Harabasz index. To demonstrate
the effectiveness of the proposed decision rule (10), the conventional
decision rule where only a single decision is applied for all subsets
within the proposed uncertainty set is also implemented.

The indoor temperature profiles with different data-driven uncer-
tainty sets and our proposed decision rule are depicted in Fig. 6, and
he corresponding control performance is summarized in Table 4. The

conservatism of the uncertainty set and the solution quality of the
corresponding RO problem are measured by the value of the average
cost. Among all approaches, it can be observed from Table 4 that the
K-SVC approach and our proposed approaches (B-DGP and E-DG) have
relatively low average cost since they can exclude some low-probability
samples. In comparison, the KPKDE results in a much higher average
cost (the second highest among all approaches), and consequently a
more conservative uncertainty set. While theoretically, the KPKDE ap-

proach is also capable of removing low-probability uncertainty samples,

10 
its performance is far from satisfactory for this complicated real-world
uncertainty distribution. As for the Box approach, it results in the high-
est average cost since it does not leverage any underlying pattern of the
uncertainty data. For the K-SVC approach, while it achieves comparable
average cost to our proposed B-DGP approach, its computational time
is 4 times greater than that of the B-DGP approach. This is caused by
the high complexity of the uncertainty set due to its non-parametric
property. For our proposed B-DGP and E-DG approaches, both have
relatively low average cost and short computation time, which means
that a favorable balance between the complexity and conservatism of
the uncertainty sets is achieved. Notably, the E-DG approach has the
lowest average cost compared to all other approaches. It should be
pointed out that the E-DG approach requires a SOCP solver, whereas
B-DGP only needs an LP solver for solving (17).

The last two columns of Table 4 show the simulation results for our
roposed uncertainty sets when a conventional decision rule is applied
hat implements a single decision rule for all subsets. It can be seen that
ndoor comfort constraints are violated with the conventional decision
ule while our proposed decision rule keeps the indoor temperature
ithin the admissible range during the whole simulation period, which

onfirms that the proposed decision rule (10) is beneficial for improving
the robustness of the optimal solution.
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Table 4
Control performance summary of different data-driven uncertainty sets in Case Study 3.

Existing approaches Our proposed approaches

Box K-SVC KPKDE B-DGP E-DG B-DGP E-DG
Proposed
decision rule

Conventional
decision rule

Complexity
(# of linear constraints)

20 721 40 100 – 100 –

Data coverage 1 0.95 0.97 0.95 0.95 0.95 0.95

Average cost (W/m2) 99.62 92.21 98.87 91.29 87.50 86.59 86.30

Total constraint
violation (◦C)

0 0 0 0 0 14.65 6.07

Average computation time
for solving (17) (s)

0.05 0.94 0.10 0.23 0.29 0.05 0.05
5. Conclusions

This study proposes a novel approach to construct data-driven
uncertainty sets, leveraging DBSCAN, GMM, and PCA techniques, for
robust decision-making with uncertainties. The proposed approach is
flexible in balancing the conservatism and complexity of the uncer-
tainty set while demonstrating resilience to low-probability uncertainty
scenarios regardless of the underlying uncertainty distributions. The
influence of each design parameter is elucidated, and the performance
of the proposed uncertainty set can be systematically analyzed with
the guidelines provided in this paper. By adopting well-established
ML packages scikit-learn, a Python-based toolkit for conveniently
and efficiently implementing our proposed data-driven uncertainty
set is provided. Furthermore, for a linear two-stage RO problem, a
tailored solution with the proposed uncertainty set is derived with a
probabilistic guarantee of constraint satisfaction for out-of-sample un-
certainties, enhancing the confidence of applicability over conventional
RO solutions. Comparative analyses with several existing uncertainty
set construction methods highlight the superiority of our methodology
in striking a balance between computational efficiency and robustness
of hedging against uncertainties.

Future works include designing novel RO formulations to exploit the
representation of the proposed data-driven uncertainty set – a union of
asic subsets – to further reduce the conservatism typically associated

with conventional RO formulations.
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