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 A B S T R A C T

Constructing uncertainty sets as unions of multiple subsets has emerged as an effective approach for creating 
compact and flexible uncertainty representations in data-driven robust optimization (RO). This paper focuses on 
two separate research questions. The first concerns the computational challenge in applying these uncertainty 
sets in RO-based predictive control. To address this, a monolithic mixed-integer representation of the 
uncertainty set is proposed to uniformly describe the union of multiple subsets, enabling the computation of 
the worst-case uncertainty scenario across all subsets within a single mixed-integer linear programming (MILP) 
problem. The second research question focuses on mitigating the conservatism of conventional RO formulations 
by leveraging the structure of the uncertainty set. To achieve this, a novel objective function is proposed to 
exploit the uncertainty set structure and integrate the existing RO and distributionally robust optimization 
(DRO) formulations, yielding less conservative solutions than conventional RO formulations, while avoiding the 
high-dimensional continuous uncertainty distributions and the high computational burden typically associated 
with existing DRO formulations. Given the proposed formulations, numerically efficient computation methods 
based on column-and-constraint generation (CCG) are also developed. Extensive simulations across three case 
studies are performed to demonstrate the effectiveness of the proposed schemes.
1. Introduction

Decision-making under uncertainty has gained increasing attention 
in both scientific research and engineering applications. One of the 
solutions for handling uncertainties in decisions is robust optimization 
(RO). By representing uncertainties via uncertainty sets, RO can ensure 
constraint satisfaction for all possible uncertainties without incurring 
an unaffordable computational burden and requiring the complete 
information of uncertainty distributions [1–3]. Despite the popularity 
and effectiveness of RO formulations, it is well-known that the optimal 
solution of RO problems can be conservative owing to two main factors.

The first factor contributing to the conservatism of the robust op-
timal solution is how the uncertainty set is represented. In recent 
years, with the availability of abundant measurement data and machine 
learning techniques, data-driven approaches have been developed to 
construct compact uncertainty sets by uncovering and exploiting the 
latent features of the uncertainty data, see [4–9] and references therein. 
Among these data-driven approaches, one innovative methodology is 
constructing the uncertainty set as a union of multiple subsets, see [6,
7,10] and references therein. By adopting such a methodology, the 
data-driven uncertainty set is able to adapt to irregular uncertainty 

∗ Corresponding author.
E-mail addresses: y.li-39@tudelft.nl, yunli.tudelft@gmail.com (Y. Li).

distributions and ensure compactness, which is beneficial for reducing 
the conservatism of the corresponding robust optimal solutions.

It should be noted that, while the methodology of representing 
uncertainty sets as unions of multiple subsets has been proven to be 
effective in several applications, such as power system operation [11] 
and building climate control [12], this uncertainty set representa-
tion together with the existing column-and-constraint generation (CCG)-
based algorithm could result in computationally demanding optimiza-
tion problems when applied in robust predictive control settings. This 
computational tractability in practice is generally neglected in the 
existing works.

One widely adopted algorithmic solution for solving two-stage RO 
problems is the so-called CCG algorithm [13,14]. When applying the 
existing CCG algorithm to solve the RO problem with multiple uncer-
tainty subsets, each uncertainty subset entails solving one optimization 
problem to compute the worst-case uncertainty in each iteration of 
the CCG algorithm [6]. As elaborated in Section 3, the total number 
of uncertainty subsets in RO-based predictive control problems could 
increase exponentially with the length of the prediction horizon, which 
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leads to computationally demanding or even intractable problems and 
limits the applicability of the existing approaches.

The second major factor influencing the conservatism of robust 
optimization solutions lies in how the design objective is formulated. 
In the classical RO framework, the optimization problem is designed 
to minimize the cost function while ensuring constraint satisfaction 
under the worst-case realization of the uncertainty. While this ap-
proach provides strong guarantees, it often leads to overly conservative 
solutions, especially when the worst-case scenario is highly improba-
ble [1,2,6,15]. To alleviate the conservatism of the optimal solution, 
alternative formulations have been explored. Stochastic optimization 
(SO) focuses on minimizing the expected performance with respect to 
a known probability distribution of the uncertainty, thereby potentially 
achieving better average-case performance [16–18]. However, SO relies 
on accurate knowledge of the true distribution of uncertainties, which 
is rarely available in practice. Further, it is practically possible that 
distribution shifts between the empirical distribution and the true 
distribution might exist to degrade the out-of-sample performance. 
Distributionally robust optimization (DRO) offers a middle ground by 
optimizing the worst-case expected performance over an ambiguity set 
of probability distributions centered around a nominal or empirical dis-
tribution [15,19–23]. This enables DRO to hedge against distributional 
misspecification while avoiding some of the excessive conservatism 
inherent in worst-case RO.

Despite the effectiveness of these existing design options, they ei-
ther require approximating the probability distribution of uncertain-
ties, which could be high-dimensional and is non-trivial to obtain in 
practice, or entail solving a computationally demanding optimization 
problem. For example, in the moment-based DRO formulation [19,22], 
a semi-definite programming problem needs to be solved at each iter-
ation of the corresponding CCG algorithm; in scenario-based SO [17] 
and Wasserstein-based DRO formulation [20], the consideration of a 
large number of uncertainty scenarios leads to large-scale optimization 
problems and increased computational burden. Moreover, most existing 
designs of conservatism-reduced objective functions do not exploit the 
structure of uncertainty sets, especially the promising option of repre-
senting the uncertainty set as a union of multiple subsets in data-driven 
RO settings. In [24,25], data-driven DRO formulations are proposed 
with the combination of multiple-source uncertainty modeling, where 
data-driven ambiguity sets are developed for each uncertainty subset 
separately. While these approaches exploit the latent property in em-
pirical uncertainty samples and reduce dependence on prior knowledge 
to construct an ambiguity set, they still inherit the computational 
limitations in corresponding conventional DRO formulations, as the 
underlying problem structure remains unchanged. 

By considering that the uncertainty set consists of multiple sub-
sets, this paper investigates two separate research questions: (1) how 
to properly represent the uncertainty set to deal with the computational 
challenge when applying it in RO-based predictive control problems; and (2)
how to exploit the uncertainty set structure to design new objective function 
for mitigating the conservatism of the robust optimal solution. The main 
contributions of this paper are summarized as follows:

• A monolithic representation of the uncertainty set consisting 
of multiple subsets is proposed for RO-based predictive control 
problems. Given the proposed representation, a computationally 
efficient CCG algorithm is developed such that only a single MILP 
problem needs to be solved to compute the worst-case uncertainty 
scenario across all uncertainty subsets, regardless of the length of 
the prediction horizon. In comparison, the direct extension of the 
conventional solutions, e.g., the methods developed in [6,14], to 
predictive control problems entails solving a set of optimization 
problems whose number grows exponentially with the prediction 
horizon.
2 
• Aiming at reducing the conservatism for optimizing the worst-
case performance in conventional RO formulations, a novel ob-
jective function exploiting the structure of the uncertainty set, 
together with a CCG-based computation method, is proposed. By 
combining conventional RO and DRO formulations, the proposed 
objective function not only achieves less conservative solutions 
than conventional RO formulations but also avoids approximat-
ing the continuous and possibly high-dimensional uncertainty 
distribution and incurring high computational burden as with 
the existing SO and DRO formulations, especially in the case of 
fully adaptive recourse decision and large numbers of uncertainty 
samples.

• Numerical experiments of three case studies are performed to 
extensively illustrate the issues of the existing approaches with 
the uncertainty set consisting of multiple subsets and demonstrate 
the effectiveness of the proposed schemes.

The remainder of this paper is organized as follows. Section 2 briefly 
describes the preliminaries and research gaps. Section 3 clarifies the 
issues of the existing approach and proposes a new uncertainty set 
representation with a CCG-based computation method. In Section 4, 
a novel objective function exploiting the structure of the uncertainty 
set is proposed to mitigate the conservatism of robust optimal solu-
tions. Given the proposed objective function, a CCG-based computa-
tion method is also derived. Section 5 presents numerical experiment 
results. Section 6 concludes this paper.

Notation: boldface capital letters denote matrices, and boldface 
lowercase letters denote vectors. Sets are represented by calligraphic 
capital letters. 𝐞 denotes all-ones vectors with appropriate dimensions. 
⊗ is the Cartesian product. E[⋅] indicates the expectation of a given 
random variable. The operator col(𝑥1,… , 𝑥𝑛) represents the stacked 
vector [𝑥T1 ,… , 𝑥T𝑛 ].

2. Preliminaries

This section introduces some preliminaries of the two-stage linear 
RO problem to be investigated, and briefly discusses the research gaps 
when considering an uncertainty set consisting of multiple subsets.

The following two-stage linear RO problem is considered in this 
work 

min
𝐱

{

𝐜T𝐱 + max
𝐯∈

min
𝐲∈(𝐱,𝐯)

𝐛T𝐲
}

(1a)

s.t. 𝐀𝐱 ≤ 𝐪, (1b)

(𝐱, 𝐯) ∶= {𝐲 ∣ 𝐓𝐱 +𝐖𝐲 +𝐌𝐯 ≤ 𝐡} , (1c)

where 𝐱 ∈ R𝑝 are the first-stage decision variables (interchangeably 
called here-and-now decision variables), which can contain both con-
tinuous and binary elements, 𝐲 ∈ R𝑞 are the second-stage decision 
variables (interchangeably called wait-and-see decision variables or re-
course decision variables), which are assumed to be continuous, 𝐯 ∈
R𝑚 denotes the uncertainties with  as the corresponding uncertainty 
set, (𝐱, 𝐯) is the admissible set of 𝐲, (𝐜,𝐛,𝐪,𝐡) and (𝐀,𝐓,𝐖,𝐌) are 
parameter vectors and matrices, respectively, with appropriate dimen-
sions. Without loss of generality, in the remaining parts of this paper, 
the above two-stage RO problem is assumed to be relatively complete 
recourse, i.e., the optimization problem is feasible for any possible 𝐱
and 𝐯 [14]. For problems that do not satisfy this assumption, some other 
strategic solutions discussed in [13] are also applicable in our proposed 
design.

To solve the above two-stage RO problem, one commonly adopted 
approach is the so-called column-and-constraint generation (CCG) algo-
rithm. In CCG algorithm, the optimal solution of the RO problem is 
computed by iteratively solving a master problem and several subprob-
lems (the number of the subproblems to be solved is dependent on 
the number of uncertainty subsets) to update the lower bound and 
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upper bound of the objective function until a predefined optimality 
gap is achieved [6,14]. In this paper, unless mentioned specifically, 
the existing approach for solving the RO problem (1) refers to the CCG 
algorithm.

For reducing the conservatism of the robust optimal solutions, 
including but not limited to the two-stage RO problem in (1), data-
driven approaches exploiting historical uncertainty data and machine 
learning techniques have been extensively explored for constructing 
compact uncertainty sets. Among these data-driven approaches, one 
promising methodology is representing the uncertainty set as a union 
of multiple subsets, such as polytopes and ellipsoids, which has been 
shown to be effective in improving the compactness and flexibility 
of the uncertainty sets in handling irregular and complex uncertainty 
distributions. An uncertainty set  represented as a union of multiple 
subsets can be expressed as 

 ∶=
𝐾
⋃

𝑘=1
𝑘 (2)

where 𝑘 denotes the 𝑘th uncertainty subset with 𝐾 as the total number 
of subsets. The uncertainty subsets can be any basic sets, such as box, 
ellipsoid, and polytope.

While the existing works have demonstrated the effectiveness of 
formulating an uncertainty set as a union of multiple subsets as in 
(2), there are two research gaps accompanying such uncertainty set 
representation to be filled.

• RO-based Predictive Control With Multiple Uncertainty Subsets: The 
RO formulation (1) has been applied in predictive control prob-
lems due to its effectiveness in ensuring robust constraint satisfac-
tion [5]. However, when employing the data-driven uncertainty 
set representation (2), the number of uncertainty subsets could 
grow exponentially with the prediction horizon. This exponential 
growth leads to a rapid increase in the number of subproblems 
solved in each iteration of the existing CCG-based algorithms, 
making the optimization problem computationally demanding or 
even intractable. Therefore, developing computationally efficient 
solutions to address this challenge is crucial for enhancing the 
practicality of the data-driven RO design with the uncertainty set 
representation (2) in robust predictive control.

• Conservatism-Reduced Objective Function With Multiple Uncertainty 
Subsets: The conventional RO formulation could suffer from con-
servatism due to the optimization of worst-case performance, as 
shown in (1). Given the existing RO formulations with multiple 
uncertainty subsets, the structure of the uncertainty set is not fully 
considered in designing the objective function. Consequently, 
how to properly exploit the property that the uncertainty set 
consists of multiple subsets to design novel RO formulations 
is beneficial to reduce the conservatism of the robust optimal 
solution.

The above research gaps, together with our proposed solutions, will be 
further elaborated in detail in the subsequent sections.

3. RO-based predictive control with multiple uncertainty subsets

This section details the research gap when applying the uncertainty 
set structure (2) in robust predictive control, and proposes a novel 
mixed-integer representation to uniformly describe the unified uncer-
tainty set such that the computational efficiency of the CCG algorithm 
for solving the RO problem is remarkably improved.

3.1. Problem formulation

Theoretically, even with the uncertainty set represented as in (2), 
existing data-driven methods for constructing uncertainty sets and the 
solutions for solving (1) can be directly extended to robust predictive 
3 
control problems. However, practical challenges arise when applying 
these methods, which have been overlooked in existing works.

For simplicity of illustration, consider the following deterministic 
formulation of a predictive control problem 

min
𝐮𝑡

𝑁
∑

𝑡=1
𝑙(𝐬𝑡,𝐮𝑡) (3a)

s.t. 𝐬𝑡+1 = 𝜱𝐬𝑡 + 𝜞𝐮𝑡 + 𝐯𝑡 (3b)

𝐬𝑡 ∈  ,𝐮𝑡 ∈  , 𝐯𝑡 ∈ 𝑡 (3c)

𝑡 = 1,… , 𝑁 (3d)

where 𝐬𝑡 denotes the system states vector, 𝐮𝑡 denotes the control input 
vector, 𝐯𝑡 the uncertainties, 𝑙(𝐬𝑡,𝐮𝑡) the stage cost function,  and 
are feasible sets of system states and control inputs, respectively, 𝑡 is 
the uncertainty set of 𝐯𝑡, subscript 𝑡 denotes the 𝑡th time step, and 𝑁
the length of the prediction horizon. In predictive control settings, it 
is common that the uncertainties 𝐯𝑡 (𝑡 = 1,… , 𝑁) are assumed to be 
independent and identically distributed (I.I.D.) [26,27].

After reformulating the predictive control problem (3) into the cor-
responding RO formulation (1), the uncertainty vector 𝐯 is the stacked 
uncertainty sequences 𝐯𝑡 within the prediction horizon, i.e., 𝐯 ∶=
col(𝐯1,… , 𝐯𝑁 ). In the existing data-driven RO framework, the uncer-
tainty set  is directly constructed for the stacked uncertainty vector 
𝐯. While this approach is still theoretically feasible, it will incur some 
issues. On one hand, for a fixed number of uncertainty samples 𝐯𝑡, 
considering the stacked uncertainty 𝐯 reduces the size of the train-
ing dataset (shrinking it to 1

𝑁  of the original dataset for 𝐯𝑡). This 
reduction may result in insufficient data and degrade the performance 
of data-driven approaches for constructing uncertainty sets. On the 
other hand, directly modeling the uncertainty set for the stacked un-
certainty 𝐯 increases the dimensionality of uncertainty samples, par-
ticularly for long prediction horizon 𝑁 . As shown in existing studies, 
high-dimensional uncertainties pose challenges in implementing data-
driven methods, including difficulties in hyper-parameter tuning and 
performance validation.

For example, in building climate predictive control, the prediction 
horizon could span 12 h with a sampling period of 30 min, and a typical 
uncertainty is the prediction error of ambient temperature. Given one 
year of historical uncertainty data of 𝐯𝑡, the number of uncertainty 
samples for 𝐯𝑡 is 365*24*2. However, when considering the stacked 
uncertainty samples for 𝐯 = col(𝐯1,… , 𝐯𝑁 ) with 𝑁 = 24, the training set 
size reduces to 365 ∗ 2. Consequently, the dataset for 𝐯 may be too small 
to ensure the effectiveness of data-driven approaches in constructing 
uncertainty sets.

Under the I.I.D. assumption of 𝐯𝑡, one solution is to construct a data-
driven uncertainty set for 𝐯𝑡, denoted as 𝑡, and then extend the per-step 
uncertainty set 𝑡 to construct the uncertainty set of 𝐯. Assuming that 
the uncertainty set for 𝐯𝑡 consists of 𝐾 subsets and denoting the 𝑘th 
uncertainty subset as 𝑡,𝑘, the uncertainty set for 𝐯 = col(𝐯1,… , 𝐯𝑁 ), 
denoted as  , can be expressed as 

 = 𝑡 ⊗⋯⊗ 𝑡
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑁 times
, 𝑡 =

𝐾
⋃

𝑘=1
𝑡,𝑘 (4)

where 𝑁 is the length of the prediction horizon considered in the 
predictive control problem (3). 

Remark 1.  It can be seen from (4) that the number of subsets 
constituting  is 𝐾𝑁 , which grows exponentially with the prediction 
horizon 𝑁 . By adopting the existing CCG algorithm to solve the RO 
problem (1) with the uncertainty set (4), each uncertainty subset 
requires solving a bilinear or mixed-integer linear optimization prob-
lem to compute the worst-case uncertainty in every iteration of the 
algorithm [6]. Consequently, handling 𝐾𝑁  subsets translates to solving 
𝐾𝑁  optimization problems per iteration. In case of large values of 𝐾
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and 𝑁 , this approach could be computationally demanding and prac-
tically inapplicable. Therefore, the computational challenges arising 
from representing the uncertainty set as a union of multiple subsets in 
(4) highlight the need for an effective formulation of the uncertainty 
set for 𝐯.

3.2. Unified uncertainty set representation and computational method de-
sign

This section aims to propose a novel representation to uniformly 
represent the uncertainty set of 𝐯 based on the uncertainty subsets 
of 𝐯𝑡 and derive a computationally efficient solution for solving the 
corresponding RO problem. 

Assumption 1.  The uncertainty set of 𝐯𝑡, denoted as 𝑡, consists of 𝐾
subsets 𝑡,𝑘 with each uncertainty subset as a nonempty and bounded 
polytope defined as 𝑡,𝑘 ∶= {𝐯𝑡|𝐃𝑘𝐯𝑡 ≤ 𝐝𝑘}.

On the basis of Assumption  1, the following monolithic mixed-
integer formulation of the uncertainty set  is derived 

 ∶=
{

col(𝐯1,… , 𝐯𝑁 )
|

|

|

|

𝐾
∑

𝑘=1
𝛿𝑡,𝑘𝐃𝑘𝐯𝑡 ≤

𝐾
∑

𝑘=1
𝛿𝑡,𝑘𝐝𝑘,

𝛿𝑡,𝑘 ∈ B,
𝐾
∑

𝑘=1
𝛿𝑡,𝑘 = 1, 𝑡 = 1,… , 𝑁

}

(5)

where 𝛿𝑡,𝑘 ∈ {0, 1} are auxiliary variables. For the formulation (5), given 
any subset of  , a set of feasible variables {𝛿∗𝑡,𝑘 ∣ 𝑡 = 1,… , 𝑁, 𝑘 =
1,… , 𝐾} can be found to uniquely represent a specific uncertainty 
subset. Conversely, any feasible {𝛿∗𝑡,𝑘 ∣ 𝑡 = 1,… , 𝑁, 𝑘 = 1,… , 𝐾} will 
also define an admissible uncertainty subset of  . Instead of explicitly 
representing the uncertainty set  as a union of multiple subsets as in 
(4), the proposed mixed-integer representation (5) gives a monolithic 
implicit representation of  that is feasible for any size of uncertainty 
subsets 𝐾 and prediction horizon 𝑁 .

Theorem 1.  Considering the uncertainty set (5) and decomposing the 
parameter matrix 𝐌 into 𝑁 column blocks {𝐌𝑡}𝑁𝑡=1 with appropriate di-
mensions, the RO problem in (1) can be reformulated as in (6), which can 
be solved via Algorithm 1 within finite iterations. 
min
𝐱

𝐜T𝐱 + max
𝛿𝑡,𝑘 ,𝐯𝑡

min
𝐲

𝐛T𝐲 (6a)

s.t. 𝐀𝐱 ≤ 𝐪, (6b)

𝐓𝐱 +𝐖𝐲 +
𝑁
∑

𝑡=1
𝐌𝑡𝐯𝑡 ≤ 𝐡, (6c)

𝐾
∑

𝑘=1
𝛿𝑡,𝑘𝐃𝑘𝐯𝑡 ≤

𝐾
∑

𝑘=1
𝛿𝑡,𝑘𝐝𝑘, (6d)

𝛿𝑡,𝑘 ∈ B, 𝑘 = 1,… , 𝐾, 𝑡 = 1,… , 𝑁, (6e)
𝐾
∑

𝑘=1
𝛿𝑡,𝑘 = 1, 𝑡 = 1,… , 𝑁. (6f)

Proof. the proof of this theorem is presented in Appendix. □

The master problem MP and the subproblem SP1 entailed in Algo-
rithm 1 are defined as: 
𝐌𝐏 ∶ min

𝐱,𝜂,𝐲𝑖
𝐜T𝐱 + 𝜂 (7a)

s.t. 𝐛T𝐲𝑖 ≤ 𝜂, (7b)

𝐀𝐱 ≤ 𝐪, (7c)

𝐓𝐱 +𝐖𝐲𝑖 +
𝑁
∑

𝑡=1
𝐌𝑡𝐯𝑡,𝑖 ≤ 𝐡, (7d)

𝑖 = 1, 2,… , 𝑟. (7e)
4 
𝐒𝐏1 ∶ max
𝛿𝑡,𝑘 ,𝐯𝑡

min
𝐲

𝐛T𝐲 (8a)

s.t. 𝐓𝐱 +𝐖𝐲 +
𝑁
∑

𝑡=1
𝐌𝑡𝐯𝑡 ≤ 𝐡, (8b)

𝐾
∑

𝑘=1
𝛿𝑡,𝑘𝐃𝑘𝐯𝑡 ≤

𝐾
∑

𝑘=1
𝛿𝑡,𝑘𝐝𝑘, (8c)

𝐾
∑

𝑘=1
𝛿𝑡,𝑘 = 1, 𝛿𝑡,𝑘 ∈ B, (8d)

𝑘 = 1,… , 𝐾, 𝑡 = 1,… , 𝑁. (8e)

Algorithm 1 column-and-constraint generation algorithm for solving (6).
Input: suboptimality gap 𝜖
Output: the optimal decision variable 𝐱 and objective function 
value 𝐜T𝐱∗ + 𝜂∗

1: Set 𝐿𝐵 = −∞, 𝑈𝐵 = ∞, 𝑟 = 0
2: while |𝑈𝐵 − 𝐿𝐵| > 𝜖 do
3:  Solve MP in (7) to derive solutions (𝐱∗, 𝜂∗) and update 𝐿𝐵 =

𝐜T𝐱∗ + 𝜂∗

4:  Solve SP1 in (8) or SP2 in (9) to derive solutions {𝐯∗𝑡 , 𝐲∗}, and 
update 𝑈𝐵 as

𝑈𝐵 = min
{

𝑈𝐵, 𝐜T𝐱∗ + 𝐛T𝐲∗
}

5:  Create decision variables 𝐲𝑟, set parameters 𝐯𝑡,𝑟 = 𝐯∗𝑡 (𝑡 =
1,⋯ , 𝑁) , and add the following constraints to MP in (7)
{

𝐛T𝐲𝑟 ≤ 𝜂,
𝐓𝐱 +𝐖𝐲𝑟 +

∑

𝑡 𝐌𝑡𝐯∗𝑡,𝑟 ≤ 𝐡.
6:  𝑟 ← 𝑟 + 1
7: end while
8: Return: 𝐱∗ and 𝐜T𝐱∗ + 𝜂∗

The subproblem (8) contains bilinear terms 𝛿𝑡,𝑘𝐯𝑡 due to the auxil-
iary binary decision variable 𝛿𝑡,𝑘, and hence is non-convex and might 
be intractable to some solvers. These bilinear terms can be further 
reformulated as mixed-integer linear constraints via big-M formulation. 
The reformulated subproblem SP2 is given in (9). 

𝐒𝐏2 ∶ max
𝛿𝑡,𝑘 ,𝐯𝑡 ,𝐰𝑡,𝑘

min
𝐲

𝐛T𝐲 (9a)

s.t. 𝐓𝐱 +𝐖𝐲 +
𝑁
∑

𝑡=1
𝐌𝑡𝐯𝑡 ≤ 𝐡, (9b)

𝐾
∑

𝑘=1
𝐃𝑘𝐰𝑡,𝑘 ≤

𝐾
∑

𝑘=1
𝛿𝑡,𝑘𝐝𝑘, (9c)

− 𝛥(1 − 𝛿𝑡,𝑘)𝐞 ≤ 𝐯𝑡 − 𝐰𝑡,𝑘 ≤ 𝛥(1 − 𝛿𝑡,𝑘)𝐞, (9d)

− 𝛥𝛿𝑡,𝑘𝐞 ≤ 𝐰𝑡,𝑘 ≤ 𝛥𝛿𝑡,𝑘𝐞, (9e)

𝑘 = 1,… , 𝐾, 𝑡 = 1, 2,… , 𝑁 (9f)

where 𝛥 > 0 is a sufficiently large constant, and 𝐞 is an all-ones vector 
with appropriate dimension.

Remark 2.  It is worth noting that the proposed formulation in (6) is 
equivalent to the conventional RO formulation (1) with the uncertainty 
set (4), because the mixed-integer representation of the uncertainty 
set (5) exactly matches (4) that unifies 𝐾𝑁  subsets. The number of 
possible parameter combinations {𝛿𝑡,𝑘 ∣ 𝑡 = 1,… , 𝑁, 𝑘 = 1,… , 𝐾} in 
(5) is equal to the number of uncertainty subsets in (4), i.e., 𝐾𝑁 . In 
addition, each feasible parameter combination {𝛿𝑡,𝑘 ∣ 𝑡 = 1,… , 𝑁, 𝑘 =
1,… , 𝐾} uniquely specifies an uncertainty subset for 𝐯 via (5).
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Remark 3.  In contrast to the existing solution for solving the RO 
problem (1) with uncertainty set (4), in which 𝐾𝑁  numbers of subprob-
lems need to be solved in each algorithm iteration, the reformulated 
uncertainty set (5) enables a monolithic description of the uncertainty 
set and ensures that only a single subproblem (SP1 or SP2), whose 
decision variables and constraints increase linearly with 𝐾 and 𝑁 , to be 
solved in Algorithm 1 for computing the worst-case uncertainty. This 
can remarkably improve the computational efficiency of the proposed 
approach in the case of large values of 𝐾 and/or 𝑁 . Additionally, the 
proposed approach enables the construction of data-driven uncertainty 
sets for 𝐯𝑡 instead of the stacked uncertainty 𝐯 without incurring a high 
computational burden for solving the corresponding RO problem (1). In 
comparison with 𝐯, 𝐯𝑡 has a lower dimension and more data samples, 
which will further boost the performance of the data-driven approaches 
for constructing uncertainty sets. For example, a lower uncertainty 
dimension makes it easier to tune the parameters/hyper-parameters 
and evaluate the performance of the data-driven approaches. A larger 
dataset can also prevent the data-driven approaches from suffering 
performance degradation, such as overfitting, underfitting, poor model 
calibration, etc., due to insufficient training data. It is worth highlight-
ing that, while the proposed MILP formulation is NP-hard in theory, 
it can often be efficiently solved in practice with modern off-the-shelf 
solvers given the developments in mixed-integer optimization [28].

4. Mitigating conservatism via objective function design

This section proposes an alternative objective function for RO prob-
lems by leveraging the structure of uncertainty sets composed of mul-
tiple subsets. Additionally, an algorithmic solution is developed to 
efficiently solve the corresponding RO problem.

4.1. Problem formulation

Based on the structure of the uncertainty set – a union of multiple 
subsets – this section presents a new formulation of the objective 
function for RO problems to reduce the conservatism of the optimal 
solution.

The conventional RO formulation in (1) could lead to conservative 
solutions due to the objective of worst-case performance optimiza-
tion. Many existing works have been done to propose new objective 
functions to reduce the conservatism of the optimal solution. Two 
prominent alternative objective functions are given as follows. 
min
𝐱

{

𝐜T𝐱 +𝑄(𝐯, 𝐱)
}

(10)

where two options of 𝑄(𝐯, 𝐱) are 

Option 1: 𝑄(𝐯, 𝐱) ∶= E𝑓 (𝐯)

[

min
𝐲

𝐛T𝐲
]

, (11a)

Option 2: 𝑄(𝐯, 𝐱) ∶= max
𝑓 (𝐯)∈

E𝑓 (𝐯)

[

min
𝐲

𝐛T𝐲
]

(11b)

with 𝑓 (𝐯) as the probability distribution of the uncertainty 𝐯, and 
denotes the ambiguity set defining the admissible set of 𝑓 (𝐯).

The objective function in (11a) seeks to optimize the expected 
performance to the probability distribution of the uncertainty 𝐯, which 
is the standard setting in stochastic optimization. This approach can 
reduce conservatism compared with worst-case formulations, but it 
relies on explicit and accurate knowledge of the underlying uncertainty 
distribution. Moreover, closed-form or tractable solutions are generally 
available only for specific distributional families (e.g., Gaussian) or 
problem structures (e.g., linear decision rules). When samples of the un-
certainty are available, sample-based (randomized) methods are often 
used to approximate the expectation in (11a), resulting in a large-scale 
deterministic optimization problem whose size grows with the number 
of samples, which can be computationally demanding. In addition, 
distribution shifts between the empirical and the true distributions 
5 
may exist so that the resulting solution of (11a) may exhibit poor 
out-of-sample performance.

To address these issues, distributionally robust optimization (DRO), 
as in (11b), accounts for distributional ambiguity by assuming that the 
true distribution 𝑓 (𝐯) is unknown but lies within an ambiguity set  , 
typically defined around a nominal or empirical distribution. DRO then 
optimizes the worst-case expected performance over all distributions 
in  . This approach improves robustness against sampling errors and 
model misspecification. Nevertheless, achieving both high-probability 
constraint satisfaction and low conservatism in DRO often requires a 
sufficiently large and representative set of samples to construct the 
ambiguity set. Furthermore, as noted in [29], when the decision rule is 
fully adaptive to the uncertainty, which is the case considered in this 
work, and the sample size is large, DRO formulations can suffer from 
the curse of dimensionality, leading to high computational cost.

Motivated by the objective functions in (11b) and the property that 
the uncertainty set consists of multiple subsets, we propose a new 
objective function 

min
𝐱

{

𝐜T𝐱 + max
𝐩∈

E𝐩

[

max
𝐯∈𝑘

min
𝐲

𝐛T𝐲
]}

(12)

where 𝐩 = [𝐩1,𝐩2 ⋯ ,𝐩𝐾 ]T is the probability vector with 𝐩𝑘 ∶= P(𝐯 ∈
𝑘),  is the ambiguity set defining the admissible set of 𝐩.

Remark 4.  In contrast to the conventional RO formulation in (1), 
where the worst-case performance among all possible uncertainty sce-
narios are optimized, the proposed formulation (12) optimizes the 
distributionally robust solution w.r.to the expected worst-case per-
formance max𝐯∈𝑘 min𝐲 𝐛T𝐲 over all uncertainty subsets. In (12), the 
worst-case performance in each uncertainty subset 𝑘 is weighted based 
on the probability P(𝐯 ∈ 𝑘), and hence a less conservative solution 
is expected with our proposed formulation than the conventional RO 
formulation.

Remark 5. In contrast to the SO and DRO formulations in (11), which 
entail the information of the joint probability distribution 𝑓 (𝐯) of the 
continuous uncertainty 𝐯, our proposed formulation (12) only considers 
the discrete probability distribution P(𝐯 ∈ 𝑘). Compared with 𝑓 (𝐯), 
P(𝐯 ∈ 𝑘) is much easier to estimate with high accuracy since 𝑓 (𝐯)
is the continuous probability distribution of random variable 𝐯 that 
might be high dimensional. In contrast, the probability vector 𝐩 is 
the distribution of the discrete random variable I(𝐯 ∈ 𝑘), where 
I(⋅) is the indicator function. An approximation of 𝐩 can be readily 
computed by counting the frequency of 𝐯 ∈ 𝑘 for all uncertainty data 
samples, and is a multinomial distribution when uncertainty subsets 
{𝑘, 𝑘 = 1,… , 𝐾} are disjoint. Furthermore, the uncertainty is still 
described via an uncertainty set in (12), and uncertainty samples are 
not explicitly considered, which are beneficial for maintaining the 
computational efficiency as in conventional RO formulation. On the 
contrary, the resulting optimization problems for the existing SO and 
DRO formulations in the format of (11), e.g., the scenario-based SO 
formulation [17] and Wasserstein-based DRO formulation [20], need 
to consider all uncertainty samples and are generally computationally 
demanding in the presence of large numbers of uncertainty scenarios.

In this work, the ambiguity set  is defined based on Kullback–
Leibler (KL) divergence as 
 ∶=

{

𝐩 ∣ 𝐩 ≥ 0, 𝐞T𝐩 = 1, 𝐾𝐿(𝐩̄,𝐩) ≤ 𝜌
}

, (13)

where 𝐾𝐿(𝐩̄,𝐩) ∶=
∑

𝑘 𝐩̄𝑘 log(
𝐩̄𝑘
𝐩𝑘
) is the KL divergence function mea-

suring the similarity of two probability vectors 𝐩̄ and 𝐩 with 𝐩̄ as the 
approximated probability vector extracted from historical data, 𝜌 ≥ 0
is a user-defined parameter determining the size of the ambiguity set.

Considering the objective function (12) as well as the ambiguity set 
definition (13) and applying epigraphical reformulation, it gives to the 
following optimization problem 
min 𝐜T𝐱 + 𝜂 (14a)

𝐱,𝜂
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s.t. max
𝐩∈

{

E𝐩

[

max
𝐯∈𝑘

min
𝐲

𝐛T𝐲
]}

≤ 𝜂, (14b)

𝐩 ≥ 0, 𝐞T𝐩 = 1, 𝐾𝐿(𝐩̄,𝐩) ≤ 𝜌, (14c)

𝐀𝐱 ≤ 𝐪, (14d)

𝐓𝐱 +𝐖𝐲 +𝐌𝐯 ≤ 𝐡. (14e)

Remark 6.  For the proposed formulation in (14), the conservatism of 
the optimal solution depends on both the size of the ambiguity set  , 
determined by the parameter 𝜌, and the number of uncertainty subsets 
𝐾. Specifically, conservatism can be tuned in two ways: by adjusting 
𝐾 when constructing the data-driven uncertainty set, and by varying 𝜌
when designing the ambiguity set. In general, a larger 𝜌 yields more 
conservative solutions, whereas a larger 𝐾 reduces conservatism. In 
extreme cases, for a fixed 𝐾, a sufficiently large  leads to the worst-
case optimization, as in the RO formulation (1), since the ambiguity 
set then includes the probability vector 𝐩 that places unit mass on the 
subset containing the worst-case sample. Similarly, when the uncer-
tainty set has no subset (i.e., 𝐾 = 1), the formulation reduces to the 
worst-case optimization regardless of the chosen 𝜌. In practice, 𝜌 can be 
tuned through cross-validation or out-of-sample testing, by evaluating 
different ambiguity set sizes and selecting the one that best balances 
robustness and performance.

4.2. Computational method design

The proposed formulation (14) contains quadruple-level optimiza-
tion problems and is computationally intractable to numerical solvers. 
This section will present a computational method based on the CCG 
algorithm to efficiently solve the optimization problem (14).

Assumption 2.  For the robust optimization problem (14), the uncer-
tainty set  is a union of 𝐾 nonempty and bounded subsets 𝑘 defined 
as 𝑘 ∶= {𝐯 ∣ 𝐃𝑘𝐯 ≤ 𝐝𝑘}.

Theorem 2.  Assuming Assumption  2 holds, the optimization problem (14) 
can be solved via Algorithm 2 by iteratively solving a master problem MPDRO
in (15) and 𝐾 subproblems SP𝑘

DRO in (16) within finite number of iterations. 

𝐌𝐏DRO ∶ min
𝐱,𝜂,𝜈,𝜇,𝐲𝑘,𝑖

𝐜T𝐱 + 𝜂 (15a)

s.t. 𝜈
𝐾
∑

𝑘=1
𝐩̄𝑘 exp

(𝐛T𝐲𝑘,𝑖 − 𝜇
𝜈

− 1
)

+ 𝜇 + 𝜌𝜈 ≤ 𝜂, (15b)

𝐀𝐱 ≤ 𝐪, (15c)

𝐓𝐱 +𝐖𝐲𝑘,𝑖 +𝐌𝐯∗𝑘,𝑖 ≤ 𝐡, (15d)

𝜈 ≥ 0, (15e)

𝑖 = 1,… , 𝑟, 𝑘 = 1,… , 𝐾. (15f)

𝐒𝐏𝑘
DRO ∶ max

𝐯
min
𝐲

𝐛T𝐲 (16a)

s.t. 𝐓𝐱∗ +𝐖𝐲 +𝐌𝐯 ≤ 𝐡, (16b)

𝐃𝑘𝐯 ≤ 𝐝𝑘. (16c)

Proof.  The proof is provided in Appendix. □

Remark 7.  It should be noted that the master problem MPDRO (15) 
is nonlinear due to the constraint (15b) even if the original constraints 
and objective function in (14) are linear. Besides, it can be seen from 
Algorithm 2 that the number of these nonlinear constraints will increase 
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with the iteration of the algorithm, which could degrade the computa-
tional efficiency of our proposed scheme. One solution to alleviate this 
issue is applying the following reformulation for constraint (15b): 

𝜇 + 𝜌𝜈 + 𝜈
∑

𝑘
𝐩̄𝑘 exp

(

𝜙𝑘 − 𝜇
𝜈

− 1
)

≤ 𝜂, (17a)

𝐛T𝐲𝑘,𝑖 ≤ 𝜙𝑘, 𝑖 = 1,… , 𝑟, 𝑘 = 1,… , 𝐾, (17b)

where 𝜙𝑘 are auxiliary decision variables. The above reformulation 
is valid because the left-hand side of (15b) is strictly increasing in 
𝐛T𝐲𝑘,𝑖. By replacing (15b) via (17), only linear constraints are added in 
each iteration, and the number of nonlinear constraints (17a) is fixed 
regardless of the algorithm iteration, which is beneficial in improving 
the computational efficiency of Algorithm 2.

Algorithm 2 column-and-constraint generation algorithm for solving 
(14).

Input: suboptimality gap 𝜖
Output: optimal decision variable 𝐱∗ and objective function value 
𝐜T𝐱∗ + 𝜂∗

1: Set 𝐿𝐵 = −∞, 𝑈𝐵 = ∞, 𝑟 = 0
2: while |𝑈𝐵 − 𝐿𝐵| > 𝜖 do
3:  Solve MPDRO (15) to obtain solutions (𝐱∗, 𝜂∗, 𝜇∗, 𝜈∗) and update 

𝐿𝐵 = 𝐜T𝐱∗ + 𝜂∗

4:  Solve 𝐾 subproblems SP𝑘DRO (16) to obtain solutions {𝐯∗𝑘, 𝐲∗𝑘}𝐾𝑘=1, 
and update 𝑈𝐵 as

𝑈𝐵 = min
{

𝑈𝐵, 𝐜T𝐱∗ + 𝜇∗ + 𝜌𝜈∗+

𝜈∗
∑𝐾

𝑘=1
𝐩̄𝑘 exp

(

𝐛T𝐲∗𝑘 − 𝜇∗

𝜈∗
− 1

)

}

5:  Create decision variables {𝐲𝑘,𝑟}𝐾𝑘=1, set parameters 𝐯∗𝑘,𝑟 = 𝐯∗𝑘 (𝑘 =
1,⋯ , 𝐾), and add the following constraints to MPDRO in (15)
⎧

⎪

⎨

⎪

⎩

𝜇 + 𝜌𝜈 + 𝜈
∑𝐾

𝑘=1 𝐩̄𝑘 exp
(

𝐛T𝐲𝑘,𝑟−𝜇
𝜈 − 1

)

≤ 𝜂,

𝐓𝐱 +𝐖𝐲𝑘,𝑟 +𝐌𝐯∗𝑘,𝑟 ≤ 𝐡, 𝑘 = 1,⋯ , 𝐾.

6:  𝑟 ← 𝑟 + 1
7: end while
8: Return: 𝐱∗ and 𝐜T𝐱∗ + 𝜂∗

Remark 8.  It is worth noting that, while the constraints (15b) and 
(17a) are nonlinear, they are convex, and MPDRO becomes a convex 
optimization when the decision variable 𝐱 is continuous. The convexity 
of the constraints (15b) and (17a) is proved in Appendix. Several off-
the-shelf solvers, such as Gurobi, Ipopt and MadNLP, can deal with 
this type of nonlinearity. The subproblem SPDRO (16) is a bi-level 
linear optimization problem that is not numerically tractable to solvers. 
However, by applying strong duality or KKT-based reformulations and 
big-M approach, the inner-level optimization problem in (16) can be 
eliminated, and this bilevel optimization problem can be reformulated 
as a mixed-integer linear programming problem, see [13,14] for more 
details.

Remark 9.  Compared to conventional RO formulations, both the pro-
posed formulation (14) and existing DRO formulations, e.g.,
Wasserstein-based DRO formulation [20], result in increased compu-
tational burden, though for different reasons. In our proposed formu-
lation, this computational burden arises primarily from the nonlinear 
constraint (15b), particularly when the first-stage decision variables 𝐱
include binary components, making the master problem MPDRO (15) 
a mixed-integer nonlinear optimization problem. As for the existing 
DRO formulation, we take the Wasserstein-based DRO [20] as an 
example. When considering the fully adaptive recourse decision rule 
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and large numbers of uncertainty samples, while the resulting opti-
mization problem still retains the linearity of the original deterministic 
formulation, the increased computational burden is mainly caused by 
solving numerous subproblems in every iteration of the CCG algorithm 
since each uncertainty scenario will incur an optimization problem, 
see Algorithm 1 in the supplementary material [30]. The curse of 
dimensionality issue of the Wasserstein-based DRO formulation is also 
mentioned in [29].

5. Simulation results

This section presents three case studies to illustrate the effectiveness 
of the proposed schemes in this paper. Case Study 1 considers robust 
predictive control of building climate to demonstrate the effectiveness 
of the proposed approach in Section 3. Case Study 2 and Case Study 3
showcase the approach designed in Section 4 with robust location trans-
portation planning and chemical process network planning problems, 
respectively.

All simulations are implemented on an Intel Xeon W-2223 CPU at 
3.6 GHz with 16 GB RAM. Optimization problems are modeled via 
Python package gurobipy and solved via Gurobi 11.0 [31]. The 
values of the parameters used in our case studies are provided in the 
supplementary material [30].

5.1. Case Study 1: Robust predictive control of building climate

This case study considers robust predictive control of building cli-
mate. Building systems suffer from weather uncertainties, such as pre-
diction errors of ambient temperature, solar irradiation, etc. Properly 
considering these uncertainties can improve indoor climate comfort.

A building climate predictive control problem in its deterministic 
form can be formulated as [5]

min
𝐮𝑡

𝑁
∑

𝑡=1
𝑙(𝐬𝑡,𝐮𝑡)

s.t. 𝐬𝑡+1 = 𝜱𝐬𝑡 + 𝜞 𝑢𝐮𝑡 + 𝜞𝑤𝐰𝑡 + 𝜞 𝑣𝐯𝑡,
𝐬𝑡 ≤ 𝐬𝑡 ≤ 𝐬̄𝑡, 𝐮𝑡 ≤ 𝐮𝑡 ≤ 𝐮̄𝑡,
∀𝐯𝑡 ∈ 𝑡, 𝑡 = 1,… , 𝑁

where 𝑙(⋅, ⋅) is the stage cost function, 𝐬𝑡 is the system states consisting 
of indoor temperature, roof temperature, wall temperature and floor 
temperature; 𝐮𝑡 denotes the heating power, 𝐰𝑡 is the predicted ambient 
conditions, 𝐯𝑡 is the prediction error of ambient temperature, 𝑡 denotes 
the uncertainty set, 𝑁 is the length of prediction horizon, 𝐬𝑡/𝐮𝑡 and 
𝐬̄𝑡/𝐮̄𝑡 are lower bound and upper bound of system states/control inputs, 
respectively. The stage cost function is defined as 𝑙(𝐬𝑡,𝐮𝑡) ∶= 𝐮𝑡 to 
minimize energy usage, system state constraints are defined to keep 
the indoor temperature above 21◦C during 7:00–18:00 and above 
15◦C during the remaining hours. Heating power constraints are 0 ≤
𝐮𝑡 ≤ 150. The values of system matrices (𝜱,𝜞 𝑢,𝜞𝒘,𝜞 𝑣) are adopted 
from [4].

In the simulation, uncertainties 𝐯𝑡 (𝑡 = 1,… , 𝑁) are assumed to 
be I.I.D., and the uncertainty set 𝑡 for 𝐯𝑡 is a union of 2 subsets. As 
a result, the total number of subsets for the stacked uncertainty 𝐯 =
[𝐯T1 ,… , 𝐯T𝑁 ]T is 2𝑁 . Two schemes are considered in this case study for 
solving the building climate control problem. One is the conventional 
RO formulation with the explicit description of each uncertainty subset 
(4) and is solved via the CCG-based algorithm in [6]. Another one 
is our proposed formulation (6) and is solved via Algorithm 1. To 
fully demonstrate the computational efficiency of the proposed scheme, 
different values of the prediction horizon 𝑁 are tested. Simulation 
results are shown in Fig.  1. It can be seen that, with the increase 
of the prediction horizon 𝑁 , the computational time of applying the 
conventional approach increases exponentially and is much larger than 
that of our proposed formulation since 2𝑁  numbers of subproblems 
7 
(a) computational time.

(b) objective values.

Fig. 1. Simulation results of Case Study 1 with the proposed approach and the 
conventional approach.

have to be solved in each algorithm iteration. In contrast, the compu-
tation time with our proposed formulation (6) and Algorithm 1 only 
increases linearly with the prediction horizon 𝑁 . Besides, Fig.  1(b) 
shows that both approaches give the same objective function, which 
indicates that the proposed formulation does not sacrifice optimality 
while remarkably improving the computational efficiency.

5.2. Case Study 2: Robust location transportation planning

In this subsection, the effectiveness of the proposed formulation 
(14) and the corresponding Algorithm 2 is validated via a robust 
location transportation planning problem, which is also considered as 
a benchmark problem in [14]. The deterministic formulation of this 
problem is 
min 400𝑥1 + 414𝑥2 + 326𝑥3 + 18𝑥4 + 25𝑥5 + 20𝑥6

+ 22𝑦11 + 33𝑦12 + 24𝑦13 + 33𝑦21 + 23𝑦22 + 30𝑦23

+ 20𝑦31 + 25𝑦32 + 27𝑦33 (18a)

s.t. 𝑥𝑖+3 ≤ 800𝑥𝑖, 𝑖 = 1, 2, 3, (18b)
∑

𝑗
𝑦𝑖𝑗 ≤ 𝑥𝑖+3, ∀𝑖 = 1, 2, 3, (18c)

∑

𝑖
𝑦𝑖𝑗 ≥ 𝑑𝑗 + 40 ∗ 𝑣𝑗 (18d)

𝑥𝑖 ∈ B, 𝑥𝑖+3 ≤ 0, 𝑖 = 1, 2, 3, (18e)

𝑦𝑖𝑗 ≥ 0, ∀𝑖 = 1, 2, 3, 𝑗 = 1, 2, 3 (18f)

where binary first-stage decision variables (𝑥1, 𝑥2, 𝑥3) determine the lo-
cation of the facilities; continuous first-stage decision variables (𝑥 , 𝑥 ,
4 5
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Table 1
Computational results of different RO formulations for Case Study 2.
 Conventional RO 

formulation 
(Scheme 1)

Existing DRO formulation 
with Wasserstein metric 
(Scheme 2)

The proposed RO formulation (14)

 With (15b)
(Scheme 3)

With (17)
(Scheme 4)

 

 Optimal objective 36 632 35238 35482 35482  
 Decision variable 𝐱 [1,0,1,274,0,570] [1,0,1,324,0,520] [1,0,1,364,0,480] [1,0,1,364,0,480] 
 CPU time (s) 0.40 425.80 17.52 7.06  
 Iterations 2 3 2 2  
𝑥6) denote the facility capacities; recourse decision variables 𝑦𝑖𝑗 (𝑖 =
1, 2, 3, 𝑗 = 1, 2, 3) are transportations, [𝑑1, 𝑑2, 𝑑3] = [206, 274, 220] are 
basic demands, and 𝑣𝑗 (𝑗 = 1, 2, 3) are scaled demand uncertainties.

In our simulation, four schemes are considered:

• Scheme 1: the conventional RO formulation (1).
• Scheme 2: the Wasserstein-based DRO formulation [20].
• Scheme 3: the proposed formulation (14) and Algorithm 2 with 
the constraints (15b).

• Scheme 4: the proposed formulation (14) and Algorithm 2 with 
the reformulated constraints (17).

The uncertainty set  for [𝑣1, 𝑣2, 𝑣3]T is supposed to have 4 polyhe-
dral subsets. For our proposed schemes (Scheme 3 & 4). The nominal 
probability distribution for defining the ambiguity set  is selected as 
𝐩̄ = [0.5, 0.1, 0.2, 0.2] to represent a practical situation where uncertainty 
samples are unevenly distributed among different uncertainty subsets. 
The upper bound of KL divergence for defining the ambiguity set 
in (13) is set as 𝜌 = 0.5. For Scheme 2, since its implementation 
entails considering specific uncertainty scenarios, 1000 uncertainty 
samples in  are randomly generated, which is a reasonable choice for 
the uncertainty with dimension 3 [32,33]. Since we mainly focus on 
demonstrating the computational efficiency of the DRO formulation, 
the Wasserstein distance 𝜀, which does not affect its computational 
efficiency, is set as 𝜀 = 1 to give a comparable performance as with 
the other schemes. It should be pointed out that the Wasserstein-based 
DRO formulation (Scheme 2) can be expected to outperform our pro-
posed methods with a well-calibrated radius. Nevertheless, within the 
Wasserstein-based DRO framework, achieving both low conservatism 
and strong out-of-sample performance hinges on carefully tuning the 
Wasserstein radius and considering a large number of representative 
uncertainty samples to avoid overfitting to the empirical distribu-
tion, which will lead to increased computational cost for solving the 
corresponding optimization problem. Numerical results for the DRO 
formulation and the proposed formulation with an extreme size of am-
biguity set (the size of the ambiguity set is set as zero) are provided in 
the supplementary materials, showing that Scheme 2 would outperform 
our proposed scheme at the cost of increased computational burden.

Simulation results are summarized in Table  1. It can be seen that 
these different RO formulations derive distinct first-stage decision vari-
ables with non-trivial differences. Compared with the conventional RO 
formulation (Scheme 1) for optimizing the worst-case performance, the 
remaining formulations give less conservative solutions, i.e., smaller 
optimal objective values, at the price of increased computational bur-
den. As discussed in Remark  8, the increased computational burden for 
the DRO formulation (Scheme 2) is due to its curse of dimensionality 
when considering the fully adaptive decision rule and a large number of 
uncertainty samples [20,29], while for our proposed schemes (Scheme 
3 & 4), the increased computational burden is caused by the nonlinear 
constraint (15b), especially when the first-stage decision variable 𝐱
contains integer ingredients. It can be seen that, in comparison with 
the DRO formulation (Scheme 2), our proposed formulations (Scheme 
3 & 4) are much more computationally efficient. Furthermore, the 
computational time of Scheme 4 is less than that of Scheme 3, which 
indicates the efficacy of the proposed reformulation (17) for improving 
8 
the computational efficiency of Algorithm 2. It is worth noting that, 
in comparison with Scheme 2, the reduced computation time of our 
proposed scheme does not simply result from switching the divergence 
measure. Without altering the problem structure, directly replacing the 
Wasserstein metric with the KL divergence in Scheme 2 leads to the 
same issue observed in the Wasserstein-based design. Namely, as shown 
in Algorithm 1 in the supplementary material, both the number of 
subproblems and the number of constraints in the master problem are 
proportional to the number of uncertainty samples.

5.3. Case Study 3: Chemical process network planning

To further illustrate the viability and effectiveness of the proposed 
formulation (14) and Algorithm 2, a chemical process network plan-
ning (CPNP) problem is investigated. The CPNP problem is a typical 
engineering problem that fits into RO settings and has been considered 
as a benchmark problem in several existing literature, see [4,7,34].

A chemical process consists of raw materials, intermediate chemi-
cals, final products, and multiple interconnected processes. The design 
objective of CPNP is to maximize the net present value (NPV) of 
the entire network while respecting system constraints for all possible 
uncertainties. Our case study considers a chemical process network 
consisting of 8 processes and 7 chemicals. The network sketch is shown 
in Fig.  2, where chemicals are denoted as red circles (𝐴,𝐵,… , 𝐺), pro-
cesses are blue rectangles (1, 2,… , 8), and process flows are indicated 
as arrows. Among all chemicals, (𝐴,𝐸) are raw materials, and (𝐷,𝐺)
are products.

The RO problem for CPNP within our proposed design framework 
(14) can be formulated as 

max
𝑄𝐸𝑖,𝑡 ,𝑌𝑖,𝑡

∑

𝑖

∑

𝑡
(−𝛼𝑖,𝑡𝑄𝐸𝑖,𝑡 − 𝛽𝑖,𝑡𝑌𝑖,𝑡)+

min
𝐩∈

E𝐩

[

min
𝐯∈𝑘

max
𝑃𝑗,𝑡 ,𝑄𝐸𝑖,𝑡
𝑆𝑗,𝑡 ,𝑊𝑖,𝑡

(

−
∑

𝑖

∑

𝑡
𝛾𝑖,𝑡𝑊𝑖,𝑡

−
∑

𝑗

∑

𝑡
𝜑𝑗,𝑡𝑃𝑗,𝑡 +

∑

𝑗

∑

𝑡
𝜏𝑗,𝑡𝑆𝑗,𝑡

)]

(19a)

s.t. 𝑞𝑒𝐿𝑖,𝑡 ⋅ 𝑌𝑖,𝑡 ≤ 𝑄𝐸𝑖,𝑡 ≤ 𝑞𝑒𝑈𝑖,𝑡 ⋅ 𝑌𝑖,𝑡, ∀𝑖 ∈ , ∀𝑡 ∈  (19b)

𝑄𝑖,𝑡 = 𝑄𝑖,𝑡−1 +𝑄𝐸𝑖,𝑡, ∀𝑖 ∈ , ∀𝑡 ∈  (19c)
∑

𝑡
𝑌𝑖,𝑡 ≤ 𝑐𝑒𝑖, ∀𝑖 ∈  (19d)

∑

𝑖
𝛼𝑖,𝑡 ⋅𝑄𝐸𝑖,𝑡 + 𝛽𝑖,𝑡𝑌𝑖,𝑡 ≤ 𝑐𝑏𝑡, ∀𝑡 ∈  (19e)

𝑊𝑖,𝑡 ≤ 𝑄𝑖,𝑡, ∀𝑖 ∈ , ∀𝑡 ∈  (19f)

𝑃𝑗,𝑡 −
∑

𝑖
𝜅𝑖,𝑗𝑊𝑖,𝑡 − 𝑆𝑗,𝑡 = 0, ∀𝑗 ∈  , ∀𝑡 ∈  (19g)

𝑃𝑗,𝑡 ≤ 𝑠𝑢𝑗,𝑡, 𝑆𝑗,𝑡 ≤ 𝑑𝑢𝑗,𝑡,∀𝑗 ∈  , ∀𝑡 ∈  (19h)
𝑄𝐸𝑖,𝑡, 𝑄𝑖,𝑡, 𝑃𝑗,𝑡,𝑊𝑖,𝑡, 𝑆𝑗,𝑡 ≥ 0, 𝑌𝑖,𝑡 ∈ {0, 1},

∀𝑖 ∈ , ∀𝑗 ∈  , ∀𝑡 ∈  , (19i)

𝐯 = {𝑑𝑢𝑖,𝑡, 𝑠𝑢𝑖,𝑡} ∈  , ∀𝑖 ∈ , ∀𝑡 ∈  (19j)



Y. Li et al. Journal of Process Control 158 (2026) 103611 
Table 2
Notations in (19).
 Decision variables
 𝑄𝐸𝑖,𝑡 Amount of capacity expansion 𝑌𝑖,𝑡 Binary decision of capacity expansion 
 𝑃𝑗,𝑡 Chemical purchase amount 𝑆𝑗,𝑡 Chemical sale amount  
 𝑊𝑖,𝑡 Operating level 𝑄𝑖,𝑡 Total process capacity  
 𝑠𝑢𝑖,𝑡 Market supply limit 𝑑𝑢𝑖,𝑡 Market demand limit  
 Parameters
 𝛼𝑖,𝑡 Variable investment cost 𝛽𝑖,𝑡 Fixed investment cost  
 𝛾𝑗,𝑡 Operating cost 𝜑𝑗,𝑡 Purchase cost  
 𝜏𝑗,𝑡 Sale price 𝑞𝑒𝐿𝑖,𝑡 Capacity expansion lower bound  
 𝑞𝑒𝑈𝑖,𝑡 Capacity expansion upper bound 𝑐𝑒𝑖 Expansion number limit  
 𝑐𝑏𝑡 Expansion cost budget 𝜅𝑖,𝑗 Mass balance coefficient  
 𝑖 Index of the 𝑖th process 𝑗 Index of the 𝑗th chemical  
 𝑡 Index of the 𝑡th time period  
Table 3
Computational results of different RO formulations for Case Study 3.
 Conventional RO 

formulation 
(Scheme 1)

Existing DRO formulation 
with Wasserstein metric 
(Scheme 2)

The proposed RO formulation (14)

 With (15b)
(Scheme 3)

With (17) 
(Scheme 4)

 

 Max. NPV ($MM) 221 284 288 288  
 CPU time (s) 17.63 8758.07 195.86 183.17  
 Iterations 2 5 2 2  
Fig. 2. The chemical process network for Case Study 3.

where  = {1,… , 𝐼},  = {1,… , 𝐽}, and  = {1,… , 𝑇 } with 
𝐼, 𝐽 and 𝑇  as the total numbers of processes, chemicals and plan-
ning periods, respectively. All notations in the above equations are 
explained in Table  2. The objective function (19a) maximizes the NPV 
consisting of investment cost, operation cost, purchase cost of raw 
chemicals, and sale profit; constraint (19b) specifies the upper and 
lower bounds of capacity expansion for all processes and time periods; 
constraint (19c) updates the total available capacity of each process; 
constraint (19d) limits the largest process expansion times; constraint 
(19e) ensures the process expansion costs are within available budgets; 
inequality (19f) limits the production level of each process within its 
total capacity; equality (19g) models the mass balance of all chemicals; 
constraints (19h) ensures that the amounts of purchased and sold 
chemicals are limited by the available market supply and demand, 
respectively; constraints (19i) indicates all non-negative continuous 
decision variables and binary decision variables. For more detailed 
explanations of chemical process networks, please refer to [7,34].

The uncertainty variables considered in our design are the market 
supply limit and demand limit (𝑠𝑢𝑖,𝑡, 𝑑𝑢𝑖,𝑡) for all raw materials and prod-
ucts over the planning period. Expansion decisions (𝑄𝐸𝑖,𝑡, 𝑌𝑖,𝑡) are first-
stage decision variables, and other remaining variables (𝑃𝑗,𝑡, 𝑆𝑗,𝑡, 𝑄𝑖,𝑡,
𝑊𝑖,𝑡) are recourse decision variables. Our case study considers a 5−year 
planning period with each planning period as 1 year. The uncertainties 
(𝑠𝑢𝑗,𝑡, 𝑑𝑢𝑗,𝑡) are assumed to be independent and reside in 4 uncertainty 
sets.

As in Case Study 2, we consider the same four schemes. For the DRO 
formulation in Scheme 2, 1000 uncertainty scenarios are randomly 
9 
Fig. 3. Error bar of the expected NPV with different ambiguity set size 𝜌.

generated, and the Wasserstein distance 𝜀 defining the size of the 
distribution ambiguity set is 𝜀 = 300 to give a comparable objective 
value with the other schemes. It should be noted that the number of 
uncertainty samples considered is far smaller than needed for a proper 
approximation of the uncertainty probability distribution, given the 
20-dimensional uncertainty space [32,33]. However, as shown in our 
simulation results, even this limited number of samples can be com-
putationally demanding for solving the corresponding DRO problem. 
For our proposed schemes (Scheme 3 & 4), the parameters defining the 
ambiguity set  are 𝐩̄ = [0.5, 0.1, 0.2, 0.2] and 𝜌 = 0.5.

Simulation results are shown in Table  3, from which it can be 
concluded that consistent results are obtained as in Case Study 2. Com-
pared with the conventional RO formulation (Scheme 1), the remaining 
formulations (Scheme 2, 3 & 4) give less conservative solutions, i.e., a 
larger value of Max. NPV at the price of increased computational 
burden (longer CPU time). Compared with the Wasserstein-based DRO 
formulation (Scheme 2), our proposed formulations (Scheme 3 & 4) 
are less computationally demanding. In addition, compared with the 
original constraints (15b), the reformulation in (17) is effective in 
improving the computational efficiency of Algorithm 2.

Furthermore, different values of the ambiguity set size 𝜌 are tested 
to analyze its influence on the conservatism of the optimal solution for 
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our proposed formulation. In the simulation, for each 𝜌, 5000 random 
trials are implemented to sample the probability distribution 𝐩 that 
resides in the corresponding ambiguity set. For all admissible samples 
of 𝐩, the corresponding performance metric, which is defined as the 
expected NPV: 𝐜T𝐱∗ +

∑

𝑘 𝐩𝑘 ⋅ 𝐛T𝐲∗𝑘 with 𝐲∗𝑘 as the optimal recourse 
variable w.r.t. the worst-case uncertainty in the 𝑘th uncertainty subset, 
is computed. Fig.  3 depicts the error bar (mean value and envelope) of 
the expected NPV among all feasible samples of 𝐩, and the worst-case 
NPV for all possible uncertainties. It can be seen that, compared with 
the conventional RO formulation, our proposed approach consistently 
leads to less conservative solutions for all 𝜌. Namely, the proposed 
approach gives a higher mean, minimal, and maximal NPV than the 
conventional RO formulation. Further, it can be seen from Fig.  3 that, 
with the increase of 𝜌 (the size of the ambiguity set), the minimal 
NPV of the proposed formulation (14) converges to the worse NPV 
computed via the conventional RO formulation, which is consistent 
with our statement in Remark  6.

6. Conclusions

This paper investigates the RO problems where uncertainty sets 
comprise multiple subsets, focusing on two separate questions: (1) how 
to address the computational challenge posed by exponentially increasing 
uncertainty subsets in RO-based predictive control? and (2) how to mitigate 
the conservatism of the robust optimal solutions by leveraging the structure 
of the uncertainty set?

To address the first question, we propose a monolithic mixed-integer 
representation of the uncertainty set. Unlike conventional formulations 
requiring a separate optimization problem for each subset, our method 
only solves a single mixed-integer optimization problem to compute 
the worst-case uncertainty scenario over all subsets. This method is 
particularly advantageous for RO-based predictive control, where the 
number of uncertainty subsets could increase exponentially with the 
prediction horizon.

For the second question, we formulate an innovative objective 
function exploiting the structure of the multi-subset uncertainty set by 
combining the existing RO and DRO formulations. The proposed formu-
lation achieves less conservative solutions than conventional RO formu-
lations while showing more computational efficiency than conventional 
DRO formulations. Besides, a CCG-based algorithm is developed to 
solve the resulting optimization problem efficiently.

Numerical experiments related to the above research questions are 
conducted to extensively demonstrate the effectiveness of the proposed 
schemes.
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Appendix

Proof of Theorem  1

Proof. The main difference between the proposed Algorithm 1 with the 
conventional CCG algorithm in [6,14] is the definition of the subprob-
lem (8). With the mixed-integer representation of the uncertainty set 
 , each set of feasible binary variables {𝛿∗𝑡,𝑘 ∣ 𝑡 = 1,… , 𝑁, 𝑘 = 1,… , 𝐾}
uniquely defines a subset of  , and vice versa. As a result, by solving 
the subproblem SP1 (8) or SP2 (9), the worst-case uncertainty scenario 
𝐯∗ = [𝐯∗T1 ,… , 𝐯∗T𝑁 ]T among all subsets together with the corresponding 
uncertainty subset, defined by {𝛿∗𝑡,𝑘 ∣ 𝑡 = 1,… , 𝑁, 𝑘 = 1,… , 𝐾}, 
that contains the uncertainty scenario 𝐯∗ will be computed. Based on 
Assumption  1, it can be readily concluded that there are finite vertices 
of the uncertainty set  . Then, it follows a similar proof as shown 
in [14] that Algorithm 1 will solve the RO problem (6) within finite 
iterations. This completes the proof. □

Proof of Theorem  2

Proof. For the constraint (14b), it can be rewritten as 

max
𝐩∈

𝐾
∑

𝑘=1
𝐩𝑘 ⋅

(

max
𝐯∈𝑘

𝐛T𝐲
)

(20)

Based on Lemma 19.1 in [15], the inequality (20) is equivalent to 
finding 𝜇 and 𝜈 ≥ 0 such that 

𝜇 + 𝜌𝜈 + 𝜈
∑

𝑘
𝐩̄𝑘 exp

((𝐱,𝑘) − 𝜇
𝜈

− 1
)

≤ 𝜂 (21)

where 
(𝐱,𝑘) ∶= max

𝐯∈𝑘
min
𝐲

𝐛T𝐲 (22a)

s.t. 𝐓𝐱 +𝐖𝐲 +𝐌𝐯 ≤ 𝐡 (22b)

Assumption  2 implies that there are finite vertices of the uncertainty 
set  . Besides, it can be seen that the left-hand side of (21) is a 
monotonously increasing function w.r.t. (𝐱,𝑘), which is LP w.r.t. 𝐯. 
Consequently, it can be concluded that the optimal 𝐯 are taken from the 
vertices of  . By listing all finite vertices of each uncertainty subset 𝑘, 
denoted as 𝑘 ∶= {𝐯𝑘,1,… , 𝐯𝑘,𝐻𝑘

} with 𝐻𝑘 as the number of all vertices, 
the RO problem (14) can be rewritten as 
min
𝐱,𝐲𝑘,𝑖𝑘
𝜂,𝜇,𝜈

𝐜T𝐱 + 𝜂 (23a)

s.t. 𝜇 + 𝜌𝜈 + 𝜈
∑

𝑘
𝐩̄𝑘 exp

(

𝐛T𝐲𝑘,𝑖𝑘 − 𝜇

𝜈
− 1

)

≤ 𝜂, (23b)

𝐀𝐱 ≤ 𝐪, (23c)

𝐓𝐱 +𝐖𝐲𝑘,𝑖𝑘 +𝐌𝐯𝑘,𝑖𝑘 ≤ 𝐡, (23d)

∀𝑖𝑘 ∈ {1,… ,𝐻𝑘}, ∀𝑘 ∈ {1,… , 𝐾} (23e)

where 𝐲𝑘,𝑖𝑘  is the optimal recourse decision variable w.r.t. the uncer-
tainty scenario 𝐯𝑘,𝑖𝑘 (𝑖 = 1,… ,𝐻𝑘). Namely,
𝐲𝑘,𝑖𝑘 = argmin

𝐲
𝐛T𝐲 s.t. 𝐓𝐱 +𝐖𝐲 +𝐌𝐯𝑘,𝑖𝑘 ≤ 𝐡.

Since there are finite extreme uncertainty scenarios, the optimiza-
tion problem (23) can be computed by iteratively listing all possible ex-
treme uncertainty scenarios as in the conventional CCG algorithm [13,
14], which leads to Algorithm 2.

In the following, we will prove that Algorithm 2 can terminate 
within finite iterations. Namely, Algorithm 2 will either find out all ex-
treme uncertainty scenarios or terminate when a repeated uncertainty 
scenario is observed. Assuming at the 𝑟th iteration of the algorithm, 
the extreme uncertainty scenarios {𝐯∗,… , 𝐯∗ } computed by solving 𝐾
1 𝐾
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subproblems (16) are observed in a previous iteration 𝑡 (𝑡 ≤ 𝑟−1), then 
𝑈𝐵 = 𝐿𝐵 and the algorithm terminates.

Suppose that the optimal decision variables by solving MPDRO (15) 
at the 𝑟th iteration are (𝐱∗, 𝜇∗, 𝜂∗, 𝜈∗), which further lead to the optimal 
decision variables of 𝐾 subproblems SP𝑘DRO {𝐯∗1 ,… , 𝐯∗𝐾 , 𝐲

∗
1 ,… , 𝐲∗𝐾}. It 

readily gives that
𝐿𝐵 ≤ 𝑈𝐵 ≤𝐜T𝐱∗ + 𝜇∗ + 𝜌𝜈∗+

𝜈∗
∑

𝑘
𝐩̄𝑘 exp

(

𝐛T𝐲∗𝑘 − 𝜇∗

𝜈∗
− 1

)

Since the worst-case uncertainty scenarios {𝐯∗1 ,… , 𝐯∗𝐾} was observed at 
a previous iteration, the optimal solution of the master problem MPDRO
at (𝑟+1)th iteration will be the same as with the 𝑟th iteration and satisfy

𝐿𝐵 ≥ 𝐜T𝐱∗ + 𝜇∗ + 𝜌𝜈∗ + 𝜈∗
∑

𝑘
𝐩̄𝑘 exp

(

𝐛T𝐲∗𝑘 − 𝜇∗

𝜈∗
− 1

)

As a result, it can be concluded that 𝐿𝐵 = 𝑈𝐵 at the (𝑟+1)th iteration, 
and the algorithm terminates. This completes the proof. □

Proof of the convexity of constraint (15b)

Proof. For brevity of analysis, it is sufficient to prove that the nonlinear 
function 𝑓 (𝑥, 𝑦) ∶= 𝑥 exp( 𝑦𝑥 −1) with 𝑥 ≥ 0 is convex since the nonlinear 
constraint (15b) can be reformulated as 
𝜇 + 𝜌𝜈 +

∑

𝑘
𝐩̄𝑘𝑓 (𝜈, 𝑔𝑘,𝑖) ≤ 𝜂, (24a)

𝑔𝑘,𝑖 = 𝐛T𝐲𝑘,𝑖 − 𝜇. (24b)

For the nonlinear function 𝑓 (𝑥, 𝑦) ∶= 𝑥 exp ( 𝑦𝑥 − 1), its Hessian matrix 
is 

∇2𝑓 =

[

𝑦2

𝑥3
exp( 𝑦𝑥 − 1) − 𝑦

𝑥2
exp( 𝑦𝑥 − 1)

− 𝑦
𝑥2

exp( 𝑦𝑥 − 1) 1
𝑥 exp( 𝑦𝑥 − 1)

]

. (25)

It can be easily verified that ∇2𝑓 is positive semidefinite when 𝑥 ≥ 0. 
As a result, it follows from the second-order condition of convexity [35] 
that the nonlinear function 𝑓 (𝑥, 𝑦) is convex, and hence constraint (15b) 
is convex. This completes the proof. □

Data availability

Data will be made available on request.
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