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Abstract. Contemporary research explores the possibilities of integrat-
ing machine learning (ML) approaches with traditional combinatorial
optimisation solvers. Since optimisation hybrid solvers, which combine
propositional satisfiability (SAT) and constraint programming (CP), dom-
inate recent benchmarks, it is surprising that the literature has paid
limited attention to machine learning approaches for hybrid CP–SAT
solvers. We identify a recent technique in the SAT literature called un-
satisfiable core learning as promising to improve the performance of the
hybrid CP–SAT lazy clause generation solver Chuffed. We leverage a
graph convolutional network (GCN) model, trained on an adapted ver-
sion of the MiniZinc benchmark suite. The GCN predicts which variables
belong to an unsatisfiable cores on CP instances; these predictions are
used to initialise the activity score of Chuffed’s Variable-State Indepen-
dent Decaying Sum (VSIDS) heuristic. We benchmark the ML-aided
Chuffed on the MiniZinc benchmark suite and find a robust 2.5% gain
over baseline Chuffed on MRCPSP instances. This paper thus presents
the first, to our knowledge, successful application of machine learning
to improve hybrid CP–SAT solvers, a step towards improved automatic
solving of CP models.

1 Introduction

As part of the vision of the computer automatically solving the problem stated
by the user – the ‘Holy Grail’ of computer science [2] – the computer must
indeed solve the given problem. We suppose that the problem at hand is a
combinatorial optimisation problems, and that it has been translated into a
constraint programming (CP) model. In this paper we progress towards efficient
self-adaptive solving by the computer.

Neuro-symbolic approaches to combinatorial optimisation problems include
improving optimisation solver performance or robustness by incorporating ma-
chine learning. This trend shows successful promise in mixed integer program-
ming [4], propositional satisfiability (SAT) [11] as well as CP [3].

Hybrid CP–SAT solvers are the state of the art for solving constraint pro-
gramming problems [7]. For instance, Lazy Clause Generation (LCG) combines
the conflict learning ability from SAT solvers with finite domain propagation
from CP solvers [10].

? Contact author

Presented at: CP’20 Workshop on Progress Towards the Holy Grail, Louvain-la-Neuve, Belgium, September 2020.



2 R. van Driel and N. Yorke-Smith

However the literature has not paid attention to using machine learning (ML)
to improve hybrid CP–SAT methods. This paper provides a first demonstration
of the value of using ML within the LCG solver Chuffed [1]. We develop a
modified version of the SAT technique of unsatisfiable core learning [12] and
employ it to learn initialisation values for Chuffed’s Variable-State Independent
Decaying Sum (VSIDS) variable selection heuristic. We benchmark the ML-aided
Chuffed on problems from the MiniZinc benchmark suite and find a robust 2.5%
average gain over the baseline Chuffed on MRCPSP instances.

The remainder of the paper is structured as follows. Section 2 describes our
approach at a high level. Section 3 describes the implementation at a lower level.
Section 4 reports the empirical evaluation. Section 5 briefly gives the context in
the literature. Section 6 concludes.

2 Approach

This section provides a high-level design of the proposed approach for improving
Chuffed with machine learning.

Similar to SAT solvers, Chuffed is able to use a Variable-State Independent
Decaying Sum (VSIDS) heuristic. VSIDS is “a family of branching heuristics
widely used in modern . . . SAT solvers that rank all variables of a Boolean for-
mula during the run of a solver” [6].

VSIDS is usually implemented by keeping track of an activity score for each
variable which indicates the value of branching on that variable. Normally the
score for each variable is initialised at zero and incremented when the corre-
sponding variable occurs as part of a conflict. To emphasise variables visited
recently the activity scores are periodically decreased.

Consequently, initially the scores do not provide any information to the solver
but they gradually become more useful. Chuffed typically uses (user-specified)
search annotations before switching to VSIDS for making branching decisions.
However, with machine learning the activity scores can be directly initialised,
which may benefit the solver also in early stages of the solving procedure.

To achieve this VSIDS activity score initialisation, a Graph Convolutional
Network (GCN) model is trained on unsatisfiable instances to make a prediction
on which variables belong to an unsatisfiable core. An unsatisfiable core is a
minimal subset of variables which can not not be simultaneously satisfied. The
trained model is then used to classify the variables of an instances which needs to
be solved and the softmax probabilities of this classification are used to initialise
Chuffed’s VSIDS scores.

2.1 Data

The approach just described requires two different datasets containing CP in-
stances. One of these datasets should only contain unsatisfiable instances to train
on; the other should contain satsifiable instances to solve for evaluation.
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The MiniZinc benchmark suite [8] was used to supply over 13,000 satsifiable
instances for evaluation. Since we found no public CP dataset contained suffi-
ciently many unsatisfiable instances for training any machine learning model on,
the constraint optimisation problem (COP) instances from the MiniZinc bench-
mark suite were also modified to become unsatisfiable. This was done by first
solving them for their optimal value. Then the original instance was modified by
setting the domain of the objective variable to only include values better than the
optimal value, which makes the instances unsatisfiable. While less computation-
ally intensive alternatives exist, this procedure was selected with the intention
to not introduce any unwanted bias for learning the unsatisfiable cores.

Using this procedure allows the creation both the satisfiable datset as well as
the unsatisfiable dataset. For the unsatisfiable dataset the labels were generated
using MiniZinc’s ‘findMUS’ command. Ultimately the datasets contained 13,667
instances for which features were available and 8,057 instances for which labels
could be extracted. The dataset is skewed in that over 90% of the data belonged
to a single problem type, namely the Multi-mode Resource-Constrained Project
Scheduling Problem (MRCPSP). This is because over 80% of the instances in the
dataset could be solved in less than 0.1 second. These non-challenging instances
were not useful for training

3 Implementation

This section describes the techniques used to integrate machine learning with
Chuffed. Our implementation is in Chuffed version 0.10.4.1

It is important to note that, similar to the approach proposed by Selsam
and Bjørner [12], our intention is not to achieve the best possible predictions.
The reason for this is that more accurate predictions do not necessarily imply
that they are more useful for the solver. In fact, if all variables of a satisfiable
instance would be correctly classified as not being part of an unsatisfiable core
with 100% certainty, it would not provide any information to the solver at all.
Instead, the assumption is that the confidence of classifying a variable to be
part of an unsatisfiable core correlates with the effectiveness of branching on
that variable.

3.1 Features and ML model

We follow the Graph Convolution Network model of Kipf and Wellig [5].2 A
GCN works by learning a function of the features on a graph. In this case no
actual graph was constructed but it is sufficient that the data is structured in
such way that it could be represented with a graph. A simplified overview of the
architecture is shown in Figure 1.

We adopt the following feature representation for the GCN model:

1 Code available at https://github.com/chuffed/chuffed.
2 Code available at https://github.com/tkipf/gcn.
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Fig. 1: Visualisation of the Graph Convolutional Network architecture

1. Categorical features indicating if a variable is declared as a Boolean, integer,
float or set.

2. Minimum value within the variable domain.
3. Maximum value within the variable domain.
4. The range of the variable domain.
5. A set of identifiers of variables which co-occur in some constraint.

The input of the GCN model is threefold:

1. A feature matrix of size N×D. Here N represents the number of variables
and D the number of selected features.

2. An adjacency matrix of size N ×N . In this matrix variables are consid-
ered adjacent if they co-occur in a constraint.

3. The labels in an N ×C matrix. Here C represents the number of output
classes, in our case two: one for variables which are part of an unsatisfiable
core and the other for variables which are not.

The output of the model is a N×C matrix which contains the softmax output
which can be interpreted as the probability for each variable to belonging to each
class. Because we consider two classes only, it is possible to express the output
of the machine learning predictions with a single value, which is the prediction
confidence of a variable belonging to an unsatisfiable core.

The following parameters of the model were set as follows based on initial
trial runs:

– Learning rate: 0.3
– Number of epochs: 200
– Number of units in the first hidden layer: 16
– Dropout rate: 0.1
– Weight decay: 5e-4

– Tolerance for early stopping: 10

Prediction accuracy at the point of early stopping was between 0.7 and 0.8.
As found in Section 4, this accuracy was sufficient to show improvement in
solving runtime when the ML model is used in Chuffed.
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Chuffed0 OG Chuffed1 Ex Chuffed1 Inc
Instances Avg. runtime(s) Avg. runtime(s) Avg. runtime(s)

mrcpsp10900 4.507 4.356 4.461
mrcpsp36 2.399 2.428 2.410
mrcpsp4425 311.565 296.139 302.595
mrcpsp4777 5274.736 5153.284 5155.367
mrcpsp4871 892.922 865.954 865.404
mrcpsp4960 32.713 32.241 32.099
mrcpsp7051 16.091 15.884 16.028
mrcpsp896 0.152 0.155 0.189
mrcpsp9880 0.236 0.241 0.240
mrcpsp9994 0.033 0.034 0.035

Total(s) 6535.354 6370.715 6378.829
Standard Deviation 282.493 273.983 271.103
Relative(%) 100.0% 97.5% 97.6%

Table 1: MRCPSP

4 Evaluation

This section reports an experiment to evaluate the effectiveness of the proposed
approach. For this experiment three different versions of Chuffed were compiled
from source: Chuffed0 OG, Chuffed1 Ex and Chuffed1 Inc. All three of them
were configured to switch to VSIDS as soon as 100 conflicts have been encoun-
tered.3 While all three versions have an identical configuration, they are different
in the way the machine learning was integrated. Chuffed0 OG was otherwise left
completely unmodified, and serves purpose as a baseline. Chuffed1 Ex was mod-
ified to have the VSIDS scores initialised with the predictions obtained after
being trained on a training set which contained only instances from other prob-
lem types. Similarly, Chuffed1 Inc was modified to initialise the VSIDS scores
with predictions after being trained on all training instances, including from the
same problem type.

These three different version were used to solve different selected test-sets
containing instances from the four largest problem types: MRCPSP, Bin-packing,
price-collecting and fastfood. The experiments were run on a Linux machine with
a 16-core Xeon Gold 6248 CPU @ 2.50 GHz and 32 GB RAM.

The box-plot in Figure 2 shows the resulting distribution of the the total
runtimes of all instances from the each of the four largest problem types, averaged
over a total of 100 runs. A more detailed summary of the results is presented
in Tables 1–4, which show the average runtime over 100 runs for each of the
instances from the test-set as well as statistics on the total runtime. Table 5
reports the outcome of two-tailed t-tests.

3 This is lower than the Chuffed default, in order to ensure in the experiments that
VSIDS is used.
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Chuffed0 OG Chuffed1 Ex Chuffed1 Inc
Instances Avg. runtime(s) Avg. runtime(s) Avg. runtime(s)

2DLevelPacking238 171.700 151.000 152.580
2DLevelPacking23 1563.956 1499.611 1512.328
2DLevelPacking492 1221.866 1275.854 1237.965
2DPacking13 5065.462 5037.534 5025.021
2DPacking165 683.933 708.044 641.285
2DPacking168 2511.413 2430.075 2431.017
2DPacking62 58.744 57.180 57.587

Total(s) 11277.074 11159.298 11057.783
Standard Deviation 381.016 359.230 347.639
Relative(%) 100.0% 99.0% 98.1%

Table 2: bin-packing

Chuffed0 OG Chuffed1 Ex Chuffed1 Inc
Instances Avg. runtime(s) Avg. runtime(s) Avg. runtime(s)

pc52 12.211 12.326 12.152
pc56 8.777 8.750 8.750
pc58 15.283 15.409 15.431
pc61 10.501 10.648 10.644
pc65 12.111 11.908 12.049
pc73 42.743 42.407 42.948
pc77 7.886 8.013 8.040
pc79 20.479 20.631 20.709

Total(s) 129.991 130.092 130.722
Standard Deviation 3.373 2.895 3.452
Relative(%) 100.0% 100.1% 100.6%

Table 3: price-collecting

Chuffed0 OG Chuffed1 Ex Chuffed1 Inc
Instances Avg. runtime(s) Avg. runtime(s) Avg. runtime(s)

fastfood15 30.568 31.614 31.580
fastfood17 23.212 25.660 23.382
fastfood20 8.492 6.361 6.867
fastfood36 6.414 6.464 6.396
fastfood53 80.526 86.375 86.946
fastfood58 49.063 40.309 45.349
fastfood61 18.369 20.553 20.467
fastfood74 81.844 84.775 82.858

Total(s) 298.487 302.111 303.844
Standard Deviation 20.318 18.402 19.197
Relative(%) 100.0% 101.2% 101.8%

Table 4: fastfood
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(a) MRCPSP (b) bin-packing

(c) price-collecting (d) fastfood

Fig. 2: Box-plots showing the total runtime of all test instances averaged over 100 runs
for the four largest problem types.

The t-test analysis shows that the machine learning enhanced version signif-
icantly outperform the unmodified version for both MRCPSP and bin-packing
instances. The probability for obtaining less similar results on the MRCPSP
test-set compared to Chuffed0 OG is less than 0.01% for Chuffed1 Inc and less
than 0.005% for Chuffed1 Ex. For bin-packing these probabilities are 2.6% and
0.0036% respectively. This means the hypothesis that they follow the same distri-
bution as Chuffed0 OG can be rejected with over 99.99% certainty for MRCPSP
and 97% certainty for bin-packing. Therefore, it makes sense to conclude that
the ML-enhanced versions both outperform the unmodified version on MRCPSP
and bin-packing instances.

There is, however, no sufficient statistical evidence to conclude any signifi-
cant difference between the results obtained with Chuffed1 Inc and Chuffed1 Ex
for MRCPSP. The probability of obtaining less similar results with identical dis-
tributions is over 83%. However, for bin-packing, in addition to the difference
between the machine learning enhanced version compared to Chuffed0 OG, it
is also 95% certain that there is a statistically significant difference between
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MRCPSP
Version Pair t-stat p-value

Chuffed0 OG - Chuffed1 Ex 4.163 4.693e-5

Chuffed0 OG - Chuffed1 Inc 3.978 9.761e-5

Chuffed1 Ex - Chuffed1 Inc -0.209 0.834

bin-packing
Version Pair t-stat p-value

Chuffed0 OG - Chuffed1 Ex 2.238 0.026
Chuffed0 OG - Chuffed1 Inc 4.230 3.577e-5

Chuffed1 Ex - Chuffed1 Inc -2.020 0.045

price-collecting
Version Pair t-stat p-value

Chuffed0 OG - Chuffed1 Ex -0.226 0.821
Chuffed0 OG - Chuffed1 Inc -1.506 0.134
Chuffed1 Ex - Chuffed1 Inc -1.390 0.166

fastfood
Version Pair t-stat p-value

Chuffed0 OG - Chuffed1 Ex -1.316 0.190
Chuffed0 OG - Chuffed1 Inc -1.907 0.058
Chuffed1 Ex - Chuffed1 Inc -0.648 0.518

Table 5: Pairwise t-test analysis

Chuffed1 Ex and Chuffed1 Inc. This may indicate that bin-packing shares less
‘learn-able’ concepts with other problem types than MRCPSP.

For price-collecting and fastfood there is insufficient evidence to conclude any
significant differences between results of the different Chuffed versions. The most
likely explanation is that, because of the limited data available for these problem
types, none of the price-collecting or fastfood instances required considerable
solving time. The average runtime per instance stated in the tables indicate that
the machine learning integration works better for sizeable instances. Therefore
it is most likely that lack of improvement on price-collecting and fastfood is
not because they are less similar to other problem types but because the tested
instances were not sufficiently large.

5 Related Work

Stuckey [10] proposed a hybrid CP–SAT solver based on Lazy-Clause-Generation
(LCG). LCG combines finite domain propagation with the conflict learning abil-
ity of SAT. Because of this LCG solvers are able to use conflict driven heuristics
such as VSIDS, which were originally developed for SAT solver Chaff [9,6].

Multiple approaches have been proposed to combine machine learning with
traditional SAT or CP solvers. For example, Song et al. [13] show that machine
learning can be used to automatically learn variable ordering heuristics for CSP
solving. However to the best of our knowledge there have not been any research
to date to combining machine learning with hybrid CP–SAT solvers. This paper
draws inspiration from the work by Selsam and Bjørner [12]. Their work describes
how unsatisfiable core learning can be used to initialise the values of the VSIDS
for a selection of well-known SAT solvers. With this approach they manage
to solve between 6 and 20% more instances within the same amount of time
compared to the original solver.
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6 Conclusion

This paper shows that it is possible to use machine learning approaches which
are designed for solving SAT instances to improve LCG solving techniques. This
results in a step towards part of the ‘Holy Grail’ goal: the computer automatically
solving a given combinatorial optimisation problem.

Specifically, we have shown that it is possible to use unsatisfiable core learn-
ing, which originates from the work of Selsam and Bjørner [12], for improving
the performance of the LCG solver Chuffed. With LCG-based approaches domi-
nating recent benchmarks it is interesting that the proposed approach is able to
consistently achieve an improved performance on sizeable instances. Although
the margin of improvement is small, it is statistically significant.

Our work demonstrates the first, to our knowledge, successful application of
machine learning to aid a CP–SAT optimisation solver. This paper thus opens
the door to further research. For instance, integrating the classification part
directly into the solver should be investigated; this would require embedding
the feature extraction part directly into the solver. Second, in order to examine
the effect across different problem types this experiment it may be valuable to
repeat this study with more evenly distributed datasets. Last, ML may also be
useful for predicting no-goods or their activity scores.
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