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Constructing uncertainty sets as unions of multiple subsets has emerged as an effective approach for creating
compact and flexible uncertainty representations in data-driven robust optimization (RO). This paper focuses on
two separate research questions. The first concerns the computational challenge in applying these uncertainty
sets in RO-based predictive control. To address this, a monolithic mixed-integer representation of the
uncertainty set is proposed to uniformly describe the union of multiple subsets, enabling the computation of
the worst-case uncertainty scenario across all subsets within a single mixed-integer linear programming (MILP)
problem. The second research question focuses on mitigating the conservatism of conventional RO formulations
by leveraging the structure of the uncertainty set. To achieve this, a novel objective function is proposed to
exploit the uncertainty set structure and integrate the existing RO and distributionally robust optimization
(DRO) formulations, yielding less conservative solutions than conventional RO formulations, while avoiding the
high-dimensional continuous uncertainty distributions and the high computational burden typically associated
with existing DRO formulations. Given the proposed formulations, numerically efficient computation methods
based on column-and-constraint generation (CCG) are also developed. Extensive simulations across three case
studies are performed to demonstrate the effectiveness of the proposed schemes.

1. Introduction distributions and ensure compactness, which is beneficial for reducing
the conservatism of the corresponding robust optimal solutions.

It should be noted that, while the methodology of representing
uncertainty sets as unions of multiple subsets has been proven to be
effective in several applications, such as power system operation [11]
and building climate control [12], this uncertainty set representa-

tion together with the existing column-and-constraint generation (CCG)-

Decision-making under uncertainty has gained increasing attention
in both scientific research and engineering applications. One of the
solutions for handling uncertainties in decisions is robust optimization
(RO). By representing uncertainties via uncertainty sets, RO can ensure
constraint satisfaction for all possible uncertainties without incurring
an unaffordable computational burden and requiring the complete
information of uncertainty distributions [1-3]. Despite the popularity
and effectiveness of RO formulations, it is well-known that the optimal

based algorithm could result in computationally demanding optimiza-
tion problems when applied in robust predictive control settings. This

solution of RO problems can be conservative owing to two main factors.

The first factor contributing to the conservatism of the robust op-
timal solution is how the uncertainty set is represented. In recent
years, with the availability of abundant measurement data and machine
learning techniques, data-driven approaches have been developed to
construct compact uncertainty sets by uncovering and exploiting the
latent features of the uncertainty data, see [4-9] and references therein.
Among these data-driven approaches, one innovative methodology is
constructing the uncertainty set as a union of multiple subsets, see [6,
7,10] and references therein. By adopting such a methodology, the
data-driven uncertainty set is able to adapt to irregular uncertainty
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computational tractability in practice is generally neglected in the
existing works.

One widely adopted algorithmic solution for solving two-stage RO
problems is the so-called CCG algorithm [13,14]. When applying the
existing CCG algorithm to solve the RO problem with multiple uncer-
tainty subsets, each uncertainty subset entails solving one optimization
problem to compute the worst-case uncertainty in each iteration of
the CCG algorithm [6]. As elaborated in Section 3, the total number
of uncertainty subsets in RO-based predictive control problems could
increase exponentially with the length of the prediction horizon, which
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leads to computationally demanding or even intractable problems and
limits the applicability of the existing approaches.

The second major factor influencing the conservatism of robust
optimization solutions lies in how the design objective is formulated.
In the classical RO framework, the optimization problem is designed
to minimize the cost function while ensuring constraint satisfaction
under the worst-case realization of the uncertainty. While this ap-
proach provides strong guarantees, it often leads to overly conservative
solutions, especially when the worst-case scenario is highly improba-
ble [1,2,6,15]. To alleviate the conservatism of the optimal solution,
alternative formulations have been explored. Stochastic optimization
(SO) focuses on minimizing the expected performance with respect to
a known probability distribution of the uncertainty, thereby potentially
achieving better average-case performance [16-18]. However, SO relies
on accurate knowledge of the true distribution of uncertainties, which
is rarely available in practice. Further, it is practically possible that
distribution shifts between the empirical distribution and the true
distribution might exist to degrade the out-of-sample performance.
Distributionally robust optimization (DRO) offers a middle ground by
optimizing the worst-case expected performance over an ambiguity set
of probability distributions centered around a nominal or empirical dis-
tribution [15,19-23]. This enables DRO to hedge against distributional
misspecification while avoiding some of the excessive conservatism
inherent in worst-case RO.

Despite the effectiveness of these existing design options, they ei-
ther require approximating the probability distribution of uncertain-
ties, which could be high-dimensional and is non-trivial to obtain in
practice, or entail solving a computationally demanding optimization
problem. For example, in the moment-based DRO formulation [19,22],
a semi-definite programming problem needs to be solved at each iter-
ation of the corresponding CCG algorithm; in scenario-based SO [17]
and Wasserstein-based DRO formulation [20], the consideration of a
large number of uncertainty scenarios leads to large-scale optimization
problems and increased computational burden. Moreover, most existing
designs of conservatism-reduced objective functions do not exploit the
structure of uncertainty sets, especially the promising option of repre-
senting the uncertainty set as a union of multiple subsets in data-driven
RO settings. In [24,25], data-driven DRO formulations are proposed
with the combination of multiple-source uncertainty modeling, where
data-driven ambiguity sets are developed for each uncertainty subset
separately. While these approaches exploit the latent property in em-
pirical uncertainty samples and reduce dependence on prior knowledge
to construct an ambiguity set, they still inherit the computational
limitations in corresponding conventional DRO formulations, as the
underlying problem structure remains unchanged.

By considering that the uncertainty set consists of multiple sub-
sets, this paper investigates two separate research questions: (1) how
to properly represent the uncertainty set to deal with the computational
challenge when applying it in RO-based predictive control problems; and (2)
how to exploit the uncertainty set structure to design new objective function
for mitigating the conservatism of the robust optimal solution. The main
contributions of this paper are summarized as follows:

+ A monolithic representation of the uncertainty set consisting
of multiple subsets is proposed for RO-based predictive control
problems. Given the proposed representation, a computationally
efficient CCG algorithm is developed such that only a single MILP
problem needs to be solved to compute the worst-case uncertainty
scenario across all uncertainty subsets, regardless of the length of
the prediction horizon. In comparison, the direct extension of the
conventional solutions, e.g., the methods developed in [6,14], to
predictive control problems entails solving a set of optimization
problems whose number grows exponentially with the prediction
horizon.
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» Aiming at reducing the conservatism for optimizing the worst-
case performance in conventional RO formulations, a novel ob-
jective function exploiting the structure of the uncertainty set,
together with a CCG-based computation method, is proposed. By
combining conventional RO and DRO formulations, the proposed
objective function not only achieves less conservative solutions
than conventional RO formulations but also avoids approximat-
ing the continuous and possibly high-dimensional uncertainty
distribution and incurring high computational burden as with
the existing SO and DRO formulations, especially in the case of
fully adaptive recourse decision and large numbers of uncertainty
samples.

Numerical experiments of three case studies are performed to
extensively illustrate the issues of the existing approaches with
the uncertainty set consisting of multiple subsets and demonstrate
the effectiveness of the proposed schemes.

The remainder of this paper is organized as follows. Section 2 briefly
describes the preliminaries and research gaps. Section 3 clarifies the
issues of the existing approach and proposes a new uncertainty set
representation with a CCG-based computation method. In Section 4,
a novel objective function exploiting the structure of the uncertainty
set is proposed to mitigate the conservatism of robust optimal solu-
tions. Given the proposed objective function, a CCG-based computa-
tion method is also derived. Section 5 presents numerical experiment
results. Section 6 concludes this paper.

Notation: boldface capital letters denote matrices, and boldface
lowercase letters denote vectors. Sets are represented by calligraphic
capital letters. e denotes all-ones vectors with appropriate dimensions.
® is the Cartesian product. E[-] indicates the expectation of a given
random variable. The operator col(x,,...,x,) represents the stacked
vector [xf, Xl

2. Preliminaries

This section introduces some preliminaries of the two-stage linear
RO problem to be investigated, and briefly discusses the research gaps
when considering an uncertainty set consisting of multiple subsets.

The following two-stage linear RO problem is considered in this
work

min {ch +max min bTy} (1a)
X vEY yeEY(X,V)

s.t. Ax < q, (1b)

Y(x,v) :={y | Tx+Wy+Mv < h}, (1c)

where x € R? are the first-stage decision variables (interchangeably
called here-and-now decision variables), which can contain both con-
tinuous and binary elements, y € RY are the second-stage decision
variables (interchangeably called wait-and-see decision variables or re-
course decision variables), which are assumed to be continuous, v €
R™ denotes the uncertainties with V as the corresponding uncertainty
set, Y(x,v) is the admissible set of y, (c,b,q,h) and (A,T,W,M) are
parameter vectors and matrices, respectively, with appropriate dimen-
sions. Without loss of generality, in the remaining parts of this paper,
the above two-stage RO problem is assumed to be relatively complete
recourse, i.e., the optimization problem is feasible for any possible x
and v [14]. For problems that do not satisfy this assumption, some other
strategic solutions discussed in [13] are also applicable in our proposed
design.

To solve the above two-stage RO problem, one commonly adopted
approach is the so-called column-and-constraint generation (CCG) algo-
rithm. In CCG algorithm, the optimal solution of the RO problem is
computed by iteratively solving a master problem and several subprob-
lems (the number of the subproblems to be solved is dependent on
the number of uncertainty subsets) to update the lower bound and



Y. Li et al.

upper bound of the objective function until a predefined optimality
gap is achieved [6,14]. In this paper, unless mentioned specifically,
the existing approach for solving the RO problem (1) refers to the CCG
algorithm.

For reducing the conservatism of the robust optimal solutions,
including but not limited to the two-stage RO problem in (1), data-
driven approaches exploiting historical uncertainty data and machine
learning techniques have been extensively explored for constructing
compact uncertainty sets. Among these data-driven approaches, one
promising methodology is representing the uncertainty set as a union
of multiple subsets, such as polytopes and ellipsoids, which has been
shown to be effective in improving the compactness and flexibility
of the uncertainty sets in handling irregular and complex uncertainty
distributions. An uncertainty set V represented as a union of multiple
subsets can be expressed as

K
V=W )
k=1

where V), denotes the kth uncertainty subset with K as the total number
of subsets. The uncertainty subsets can be any basic sets, such as box,
ellipsoid, and polytope.

While the existing works have demonstrated the effectiveness of
formulating an uncertainty set as a union of multiple subsets as in
(2), there are two research gaps accompanying such uncertainty set
representation to be filled.

* RO-based Predictive Control With Multiple Uncertainty Subsets: The
RO formulation (1) has been applied in predictive control prob-
lems due to its effectiveness in ensuring robust constraint satisfac-
tion [5]. However, when employing the data-driven uncertainty
set representation (2), the number of uncertainty subsets could
grow exponentially with the prediction horizon. This exponential
growth leads to a rapid increase in the number of subproblems
solved in each iteration of the existing CCG-based algorithms,
making the optimization problem computationally demanding or
even intractable. Therefore, developing computationally efficient
solutions to address this challenge is crucial for enhancing the
practicality of the data-driven RO design with the uncertainty set
representation (2) in robust predictive control.
Conservatism-Reduced Objective Function With Multiple Uncertainty
Subsets: The conventional RO formulation could suffer from con-
servatism due to the optimization of worst-case performance, as
shown in (1). Given the existing RO formulations with multiple
uncertainty subsets, the structure of the uncertainty set is not fully
considered in designing the objective function. Consequently,
how to properly exploit the property that the uncertainty set
consists of multiple subsets to design novel RO formulations
is beneficial to reduce the conservatism of the robust optimal
solution.

The above research gaps, together with our proposed solutions, will be
further elaborated in detail in the subsequent sections.

3. RO-based predictive control with multiple uncertainty subsets

This section details the research gap when applying the uncertainty
set structure (2) in robust predictive control, and proposes a novel
mixed-integer representation to uniformly describe the unified uncer-
tainty set such that the computational efficiency of the CCG algorithm
for solving the RO problem is remarkably improved.

3.1. Problem formulation
Theoretically, even with the uncertainty set represented as in (2),

existing data-driven methods for constructing uncertainty sets and the
solutions for solving (1) can be directly extended to robust predictive
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control problems. However, practical challenges arise when applying
these methods, which have been overlooked in existing works.

For simplicity of illustration, consider the following deterministic
formulation of a predictive control problem

N
min ' I(s,,u,) (3a)
i
st s =Ps, + T, + v, (3b)
SSES,WEV, v, €V, (€]
t=1,....,N Bd

where s, denotes the system states vector, u, denotes the control input
vector, v, the uncertainties, /(s,,u,) the stage cost function, S and U
are feasible sets of system states and control inputs, respectively, V, is
the uncertainty set of v,, subscript ¢ denotes the rth time step, and N
the length of the prediction horizon. In predictive control settings, it
is common that the uncertainties v, ( = 1,..., N) are assumed to be
independent and identically distributed (I.1.D.) [26,27].

After reformulating the predictive control problem (3) into the cor-
responding RO formulation (1), the uncertainty vector v is the stacked
uncertainty sequences v, within the prediction horizon, ie., v :=
col(vy,...,vy). In the existing data-driven RO framework, the uncer-
tainty set V is directly constructed for the stacked uncertainty vector
v. While this approach is still theoretically feasible, it will incur some
issues. On one hand, for a fixed number of uncertainty samples v,,
considering the stacked uncertainty v reduces the size of the train-
ing dataset (shrinking it to % of the original dataset for v,). This
reduction may result in insufficient data and degrade the performance
of data-driven approaches for constructing uncertainty sets. On the
other hand, directly modeling the uncertainty set for the stacked un-
certainty v increases the dimensionality of uncertainty samples, par-
ticularly for long prediction horizon N. As shown in existing studies,
high-dimensional uncertainties pose challenges in implementing data-
driven methods, including difficulties in hyper-parameter tuning and
performance validation.

For example, in building climate predictive control, the prediction
horizon could span 12 h with a sampling period of 30 min, and a typical
uncertainty is the prediction error of ambient temperature. Given one
year of historical uncertainty data of v,, the number of uncertainty
samples for v, is 365*24*2. However, when considering the stacked
uncertainty samples for v = col(v,, ..., vy) with N = 24, the training set
size reduces to 365 x 2. Consequently, the dataset for v may be too small
to ensure the effectiveness of data-driven approaches in constructing
uncertainty sets.

Under the L.LD. assumption of v,, one solution is to construct a data-
driven uncertainty set for v,, denoted as V,, and then extend the per-step
uncertainty set V, to construct the uncertainty set of v. Assuming that
the uncertainty set for v, consists of K subsets and denoting the kth
uncertainty subset as V,, the uncertainty set for v = col(v;,...,Vy),
denoted as V, can be expressed as

K
V=08V, V=JVu @
N—— k=1
N times
where N is the length of the prediction horizon considered in the
predictive control problem (3).

Remark 1. It can be seen from (4) that the number of subsets
constituting ¥ is KV, which grows exponentially with the prediction
horizon N. By adopting the existing CCG algorithm to solve the RO
problem (1) with the uncertainty set (4), each uncertainty subset
requires solving a bilinear or mixed-integer linear optimization prob-
lem to compute the worst-case uncertainty in every iteration of the
algorithm [6]. Consequently, handling K" subsets translates to solving
KN optimization problems per iteration. In case of large values of K
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and N, this approach could be computationally demanding and prac-
tically inapplicable. Therefore, the computational challenges arising
from representing the uncertainty set as a union of multiple subsets in
(4) highlight the need for an effective formulation of the uncertainty
set for v.

3.2. Unified uncertainty set representation and computational method de-
sign

This section aims to propose a novel representation to uniformly
represent the uncertainty set of v based on the uncertainty subsets
of v, and derive a computationally efficient solution for solving the
corresponding RO problem.

Assumption 1. The uncertainty set of v,, denoted as V,, consists of K
subsets V,, with each uncertainty subset as a nonempty and bounded
polytope defined as V,; := {v,|D,v, <d,}.

On the basis of Assumption 1, the following monolithic mixed-
integer formulation of the uncertainty set V is derived

K K
Z 6,k Dyv, < Z 6, rdy.
pmy k=1

K
S €B Y S =1 t=1,...,N}
k=1

V= { col(vy,...,Vy)

(5)

where 8, € {0, 1} are auxiliary variables. For the formulation (5), given
any subset of V, a set of feasible variables {5;}( |+ =1,...,N,k =
I,...,K} can be found to uniquely represent a specific uncertainty
subset. Conversely, any feasible {5;fk |t=1,....,N,k=1,...,K} will
also define an admissible uncertainty subset of V. Instead of explicitly
representing the uncertainty set ¥ as a union of multiple subsets as in
(4), the proposed mixed-integer representation (5) gives a monolithic
implicit representation of V that is feasible for any size of uncertainty
subsets K and prediction horizon N.

Theorem 1. Considering the uncertainty set (5) and decomposing the
parameter matrix M into N column blocks {M,}fi | with appropriate di-
mensions, the RO problem in (1) can be reformulated as in (6), which can

be solved via Algorithm 1 within finite iterations.

min ¢'x + max minbTy (6a)
X Sipsve Y
st Ax < q, (6b)
N
Tx+Wy+ ) My, <h, (6¢)
=1
K K
Y 8DV, < Y 8 dy (6d)
k=1 k=1
5, €B, k=1,...,K, t=1,...,N, (6€)
K
Y su=1t=1..N. (60
k=1

Proof. the proof of this theorem is presented in Appendix. []

The master problem MP and the subproblem SP1 entailed in Algo-
rithm 1 are defined as:

MP: minc¢'x+7 (7a)
X.Y;
s.t. b7y, <n, (7b)
Ax <q, (7¢)
N
Tx + Wy, + Z M,v,; <h, 7d)
=1
i=1,2,...,r (7e)
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SP1 :  max min by (8a)
SepVe Y
N
st. Tx+Wy+ ) My, <h, (8b)
=1
K K
Z Ok Dyv, < 2 0 ey (8c)
k=1 k=1
K
Y 64 =1,6,€B, (8d)
k=1
k=1,..,K, t=1,...,N. (8e)

Algorithm 1 column-and-constraint generation algorithm for solving (6).

Input: suboptimality gap ¢
Output: the optimal decision variable x and objective function
value cTx* + n*

1: Set LB=—-c0, UB=00,r=0

2: while |[UB - LB| > ¢ do

3: Solve MP in (7) to derive solutions (x*,n*) and update LB =
cTx* 4 p*

4: Solve SP1 in (8) or SP2 in (9) to derive solutions {v;,y*}, and
update U B as

UB= min{ UB,c"x* + bTy*}

5: Create decision variables y,, set parameters v,, = v/ (f =
1,---,N), and add the following constraints to MP in (7)

bTy, <7,

Tx+ Wy, + 3, M,v;, <h.
6: rer+1
: end while
8: Return: x* and c¢'x* + 7*

N

The subproblem (8) contains bilinear terms 6, v, due to the auxil-
iary binary decision variable §,,, and hence is non-convex and might
be intractable to some solvers. These bilinear terms can be further
reformulated as mixed-integer linear constraints via big-M formulation.
The reformulated subproblem SP2 is given in (9).

SP2 max min bTy (9a)
Sy k¥ Weg Y
N
st Tx+Wy+ ) My, <h, (9b)
1=1
K K
Z Dyw,, < Z 6, x4y (90
k=1 k=1
— Al =6, )e < v, — W, <A1 -6, )e, (od)
— Ab, e < w,, < A5, e, (9e)
k=1,...,K, t=12,....,N 9f)

where 4 > 0 is a sufficiently large constant, and e is an all-ones vector
with appropriate dimension.

Remark 2. It is worth noting that the proposed formulation in (6) is
equivalent to the conventional RO formulation (1) with the uncertainty
set (4), because the mixed-integer representation of the uncertainty
set (5) exactly matches (4) that unifies KV subsets. The number of
possible parameter combinations {5, | r = 1,...,N, k =1,...,K} in
(5) is equal to the number of uncertainty subsets in (4), i.e., KV. In
addition, each feasible parameter combination {6, |t = 1,...,N, k =
1,..., K} uniquely specifies an uncertainty subset for v via (5).
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Remark 3. In contrast to the existing solution for solving the RO
problem (1) with uncertainty set (4), in which K numbers of subprob-
lems need to be solved in each algorithm iteration, the reformulated
uncertainty set (5) enables a monolithic description of the uncertainty
set and ensures that only a single subproblem (SP1 or SP2), whose
decision variables and constraints increase linearly with K and N, to be
solved in Algorithm 1 for computing the worst-case uncertainty. This
can remarkably improve the computational efficiency of the proposed
approach in the case of large values of K and/or N. Additionally, the
proposed approach enables the construction of data-driven uncertainty
sets for v, instead of the stacked uncertainty v without incurring a high
computational burden for solving the corresponding RO problem (1). In
comparison with v, v, has a lower dimension and more data samples,
which will further boost the performance of the data-driven approaches
for constructing uncertainty sets. For example, a lower uncertainty
dimension makes it easier to tune the parameters/hyper-parameters
and evaluate the performance of the data-driven approaches. A larger
dataset can also prevent the data-driven approaches from suffering
performance degradation, such as overfitting, underfitting, poor model
calibration, etc., due to insufficient training data. It is worth highlight-
ing that, while the proposed MILP formulation is NP-hard in theory,
it can often be efficiently solved in practice with modern off-the-shelf
solvers given the developments in mixed-integer optimization [28].

4. Mitigating conservatism via objective function design

This section proposes an alternative objective function for RO prob-
lems by leveraging the structure of uncertainty sets composed of mul-
tiple subsets. Additionally, an algorithmic solution is developed to
efficiently solve the corresponding RO problem.

4.1. Problem formulation

Based on the structure of the uncertainty set — a union of multiple
subsets — this section presents a new formulation of the objective
function for RO problems to reduce the conservatism of the optimal
solution.

The conventional RO formulation in (1) could lead to conservative
solutions due to the objective of worst-case performance optimiza-
tion. Many existing works have been done to propose new objective
functions to reduce the conservatism of the optimal solution. Two
prominent alternative objective functions are given as follows.

mxin {ch + O(v, x)} (10)

where two options of Q(v,x) are

Option 1: Q(v.x) :=E [min bTy] , (11a)
y

Option 2: Q(v,x) := max E inbT 11b

ption 2: 0(v%) = max By [minb"s| (D

with f(v) as the probability distribution of the uncertainty v, and P
denotes the ambiguity set defining the admissible set of f(v).

The objective function in (11a) seeks to optimize the expected
performance to the probability distribution of the uncertainty v, which
is the standard setting in stochastic optimization. This approach can
reduce conservatism compared with worst-case formulations, but it
relies on explicit and accurate knowledge of the underlying uncertainty
distribution. Moreover, closed-form or tractable solutions are generally
available only for specific distributional families (e.g., Gaussian) or
problem structures (e.g., linear decision rules). When samples of the un-
certainty are available, sample-based (randomized) methods are often
used to approximate the expectation in (11a), resulting in a large-scale
deterministic optimization problem whose size grows with the number
of samples, which can be computationally demanding. In addition,
distribution shifts between the empirical and the true distributions
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may exist so that the resulting solution of (11a) may exhibit poor
out-of-sample performance.

To address these issues, distributionally robust optimization (DRO),
as in (11b), accounts for distributional ambiguity by assuming that the
true distribution f(v) is unknown but lies within an ambiguity set P,
typically defined around a nominal or empirical distribution. DRO then
optimizes the worst-case expected performance over all distributions
in P. This approach improves robustness against sampling errors and
model misspecification. Nevertheless, achieving both high-probability
constraint satisfaction and low conservatism in DRO often requires a
sufficiently large and representative set of samples to construct the
ambiguity set. Furthermore, as noted in [29], when the decision rule is
fully adaptive to the uncertainty, which is the case considered in this
work, and the sample size is large, DRO formulations can suffer from
the curse of dimensionality, leading to high computational cost.

Motivated by the objective functions in (11b) and the property that
the uncertainty set consists of multiple subsets, we propose a new
objective function
min {ch + maxE, [max min hTy] } (12)

X peEP VeV, ¥
where p = [p;,p, - ,Pk]" is the probability vector with p, := P(v €
V), P is the ambiguity set defining the admissible set of p.

Remark 4. In contrast to the conventional RO formulation in (1),
where the worst-case performance among all possible uncertainty sce-
narios are optimized, the proposed formulation (12) optimizes the
distributionally robust solution w.r.to the expected worst-case per-
formance max,¢y, min, bTy over all uncertainty subsets. In (12), the
worst-case performance in each uncertainty subset V, is weighted based
on the probability P(v € V), and hence a less conservative solution
is expected with our proposed formulation than the conventional RO
formulation.

Remark 5. In contrast to the SO and DRO formulations in (11), which
entail the information of the joint probability distribution f(v) of the
continuous uncertainty v, our proposed formulation (12) only considers
the discrete probability distribution P(v € V,). Compared with f(v),
P(v € V) is much easier to estimate with high accuracy since f(v)
is the continuous probability distribution of random variable v that
might be high dimensional. In contrast, the probability vector p is
the distribution of the discrete random variable I(v € V,), where
I(-) is the indicator function. An approximation of p can be readily
computed by counting the frequency of v € ¥, for all uncertainty data
samples, and is a multinomial distribution when uncertainty subsets
{Ve. kK =1,...,K} are disjoint. Furthermore, the uncertainty is still
described via an uncertainty set in (12), and uncertainty samples are
not explicitly considered, which are beneficial for maintaining the
computational efficiency as in conventional RO formulation. On the
contrary, the resulting optimization problems for the existing SO and
DRO formulations in the format of (11), e.g., the scenario-based SO
formulation [17] and Wasserstein-based DRO formulation [20], need
to consider all uncertainty samples and are generally computationally
demanding in the presence of large numbers of uncertainty scenarios.

In this work, the ambiguity set P is defined based on Kullback—
Leibler (KL) divergence as

P:={plp>0, e'p=1, KL(p,p) < p}, (13)
where KL(p,p) = X, P« log(i—“) is the KL divergence function mea-
k

suring the similarity of two probability vectors p and p with p as the
approximated probability vector extracted from historical data, p > 0
is a user-defined parameter determining the size of the ambiguity set.

Considering the objective function (12) as well as the ambiguity set
definition (13) and applying epigraphical reformulation, it gives to the
following optimization problem

(14a)

min ¢'x + 4
X1
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s.t. T;\;({Ep [ineegz myin bTy] } <n, (14b)
p>0, e'p=1, KL(p.p) <p, (140)
Ax <q, (14d)
Tx + Wy +Mv <h. (14e)

Remark 6. For the proposed formulation in (14), the conservatism of
the optimal solution depends on both the size of the ambiguity set P,
determined by the parameter p, and the number of uncertainty subsets
K. Specifically, conservatism can be tuned in two ways: by adjusting
K when constructing the data-driven uncertainty set, and by varying p
when designing the ambiguity set. In general, a larger p yields more
conservative solutions, whereas a larger K reduces conservatism. In
extreme cases, for a fixed K, a sufficiently large P leads to the worst-
case optimization, as in the RO formulation (1), since the ambiguity
set then includes the probability vector p that places unit mass on the
subset containing the worst-case sample. Similarly, when the uncer-
tainty set has no subset (i.e., K = 1), the formulation reduces to the
worst-case optimization regardless of the chosen p. In practice, p can be
tuned through cross-validation or out-of-sample testing, by evaluating
different ambiguity set sizes and selecting the one that best balances
robustness and performance.

4.2. Computational method design

The proposed formulation (14) contains quadruple-level optimiza-
tion problems and is computationally intractable to numerical solvers.
This section will present a computational method based on the CCG
algorithm to efficiently solve the optimization problem (14).

Assumption 2. For the robust optimization problem (14), the uncer-
tainty set V is a union of K nonempty and bounded subsets V), defined
as VY :={v|Dv<d;}.

Theorem 2. Assuming Assumption 2 holds, the optimization problem (14)
can be solved via Algorithm 2 by iteratively solving a master problem MP g
in (15) and K subproblems SP* __ in (16) within finite number of iterations.

DRO

MPpgo : in  c'x+ 15a
bROE i, X (o

K T

b o
s.t.vZf)kexp<¥—l>+ﬂ+pv§n, (15b)
k=1

Ax < q, (15¢)
Tx+ Wy, ; +Mv; , <h, (15d)
v >0, (15e)
i=1,....,r, k=1,...,K. (15f)
SPpgo 1 max min by (16a)
s.t. Tx* + Wy + My < h, (16b)
D,v<d,. (16c)

Proof. The proof is provided in Appendix. []

Remark 7. It should be noted that the master problem MPprq (15)
is nonlinear due to the constraint (15b) even if the original constraints
and objective function in (14) are linear. Besides, it can be seen from
Algorithm 2 that the number of these nonlinear constraints will increase
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with the iteration of the algorithm, which could degrade the computa-

tional efficiency of our proposed scheme. One solution to alleviate this
issue is applying the following reformulation for constraint (15b):

I4+PV+VZI_’keXp<¢k_H_1)S7’I,
r v

rk=1,...,K,

(17a)

by S i=1,... (17b)

where ¢, are auxiliary decision variables. The above reformulation
is valid because the left-hand side of (15b) is strictly increasing in
bTy, ;. By replacing (15b) via (17), only linear constraints are added in
each iteration, and the number of nonlinear constraints (17a) is fixed
regardless of the algorithm iteration, which is beneficial in improving
the computational efficiency of Algorithm 2.

Algorithm 2 column-and-constraint generation algorithm for solving
(14).
Input: suboptimality gap e
Output: optimal decision variable x* and objective function value
cTx* +p*
1: Set LB=—-c0, UB=00,r=0
2: while [UB - LB| > ¢ do
3: Solve MPp (15) to obtain solutions (x*,#*, u*, v*) and update
LB =cTx* +5*
4. Solve K subproblems SPf_
and update U B as

(16) to obtain solutions {v},y; }kK=1,

UB= min{ UB, ¢'x* + py* + pv*+

bT k%
" K _ Y —H
v Zlc:lpkexp<—wk —1>}

. . . K _ _
5: Create decision variables {y, .},_,, set parameters v; = v} (k=

1,---,K), and add the following constraints to MPppq in (15)

_ by, —
ﬂ+ﬂV+Vle:=1pkeXp<#—l) <n,
Tx+Wyk,r+Mvzr <h, k=1, K.

6: re—r+1

: end while
8: Return: x* and ¢Tx* + *

N

Remark 8. It is worth noting that, while the constraints (15b) and
(17a) are nonlinear, they are convex, and MPpro becomes a convex
optimization when the decision variable x is continuous. The convexity
of the constraints (15b) and (17a) is proved in Appendix. Several off-
the-shelf solvers, such as Gurobi, Ipopt and MadNLP, can deal with
this type of nonlinearity. The subproblem SPppo (16) is a bi-level
linear optimization problem that is not numerically tractable to solvers.
However, by applying strong duality or KKT-based reformulations and
big-M approach, the inner-level optimization problem in (16) can be
eliminated, and this bilevel optimization problem can be reformulated
as a mixed-integer linear programming problem, see [13,14] for more
details.

Remark 9. Compared to conventional RO formulations, both the pro-
posed formulation (14) and existing DRO formulations, e.g.,
Wasserstein-based DRO formulation [20], result in increased compu-
tational burden, though for different reasons. In our proposed formu-
lation, this computational burden arises primarily from the nonlinear
constraint (15b), particularly when the first-stage decision variables x
include binary components, making the master problem MPpg, (15)
a mixed-integer nonlinear optimization problem. As for the existing
DRO formulation, we take the Wasserstein-based DRO [20] as an
example. When considering the fully adaptive recourse decision rule
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and large numbers of uncertainty samples, while the resulting opti-
mization problem still retains the linearity of the original deterministic
formulation, the increased computational burden is mainly caused by
solving numerous subproblems in every iteration of the CCG algorithm
since each uncertainty scenario will incur an optimization problem,
see Algorithm 1 in the supplementary material [30]. The curse of
dimensionality issue of the Wasserstein-based DRO formulation is also
mentioned in [29].

5. Simulation results

This section presents three case studies to illustrate the effectiveness
of the proposed schemes in this paper. Case Study 1 considers robust
predictive control of building climate to demonstrate the effectiveness
of the proposed approach in Section 3. Case Study 2 and Case Study 3
showcase the approach designed in Section 4 with robust location trans-
portation planning and chemical process network planning problems,
respectively.

All simulations are implemented on an Intel Xeon W-2223 CPU at
3.6 GHz with 16 GB RAM. Optimization problems are modeled via
Python package gurobipy and solved via Gurobi 11.0 [31]. The
values of the parameters used in our case studies are provided in the
supplementary material [30].

5.1. Case Study 1: Robust predictive control of building climate

This case study considers robust predictive control of building cli-
mate. Building systems suffer from weather uncertainties, such as pre-
diction errors of ambient temperature, solar irradiation, etc. Properly
considering these uncertainties can improve indoor climate comfort.

A building climate predictive control problem in its deterministic
form can be formulated as [5]

N

min I(s,,u,)

u, ; 1 T

st. s, =@s,+ T u, +T,w +T,v,
§t Sst Sgt’
Vv, eV, t=1,...,N

u<ucsu,

where (-, -) is the stage cost function, s, is the system states consisting
of indoor temperature, roof temperature, wall temperature and floor
temperature; u, denotes the heating power, w, is the predicted ambient
conditions, v, is the prediction error of ambient temperature, V, denotes
the uncertainty set, N is the length of prediction horizon, s /u, and
§,/1, are lower bound and upper bound of system states/control inputs,
respectively. The stage cost function is defined as I(s,,u;) := u, to
minimize energy usage, system state constraints are defined to keep
the indoor temperature above 21°C during 7:00-18:00 and above
15°C during the remaining hours. Heating power constraints are 0 <
u, < 150. The values of system matrices (®,I',,I',,,I',) are adopted
from [4].

In the simulation, uncertainties v, (+ = 1,..., N) are assumed to
be LLD., and the uncertainty set ¥, for v, is a union of 2 subsets. As
a result, the total number of subsets for the stacked uncertainty v =
[vlT, ,V—]FV]T is 2. Two schemes are considered in this case study for
solving the building climate control problem. One is the conventional
RO formulation with the explicit description of each uncertainty subset
(4) and is solved via the CCG-based algorithm in [6]. Another one
is our proposed formulation (6) and is solved via Algorithm 1. To
fully demonstrate the computational efficiency of the proposed scheme,
different values of the prediction horizon N are tested. Simulation
results are shown in Fig. 1. It can be seen that, with the increase
of the prediction horizon N, the computational time of applying the
conventional approach increases exponentially and is much larger than
that of our proposed formulation since 2V numbers of subproblems
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Fig. 1. Simulation results of Case Study 1 with the proposed approach and the
conventional approach.

have to be solved in each algorithm iteration. In contrast, the compu-
tation time with our proposed formulation (6) and Algorithm 1 only
increases linearly with the prediction horizon N. Besides, Fig. 1(b)
shows that both approaches give the same objective function, which
indicates that the proposed formulation does not sacrifice optimality
while remarkably improving the computational efficiency.

5.2. Case Study 2: Robust location transportation planning

In this subsection, the effectiveness of the proposed formulation
(14) and the corresponding Algorithm 2 is validated via a robust
location transportation planning problem, which is also considered as
a benchmark problem in [14]. The deterministic formulation of this
problem is

min 400x; +414x, + 326x5 + 18x,4 + 25x5 + 20x¢
+ 22y + 33y15 + 24y15 + 33y, + 23y, +30y,3

+ 20y3; +25y3, +27y33 (18a)
St x5 <800x;, i=1,23, (18b)
Zyij <x43, Vi=1,2,3 (18¢c)

J
Zy,»jzdj+40*uj (18d)

i
X, €B, x,3;<0, i=123, (18e)
yi; 20, Vi=1,23, j=1273 (189

where binary first-stage decision variables (x|, x,, x3) determine the lo-
cation of the facilities; continuous first-stage decision variables (x,, xs,
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Table 1
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Computational results of different RO formulations for Case Study 2.

Conventional RO
formulation

Existing DRO formulation
with Wasserstein metric

The proposed RO formulation (14)

(Scheme 1) (Scheme 2)
With (15b) With (17)
(Scheme 3) (Scheme 4)
Optimal objective 36632 35238 35482 35482
Decision variable x [1,0,1,274,0,570] [1,0,1,324,0,520] [1,0,1,364,0,480] [1,0,1,364,0,480]
CPU time (s) 0.40 425.80 17.52 7.06
Iterations 2 3 2 2

x¢) denote the facility capacities; recourse decision variables y;; (i =
1,2,3, j = 1,2,3) are transportations, [d;,d,,d;] = [206,274,220] are
basic demands, and v ;U =1,2,3) are scaled demand uncertainties.

In our simulation, four schemes are considered:

» Scheme 1: the conventional RO formulation (1).

* Scheme 2: the Wasserstein-based DRO formulation [20].

+ Scheme 3: the proposed formulation (14) and Algorithm 2 with
the constraints (15b).

» Scheme 4: the proposed formulation (14) and Algorithm 2 with
the reformulated constraints (17).

The uncertainty set V for [v,v,,v5]" is supposed to have 4 polyhe-
dral subsets. For our proposed schemes (Scheme 3 & 4). The nominal
probability distribution for defining the ambiguity set P is selected as
p =1[0.5,0.1,0.2,0.2] to represent a practical situation where uncertainty
samples are unevenly distributed among different uncertainty subsets.
The upper bound of KL divergence for defining the ambiguity set P
in (13) is set as p = 0.5. For Scheme 2, since its implementation
entails considering specific uncertainty scenarios, 1000 uncertainty
samples in V are randomly generated, which is a reasonable choice for
the uncertainty with dimension 3 [32,33]. Since we mainly focus on
demonstrating the computational efficiency of the DRO formulation,
the Wasserstein distance &, which does not affect its computational
efficiency, is set as ¢ = 1 to give a comparable performance as with
the other schemes. It should be pointed out that the Wasserstein-based
DRO formulation (Scheme 2) can be expected to outperform our pro-
posed methods with a well-calibrated radius. Nevertheless, within the
Wasserstein-based DRO framework, achieving both low conservatism
and strong out-of-sample performance hinges on carefully tuning the
Wasserstein radius and considering a large number of representative
uncertainty samples to avoid overfitting to the empirical distribu-
tion, which will lead to increased computational cost for solving the
corresponding optimization problem. Numerical results for the DRO
formulation and the proposed formulation with an extreme size of am-
biguity set (the size of the ambiguity set is set as zero) are provided in
the supplementary materials, showing that Scheme 2 would outperform
our proposed scheme at the cost of increased computational burden.

Simulation results are summarized in Table 1. It can be seen that
these different RO formulations derive distinct first-stage decision vari-
ables with non-trivial differences. Compared with the conventional RO
formulation (Scheme 1) for optimizing the worst-case performance, the
remaining formulations give less conservative solutions, i.e., smaller
optimal objective values, at the price of increased computational bur-
den. As discussed in Remark 8, the increased computational burden for
the DRO formulation (Scheme 2) is due to its curse of dimensionality
when considering the fully adaptive decision rule and a large number of
uncertainty samples [20,29], while for our proposed schemes (Scheme
3 & 4), the increased computational burden is caused by the nonlinear
constraint (15b), especially when the first-stage decision variable x
contains integer ingredients. It can be seen that, in comparison with
the DRO formulation (Scheme 2), our proposed formulations (Scheme
3 & 4) are much more computationally efficient. Furthermore, the
computational time of Scheme 4 is less than that of Scheme 3, which
indicates the efficacy of the proposed reformulation (17) for improving

the computational efficiency of Algorithm 2. It is worth noting that,
in comparison with Scheme 2, the reduced computation time of our
proposed scheme does not simply result from switching the divergence
measure. Without altering the problem structure, directly replacing the
Wasserstein metric with the KL divergence in Scheme 2 leads to the
same issue observed in the Wasserstein-based design. Namely, as shown
in Algorithm 1 in the supplementary material, both the number of
subproblems and the number of constraints in the master problem are
proportional to the number of uncertainty samples.

5.3. Case Study 3: Chemical process network planning

To further illustrate the viability and effectiveness of the proposed
formulation (14) and Algorithm 2, a chemical process network plan-
ning (CPNP) problem is investigated. The CPNP problem is a typical
engineering problem that fits into RO settings and has been considered
as a benchmark problem in several existing literature, see [4,7,34].

A chemical process consists of raw materials, intermediate chemi-
cals, final products, and multiple interconnected processes. The design
objective of CPNP is to maximize the net present value (NPV) of
the entire network while respecting system constraints for all possible
uncertainties. Our case study considers a chemical process network
consisting of 8 processes and 7 chemicals. The network sketch is shown
in Fig. 2, where chemicals are denoted as red circles (4, B, ..., G), pro-
cesses are blue rectangles (1,2, ...,8), and process flows are indicated
as arrows. Among all chemicals, (A, E) are raw materials, and (D, G)
are products.

The RO problem for CPNP within our proposed design framework
(14) can be formulated as

max Z 2(_ai,tQEi,t = BiYi)+
i t

OE; .Y,

minE, min max —ZZ)/”VV”
peP veV) Pt QFi; ra

i
Wit

_ Zz(p/~’Pf~’+ZZTL'S/J>] (19a)
Jot Jot
st.gel,-Y,, SQE;, <qe, Y, Viel, VieT (19b)
0,=0;,,_+QE, ,Viel, VteT (199
DY, <ce, Viel (19d)
t
Y - QE, +p,Y, <cb, VieT (19)
i
Wi, <0, Viel, VteT (196
P= Y K Wy,—S,=0,VjeJ, VieT (19g)
i
P, <su;,, S, <du; NjeJ, VtET (19h)
QFE; .0, P, W, S;,20,Y;, € {0,1},
Viel VjeJ, VteT, (19i)
v={du,su,} €V, Viel VteT 19
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Table 2
Notations in (19).
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Decision variables

QE;, Amount of capacity expansion Y., Binary decision of capacity expansion
P, Chemical purchase amount S Chemical sale amount

W, Operating level 0, Total process capacity

su;, Market supply limit du;, Market demand limit
Parameters

o, Variable investment cost B Fixed investment cost

Via Operating cost [ Purchase cost

T Sale price qek, Capacity expansion lower bound
qe?, Capacity expansion upper bound ce; Expansion number limit

cb, Expansion cost budget K ) Mass balance coefficient

i Index of the ith process Jj Index of the jth chemical

t Index of the rth time period

Table 3

Computational results of different RO formulations for Case Study 3.

Conventional RO

Existing DRO formulation

The proposed RO formulation (14)

formulation with Wasserstein metric
(Scheme 1) (Scheme 2)
With (15b) With (17)
(Scheme 3) (Scheme 4)
Max. NPV ($MM) 221 284 288 288
CPU time (s) 17.63 8758.07 195.86 183.17
Iterations 2 5 2 2
________ P —=—- worse-case NPV
,_Demand } 450 - W proposed RO formulation
- Y conventional RO formulation
—~ 400 A
=
R . ¥ 350 1
o \_ Demand } s
N e Z 300
Fig. 2. The chemical process network for Case Study 3. 250 A * v v 1 I I I I I I
200 T T T T T T
0 1 2 3 4 5

where T = {1,...,1}, J = {1,...,J}, and T = {I1,...,T} with
I,J and T as the total numbers of processes, chemicals and plan-
ning periods, respectively. All notations in the above equations are
explained in Table 2. The objective function (19a) maximizes the NPV
consisting of investment cost, operation cost, purchase cost of raw
chemicals, and sale profit; constraint (19b) specifies the upper and
lower bounds of capacity expansion for all processes and time periods;
constraint (19¢) updates the total available capacity of each process;
constraint (19d) limits the largest process expansion times; constraint
(19e) ensures the process expansion costs are within available budgets;
inequality (19f) limits the production level of each process within its
total capacity; equality (19g) models the mass balance of all chemicals;
constraints (19h) ensures that the amounts of purchased and sold
chemicals are limited by the available market supply and demand,
respectively; constraints (19i) indicates all non-negative continuous
decision variables and binary decision variables. For more detailed
explanations of chemical process networks, please refer to [7,34].

The uncertainty variables considered in our design are the market
supply limit and demand limit (su; ,, du; ) for all raw materials and prod-
ucts over the planning period. Expansion decisions (QE;,,Y;,) are first-
stage decision variables, and other remaining variables (P;,,S;,,Q;,,
W, ,) are recourse decision variables. Our case study considers a 5—year
planning period with each planning period as 1 year. The uncertainties
(su;,,du; ) are assumed to be independent and reside in 4 uncertainty
sets.

As in Case Study 2, we consider the same four schemes. For the DRO
formulation in Scheme 2, 1000 uncertainty scenarios are randomly

Fig. 3. Error bar of the expected NPV with different ambiguity set size p.

generated, and the Wasserstein distance ¢ defining the size of the
distribution ambiguity set is ¢ = 300 to give a comparable objective
value with the other schemes. It should be noted that the number of
uncertainty samples considered is far smaller than needed for a proper
approximation of the uncertainty probability distribution, given the
20-dimensional uncertainty space [32,33]. However, as shown in our
simulation results, even this limited number of samples can be com-
putationally demanding for solving the corresponding DRO problem.
For our proposed schemes (Scheme 3 & 4), the parameters defining the
ambiguity set P are p = [0.5,0.1,0.2,0.2] and p = 0.5.

Simulation results are shown in Table 3, from which it can be
concluded that consistent results are obtained as in Case Study 2. Com-
pared with the conventional RO formulation (Scheme 1), the remaining
formulations (Scheme 2, 3 & 4) give less conservative solutions, i.e., a
larger value of Max. NPV at the price of increased computational
burden (longer CPU time). Compared with the Wasserstein-based DRO
formulation (Scheme 2), our proposed formulations (Scheme 3 & 4)
are less computationally demanding. In addition, compared with the
original constraints (15b), the reformulation in (17) is effective in
improving the computational efficiency of Algorithm 2.

Furthermore, different values of the ambiguity set size p are tested
to analyze its influence on the conservatism of the optimal solution for
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our proposed formulation. In the simulation, for each p, 5000 random
trials are implemented to sample the probability distribution p that
resides in the corresponding ambiguity set. For all admissible samples
of p, the corresponding performance metric, which is defined as the
expected NPV: ¢"x* + ¥, p, - bTy; with y? as the optimal recourse
variable w.r.t. the worst-case uncertainty in the kth uncertainty subset,
is computed. Fig. 3 depicts the error bar (mean value and envelope) of
the expected NPV among all feasible samples of p, and the worst-case
NPV for all possible uncertainties. It can be seen that, compared with
the conventional RO formulation, our proposed approach consistently
leads to less conservative solutions for all p. Namely, the proposed
approach gives a higher mean, minimal, and maximal NPV than the
conventional RO formulation. Further, it can be seen from Fig. 3 that,
with the increase of p (the size of the ambiguity set), the minimal
NPV of the proposed formulation (14) converges to the worse NPV
computed via the conventional RO formulation, which is consistent
with our statement in Remark 6.

6. Conclusions

This paper investigates the RO problems where uncertainty sets
comprise multiple subsets, focusing on two separate questions: (1) how
to address the computational challenge posed by exponentially increasing
uncertainty subsets in RO-based predictive control? and (2) how to mitigate
the conservatism of the robust optimal solutions by leveraging the structure
of the uncertainty set?

To address the first question, we propose a monolithic mixed-integer
representation of the uncertainty set. Unlike conventional formulations
requiring a separate optimization problem for each subset, our method
only solves a single mixed-integer optimization problem to compute
the worst-case uncertainty scenario over all subsets. This method is
particularly advantageous for RO-based predictive control, where the
number of uncertainty subsets could increase exponentially with the
prediction horizon.

For the second question, we formulate an innovative objective
function exploiting the structure of the multi-subset uncertainty set by
combining the existing RO and DRO formulations. The proposed formu-
lation achieves less conservative solutions than conventional RO formu-
lations while showing more computational efficiency than conventional
DRO formulations. Besides, a CCG-based algorithm is developed to
solve the resulting optimization problem efficiently.

Numerical experiments related to the above research questions are
conducted to extensively demonstrate the effectiveness of the proposed
schemes.
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Appendix

Proof of Theorem 1

Proof. The main difference between the proposed Algorithm 1 with the
conventional CCG algorithm in [6,14] is the definition of the subprob-
lem (8). With the mixed-integer representation of the uncertainty set
V, each set of feasible binary variables {5:,( |t=1,...,N,k=1,...,K}
uniquely defines a subset of V, and vice versa. As a result, by solving
the subproblem SP1 (8) or SP2 (9), the worst-case uncertainty scenario
v = [VTT, ,VI*VT]T among all subsets together with the corresponding
uncertainty subset, defined by {6:k | ¢+t = 1,...,N,k = 1,....,K},
that contains the uncertainty scenario v* will be computed. Based on
Assumption 1, it can be readily concluded that there are finite vertices
of the uncertainty set V. Then, it follows a similar proof as shown
in [14] that Algorithm 1 will solve the RO problem (6) within finite
iterations. This completes the proof. []

Proof of Theorem 2

Proof. For the constraint (14b), it can be rewritten as
K

max - [ max b’

pePr l; Pk <vevk y)

Based on Lemma 19.1 in [15], the inequality (20) is equivalent to
finding 4 and v > 0 such that

(20)

_ Cx, Vi) —u
T _ 1)< 21
/4+pv+v;pkexp( ” )<n 21
where
C(x, V) := max min bTy (22a)
VEV, Y
s.t. Tx+ Wy +Mv <h (22b)

Assumption 2 implies that there are finite vertices of the uncertainty
set V. Besides, it can be seen that the left-hand side of (21) is a
monotonously increasing function w.r.t. C(x,V,), which is LP w.r.t. v.
Consequently, it can be concluded that the optimal v are taken from the
vertices of V. By listing all finite vertices of each uncertainty subset V,,
denoted as Sy :={vy,....V, p, } with H; as the number of all vertices,

the RO problem (14) can be rewritten as

min c¢'x+7 (23a)
XVkiy
A

bly,; —u
s.t.y+pv+vzpkexp<L—l <, (23b)
% A%

Ax < q, (23¢)

Tx + Wy, ; + My, ; <h, (23d)

Vip e {l,....H.}, Yke {1,....K} (23e)

where y,; is the optimal recourse decision variable w.r.t. the uncer-
tainty scenario v; (i =1,..., Hy). Namely,

Yk, =argmin bly s.t. Tx + Wy + My, i <h
: y :

Since there are finite extreme uncertainty scenarios, the optimiza-
tion problem (23) can be computed by iteratively listing all possible ex-
treme uncertainty scenarios as in the conventional CCG algorithm [13,
14], which leads to Algorithm 2.

In the following, we will prove that Algorithm 2 can terminate
within finite iterations. Namely, Algorithm 2 will either find out all ex-
treme uncertainty scenarios or terminate when a repeated uncertainty
scenario is observed. Assuming at the rth iteration of the algorithm,

the extreme uncertainty scenarios {vj,..., vy} computed by solving K
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subproblems (16) are observed in a previous iteration ¢ (+ < r— 1), then
UB = LB and the algorithm terminates.

Suppose that the optimal decision variables by solving MPpgq (15)
at the rth iteration are (x*, u*, n*, v*), which further lead to the optimal
decision variables of K subproblems SP]")Ro {VT,... ,v},y;‘, ,y;{}. It
readily gives that

LB <UB <c"x* + u* + pv'+
bTy* _ M*
- k
v* exp| ———
zk: Py exp N

Since the worst-case uncertainty scenarios {v’lk, ,v’;{} was observed at
a previous iteration, the optimal solution of the master problem MPpg
at (r+1)th iteration will be the same as with the rth iteration and satisfy

-1

blyr — u*

V¥

LBZch*+ﬂ*+pv*+v*zl‘)kexp -1

k
As a result, it can be concluded that LB = U B at the (r + 1)th iteration,
and the algorithm terminates. This completes the proof. []

Proof of the convexity of constraint (15b)

Proof. For brevity of analysis, it is sufficient to prove that the nonlinear
function f(x,y) :=x exp()—yc —1) with x > 0 is convex since the nonlinear

constraint (15b) can be reformulated as

pApv+ Y BV ge) < (24a)
k

g =by —n (24b)

For the nonlinear function f(x,y) := xexp (f — 1), its Hessian matrix
is

2
Sexp( -1 —Zexp(-1)

Vif = (25)

—Lep -1 LexpX—1)

It can be easily verified that V2 f is positive semidefinite when x > 0.
As a result, it follows from the second-order condition of convexity [35]
that the nonlinear function f(x, y) is convex, and hence constraint (15b)
is convex. This completes the proof. []

Data availability

Data will be made available on request.
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