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Abstract

Solvers for constraint optimisation problems ex-
ploit variable and value ordering heuristics. Nu-
merous expert-designed heuristics exist, while re-
cent research uses machine learning to learn novel
heuristics. = We introduce the concept of deep
heuristics, a data-driven approach to learn extended
versions of a given variable ordering heuristic.
First, for a problem instance, an initial probing
phase collects data, from which a deep heuristic
function is learned. The learned heuristics can look
ahead arbitrarily-many levels in the search tree in-
stead of a ‘shallow’ localised lookup for classical
heuristics. We demonstrate deep variable ordering
heuristics based on the smallest, anti first-fail, and
maximum regret heuristics. The results show that
deep heuristics solve 20% more problem instances
while improving on overall runtime for the Open
Stacks and Evilshop benchmark problems.

1 Introduction

The order in which the variables are chosen can have sig-
nificant effect on the total runtime of a constraint optimisa-
tion problem (COP) solver [Gent ef al., 1996]. Various vari-
able ordering heuristics have been designed by human experts
[Haralick and Elliott, 1980; Boussemart et al., 2004; Refalo,
2004]. Recent work also acquires dedicated heuristics us-
ing machine learning (ML), or learns which of a given set
of heuristic to use [Alanazi and Lehre, 2016; Xia and Yap,
2018; Khalil et al., 2017; Chalumeau et al., 2021]. However,
both classical and learned heuristics are based on the current
search node. Further, some ML methods may require signifi-
cant offline training time before starting search, while others
face the familiar ML difficulty of generalizing to unseen in-
stances.

We address the situation of online solving of unseen opti-
misation problems. We introduce the concept of deep heuris-
tics, a data-driven approach to learn extended versions of a
given heuristic. We adopt regression analysis, a simple ML
technique which requires little data or training time. The ac-
quired deep variable ordering heuristics are approximation

*Corresponding author

functions that look at multiple levels of a search tree with
the aim of generalizing better than classical heuristics.

We demonstrate deep heuristics derived from three rep-
resentative variable ordering heuristics: smallest, anti first-
fail, and maximum regret. On the MiniZinc benchmarks, we
empirically compare deep and classical ‘shallow’ versions
of these heuristics. The results indicate that deep heuristics
solve 20% more problem instances while also improving on
overall runtime for the Open Stacks and Evilshop problems.

As summarised in Figure 1, we implement deep heuris-
tics in the open source Gecode solver [Schulte et al., 2019].
Given a problem instance, an initial probing phase employs
pseudo-random search to gather a variety of variable-value
assignments. This data is then utilized by the machine learn-
ing component to acquire a deep heuristic function. Then
second, during solving, given the current search state, the
solver can predict scores with the learned model and select
the variable with the best predicted score. Third, to leverage
the pseudo-random nature of the probing data, a restart-based
search strategy allows for multiple ML models to be learned,
increasing the chance of finding solutions.

In contrast many works combining combinatorial optimisa-
tion with learning, our aim is an online setting where training
time is included in the total solving time. Related to our work
is the predict-and-optimise paradigm [Mandi et al., 2020] in
that we do not directly learn to solve an optimisation prob-
lem; hence the quality of the learned function per se is less
important than its use to improve the subsequent solving of
the combinatorial problem.

The deep heuristics in our work depend on human expert
designed variable ordering heuristics. Such heuristics are em-
ployed in specific heuristic—problem combinations [Wallace,
2008], while our work is more flexible by learning variable
ordering heuristics based on a problem’s search tree.

Closer to our work, Chu and Stuckey [2015] use online
learning to acquire value heuristics, using partial least squares
regression to learn the score function. Our approach differs in
that, firstly, we learn variable ordering heuristics and we uti-
lize a more complex score function, utilizing multiple heuris-
tic score functions over multiple nodes. Second, our frame-
work uses a restart-based approach in probing and in search.

Glankwamdee and Linderoth [2006] use lookahead
branching on grand-child nodes in a mixed integer program
(MIP), finding that information from these nodes often re-
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Figure 1: Probing, learning, and heuristic search phases implemented in Gecode.

duces the total size of the search tree and can fix bounds on
variables. In our work we use deeper lookaheads, but only
during probing since using a lookahead at every node in the
search tree is a costly operation. Instead we exploit ML pre-
dictions to circumnavigate this cost.

2 Approach

2.1 Preliminaries

We denote a Constraint Satisfaction Problem (CSP) as the tu-
ple (V, D, C), where V is a finite set of decision variables; D
is a finite set of domains D,, for each variable v € V, each
containing the possible values for v; and C' is a finite set of
constraints what values each variable v € V may take. One
can also add an objective function to a CSP, turning the CSP
into a Constraint Optimization Problem.

Given a CSP, a variable ordering heuristic decides which
variable to assign a value to first [Rossi et al., 2006]. A typical
heuristic is smallest domain first [Haralick and Elliott, 1980]
(commonly known as first-fail) that selects variable z € V
with the smallest domain. On the other hand anti-first-fail
(AFF) would pick the variable with the largest domain. The
smallest (SM) heuristic simply chooses the variable with the
smallest value in its domain. Maximum regret (MR) chooses
the variable with the largest difference between the two small-
est values in its domain [Loomes and Sugden, 1982].

HSF Output

lowest value in D,
difference between two smallest values in D,
size of domain D,

hsmallesl, T
hmax-regrel,r
hami—ff , T

Table 1: Heuristic score functions on a domain D,

2.2 Deep heuristic score functions

A deep heuristic is built using a deep heuristic score function
(DHSF) which repeatedly uses a ‘classical’ heuristic score
function (HSF) such as in Table 1. As depicted in Figure 2,
for a graph with tree-like shape where nodes represent vari-
ables and edges are the next variable selection options, a
DHSF looks at multiple levels of the tree, iterating over mul-
tiple nodes. For instance, a DHSF based on smallest could
return a deep heuristic score by averaging all the collected
heuristic scores, as we explain below.

Given a DHSF, we can select variables based on its outputs.
In the example graph of Figure 2, consider node A. We com-
pute a deep heuristic score for each of the variable selection
options z, ¥y, and z by inputting the set of features for node
A. We then compare the scores and select the variable with
the highest or lowest score depending on the kind of heuristic
we want to use. For example, if we use the smallest heuris-
tic then we use the minimum score of the DHSF. We call the
heuristic that selects a variable this way Deep Smallest.

Since DHSF can be expensive to compute exactly, we use
supervised learning to approximate deep heuristic score func-
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(a) Computing a deep heuristic score from node B for the se-
lection of variable y with a depth level of 1. This is the same as
using a classical heuristic.

<:>{Lym}

(b) Computing a deep heuristic score from node A for the selec-
tion of variable y with a depth level of 2. Nodes R and S would
not be considered by most classical heuristics.

Figure 2: Examples of computing a deep heuristic score with a total of three variables. The nodes represent the current variable
ordering and the edges a variable selection. A solution is found through the path {A, B, C, D}.

tions. In our setting historical solving data is not available:
we begin with an unseen problem instance and assume that
no probing or other search has been done before solving com-
mences. To overcome the lack of training samples, we create
a instance-specific dataset online, through a probing phase
over the COP. The probing phase acts as a short pre-search to
gather features at every search node of the search tree, akin to
how Chu and Stuckey [2015] learn value heuristics.

2.3 Using deep heuristics in search

Recall that the three steps of our approach are probing, ma-
chine learning and restart-based heuristic search (Figure 1).
Probing gathers data by solving the COP using random vari-
able and value orderings. A cutoff bound restarts search after
a specified number of failures. A new first variable is selected
after each restart, in order to gain maximal data at the top of
the search tree [Ortiz-Bayliss et al., 2018].

The learning must operate online, and so should be rel-
atively fast in training and fast in prediction. We considered
support vector regression and stochastic gradient descent, and
settled on random forest regression. Even with a linear model,
the ML latency means it is not tractable to make predictions
for every feature combination. In future work, we can cache
predictions and re-use them when a feature combination has
been seen before. The downside to this is that a value change
also leads to a prediction change in the model and a cached
prediction would result in a different outcome.

Heuristic search is implemented upon Gecode 6.2.0 using
custom branchers which make choices on which variable and
value to pick next. For each currently-unassigned variable, a

heuristic score is predicted through the ML model within this
brancher. A variable is then selected depending on the cho-
sen deep heuristic: e.g., the lowest predicted heuristic score
for Deep Smallest and Deep Max Regret and the highest pre-
dicted score for Deep Anti-First Fail. Since deep heuristics
are not used for value selection, we use the minimum or maxi-
mum value in the chosen variable’s domain, for minimization
and maximization problems, respectively.

Lastly, to obtain a wider variety of variable orderings and
values we exploit a restart-based process which allows for
multiple search jobs within the total search time given. A
Jjob consists of probing, ML fitting and heuristic search. First
we specify a job time. Whenever the search does not finish
within the job time then the job is halted and sequentially the
next job started. Data gathered by probing is not transferred
between jobs, as initial experiments found it greatly increases
the time to fit a random forest regression model. Jobs restart
sequentially until the overall search time limit is reached.

The framework of Figure 1 is implemented in C++ inside
Gecode; a Python script is called from C++ to learn the
DHSE, using Scikit-Learn. Gecode with a deepified variable
ordering heuristic can be invoked from MiniZinc by e.g.,
solve heuristic_search(qg) minimize;
where ¢ are decision variables.

3 Empirical Results

We conduct an empirical study to investigate how deep
heuristics affect total solving time and number of instances
solved. We test deep heuristics on four representative prob-
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Comparison Total time Total time Job solution time
no timeouts with timeouts with timeouts
p-value signif.?  p-value signif.?  p-value signif.?
DSM vs SM: RCPSP 0.12 No 0.68 No 1.02-107"  Yes
DMR vs MR: RCPSP 0.014 Yes 0.75 No 6.76 - 107 Yes
DAFF vs AFF: RCPSP  0.45 No 4.6-107%  Yes 2.8-107%  Yes
DSM vs SM: Evilshop ~ 0.19 No 0.08 No 45-107°  Yes
DMR vs MR: Evilshop 0.15 No 0.21 No 2.2.1073 Yes
DAFF vs AFF: Evilshop  0.13 No 0.028 Yes 1.2-107° Yes
DSM vs SM: Amaze - No 0.53 No 0.12 No
DMR vs MR: Amaze 0.45 No 0.004 Yes 0.62 No
DAFF vs AFF: Amaze - No 0.018 Yes 2810721 Yes
DSM vs SM: OS 0.33 No 3.8-107% Yes 4.86-107° Yes
DMR vs MR: OS 0.016 Yes 0.85 No 0.14 No
DAFF vs AFF: OS 0.14 No 1.7-107*  Yes 1.2-1078 Yes

Table 2: T-tests of average (arithmetic mean) total runtime, without and with timeouts, and average job solution runtime with

timeouts. p-value with o = 0.05. ‘=’ denotes p-value cannot be computed because of too few instances.
Heuristic RCPSP  Evilshop Amaze Stacks does not. Figure 5 and 6 and Table 2 compare the average run-
Gecode Smallest 29.7%  54.6% 385%  233% Fime. It i; evident tha.t AFF runs worse that DAFF. Figure 5
Deep Smallest 312%  18.2% 231%  54.3% includes timeouts, which means that we do not know for how
Gecode AFF 159%  18.2% 18.2%  23.3% long these instances would have run given unlimited runtime.
Deep AFF 354%  63.6% 63.6% 56.6% Hence Figure 6 shows the same comparison without timed-
Gecode MR 377%  18.2% 76.9%  57.4% out instances. On most problems deep heuristics are outper-
Deep MR 41.6%  48.5% 282%  58.1% formed in average runtime. Thus we can reason that classical

Table 3: Percentage of total instances solved by heuristics

lem classes from the MiniZinc benchmarks: Resource Con-
strained Project Scheduling Problem (RCPSP), Evilshop,
Amaze, and Open Stacks; 138, 11, 13, and 43 instances.

All the instances are run for a maximum time of 4 hours.
We set the job time to be 15 minutes for the deep heuristics,
allowing at most 16 jobs in total. We compare the solvers
with and without instances that time out. For all problems we
select a depth value of 25.

Selecting how long we should probe can be very dependent
on the problem: as the complexity of the problem changes,
for instance multiple decision variables or more constraints
per variable, it may take a variable amount of time to collect
data. For RCPSP, Evilshop, and Amaze we set the probing
time to 1 million nodes and for Open Stacks 2 minutes as
the collection of 1 million nodes of information takes a very
long time. Probing time for RCPSP, Evilshop, and Amaze is
usually within the minute.

First, Figure 3 shows the total runtime of the SM, MR, and
AFF heuristics versus the deep versions, DSM, DMR, and
DAFF. Averaged over all instances, DSM uses 7.7% less total
runtime than SM, DAFF 26.1% less than AFF, while DMR
uses 4.4% more than MR. Figure 4 compares the classical
heuristics with each other and the deep heuristics with each
other by showing their average runtime. We observe that AFF
performs worse than the other heuristics, and also that AFF
mostly timed-out. We also observe that MR on average out-
performs the other heuristics for each problem where as DMR

heuristics perform better than the deep heuristics when they
solve instances within 4 hours. Figure 6b misses two bars
for the Amaze problem because there are no instances where
neither AFF nor DAFF timeouts.

Second, we examine the the percentage of instances solved
per problem, in Table 3. The deep heuristics outperform their
classical counterparts as they are able to solve more problems
within 4 hours. Only in the Amaze problem DSM and DMR
and Evilshop DSM is outperformed. Drilling down, Figure 8
shows the number of instances in which heuristics outperform
their counterpart. Notable is that DSM and DAFF outperform
SM and AFF in more instances, while many RCPSP problems
cannot be solved within the time limit by either heuristic.
Overall MR works better than SM and AFF on RCPSP and
Open Stacks. If a deep heuristic search completes within 4
hours then one of the search jobs in the framework succeeded.
We denote these successes as ‘solutions’. The solutions are
independent of other search jobs and hence we compare their
runtimes in Figure 7. It can be said that the solutions have
significantly less runtime than the classical heuristics which
can be partly explained by the fact that search jobs have a
maximum runtime of 15 minutes.

4 Discussion and Future Work

This paper addressed the problem of one-shot learning of
search heuristics for constraint optimisation problems. We
proposed to learn extended versions of existing variable or-
dering heuristics, through a deepification process. The learn-
ing uses a probing phase to gather data coupled with a fast
regression approach. We demonstrated deep heuristics based



Presented at: IJCAI’21 Workshop on Data Science Meets Optimisation, Montreal, Canada, August 2021.

Runtime Deep Smallest by prablem

Runtime Deep Anti-First Fail by problem

Runtime Deep Max Regret by problem

uuuuuuu

uuuuuuu

uuuuuu

o
RCPSP 30 Evilshop Amaze ‘Open stacks RCPSP 30 Evilshop.

(a) SM versus DSM

(b) AFF versus DAFF

1400000
-—ecode
= Decp Heurstc Search
L fiting
0000
- probing 120000
uuuuuuu
S 800000
£
& 600000

400000

200000

o
AAAAA Open stacks. RCPSP 30 Evilshop Amaze Open stacks.

(c) MR versus DMR

Figure 3: Total runtime divided into probing, ML, and search

Average runtime Gecode heuristics per problem

. Smallest
14000 mmm Maximum Regret
W Anti-First-Fail

12000

10000

8000

Runtime (s)

6000

4000

2000

RCPSP j30 Evilshop Amaze

Open stacks

(a) Gecode heuristics

Average runtime Deep Heuristics per problem

— —_— Smallest
14000 mm Maximum Regret
mmm Anti-First-Fail

12000

10000

8000

Runtime (s)

6000

4000

2000
o a =

RCPSP j30 Evilshop Amaze Open stacks

(b) Deep heuristics

Figure 4: Comparison of average runtime between heuristics

on three different heuristics: smallest, anti first-fail, and max-
imum regret. Compared to the classical ‘shallow’ heuris-
tics, we find that deep heuristics solve 20% more problem
instances across a subset of the MiniZinc benchmarks, while
improving on overall runtime for two problem classes.

Further experiments are warranted to assess the contribu-
tion of each the parts of our approach. In particular, recognis-
ing the stochasticity inherent in a learning-based approach,
we use restarts with the deep heuristics — but not with their
shallow counterparts.

The result that, overall, deep heuristics solve more in-
stances — albeit with increased average runtime on some
problem-heuristic combinations and reduced on other combi-
nations — suggests development of the approach in a number
of possible directions. First, our framework is implemented
in Gecode. To deepify heuristics such as domwdeg, Gecode
needs additional instrumentation: during probing we cannot
record, e.g., search node successes, failures, and added or re-
moved constraints. Further engineering is needed also to par-
allelise the probing, which would improve performance, since
Gecode cannot handle our simultaneous node addition to the
same search tree.

Second, selecting meta-parameters for the deepification
process. If the problem class is known, the meta-parameters
could be tuned after selecting the right heuristic for the prob-
lem; possibly, ML can learn meta-parameters settings given

meta-data about the COP instance. Third, we explored the
use of random search in probing. The use of specific prob-
ing heuristic(s) is interesting. Fourth, use of the score from
the DHSF might be improved by adding exploration and ex-
ploitation attributes. For instance, a discount factor would
give more weight to earlier choices adhering to the principle
of making good early decisions [Ortiz-Bayliss et al., 2018].

This paper showed how to deepify variable ordering heuris-
tics, and our approach can be readily applied to value or-
dering. Further, the learned deep heuristic function can
learn both variable and value orderings (compare Cox et al.
[2019]). Another interesting direction is extending the restart-
based search mechanism. Currently, new data is gathered at
every restart without saving data from the previous search
jobs. One could allow the total dataset from probing to grow
over time. The challenge is the volume of data gathered and
efficiently learning over it; stochastic gradient descent may
be an interesting option.
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