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Abstract

Uncertainty quantification remains a difficult challenge in reinforcement learning.
Several algorithms exist that successfully quantify uncertainty in a practical setting,
however it is unclear whether these algorithms are theoretically sound and can be
expected to converge. Furthermore, they seem to treat the uncertainty in the target
parameters in different ways. In this work, we unify several practical algorithms
into one theoretical framework by defining a new Bellman operator on distributions,
and show that this Bellman operator is a contraction. Further, building on our theory,
we modify PPO, a popular modern model-free algorithm, into an uncertainty-aware
variant to showcase the general applicability of our main result.

1 Introduction

Reinforcement learning (RL) algorithms have surpassed humans’ ability in many games [1, 2], and
have now also found success in real world problems such as controlling plasma in a nuclear fusion
reactor [3], video compression [4], large language models [5] and algorithm design [6, 7]. However,
even for relatively simple tasks, algorithms still require many simulations or real interactions to
learn a strong policy, making them inefficient. One approach to attack this problem is by making
algorithms aware of their epistemic uncertainty, which is uncertainty caused by a lack of data. This
allows them to explore only parts of the problem that are still uncertain, decreasing the total amount
of interactions required.

However, proper uncertainty quantification is still an open problem in reinforcement learning. Many
techniques from supervised learning, such as ensembles [8, 9] and Bayesian methods [10, 11, 12, 13],
have found success in practice when applied to supervised learning tasks with labelled data. However,
in reinforcement learning data is not labelled with a ground truth, and instead the label for the
current state is a self-supervised bootstrap from the label of the next state, known as the target value.
Uncertainty quantification in RL must consider this sequential nature. At the heart of this problem is
the fact that uncertainty in the current state should include the uncertainty in the target values, which
is the uncertainty in the future states.

Adaptations of uncertainty quantification methods from supervised learning have been applied to
reinforcement learning settings [14, 15, 16, 17, 18, 19, 20, 21] with good practical results, but there
is no guarantee that the way these algorithms treat the uncertainty in the successor state leads to a
theoretically sound algorithm, in the sense that the uncertainty quantification aspect can be expected
to converge to a solution at all. At least guaranteeing that these methods work in potentially simplified
scenarios is essential for the adoption of uncertainty quantification in algorithms in the real world.
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Furthermore, some algorithms seemingly disagree in their decisions on how to treat the uncertainty
in the target values.

When adapting Deep Q-learning (DQN)-style algorithms to uncertainty aware algorithms like Boot-
DQN [14], EVE [20], Langevin-DQN [19], LMCDQN [22], SMC-DQN [21] and BDQN [17],
there is a decision to be made about how to use and update the target parameters. Generally, these
algorithms condition their posterior on a posterior of the target parameters. As a main problem, we
highlight that there is no guarantee that the process of repeatedly updating the current distribution,
conditioned on the distribution over target parameters, and copying it to the target parameters will
converge to a limiting distribution.

Recently, Fellows et al. [23] studied this problem theoretically and contended that Bayesian model-
free RL algorithms create a posterior over Bellman operators. They showed that the posterior
converges to the true Bellman operator in the limit of infinite data. We instead take an arguably
more natural and direct approach, and show that the problem can be formulated as a generic Bellman
operator that works on distributions, and converges to a consistent posterior-like distribution even for
finite data. This result ensures that it is sensible to talk about a posterior distribution conditioned on a
finite data set, and specifies how the distribution over target parameters should be used to develop
theoretically sound uncertainty-aware Q- learning algorithms.

Summarising, our contributions over the state-of-the-art are as follows:

• We introduce Epistemic Bellman operators, formalizing the process of conditioning the likelihood
on a distribution over target parameters.

• We prove that Epistemic Bellman operators are contractions, proving that the process of interleaving
posterior inference and target updates converges to a consistent fixed point for a general class of
distributions. Furthermore, we show that the mean of the fixed point is equal to the fixed point of a
non-epistemic Bellman operator in the case of policy evaluation.

• We showcase an application of Epistemic Bellman operators to the return estimator of Proximal
Policy Optimization (PPO), a popular model-free algorithm, modifying it into an epistemic version
that clips less aggressively whenever the agent is certain about its advantages. We test this agent on
a variety of tasks and show increased performance across several environments.

2 Background

2.1 Markov Decision Processes

We focus on Markov Decision Processes (MDP) with infinite horizon in the discounted reward
setting. Formally, a Markov Decision Process is a tuple (S,A, T,R, γ) of a state space S, action
space A, transition function T : S × A → ∆(S), reward function R : S × A → R and discount
factor 0 ≤ γ < 1. At each time step t, an agent observes the current state st, chooses an action
at ∼ π(st) according to its policy π : S → ∆(A), and receives reward rt = R(st, at). The goal
of reinforcement learning is to find a policy π that maximizes the discounted cumulative reward
ET,π [

∑∞
t=0 γ

trt]. Of central importance is the Q-function

Qπ(s, a) = R(s, a) + ET,π

[ ∞∑
t=1

γtrt | s0 = s, a0 = a

]
,

denoting the expected discounted future reward if the agent executes action a in state s and then
follows the policy π.

In a tabular setting, we represent the reward function, transition function and policy as vectors and
matrices R ∈ R|S||A|, T ∈ R|S||A|×|S|, π ∈ R|S||A|. The Bellman operator for a policy π can then
be written as

Bπ
T,RQ = R+ γTπQ,

where Tπ ∈ R|S||A|×|S||A| is the transition function from state-action to state-action induced by the
transition function T and the policy π, defined by

(Tπ)sas′a′ = P(st+1, at+1 = s′, a′ | st, at = s, a)

= Tsas′πs′a′ .
(1)
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Since the transition function T and reward function R are assumed to be unknown to the agent,
computing a strong policy requires exploration of the environment to learn which actions result in
optimal return.

2.2 Model-free Reinforcement Learning

Typically interesting problems have large states and action spaces, making it difficult to learn the
transition and reward functions. Model-free algorithms such as actor-critics [24, 25, 26] and Q-
learning [1] bypass this step and instead aim to learn a good policy or the values of a good policy
directly, without estimating T and R.

A common component in these algorithms is to learn the values or Q-values by representing them by
a neural network and minimizing the squared temporal difference loss on a data set of transitions D:

LTD(θ, θ′,D) =
∑

(s,a,r,s′)∈D
TD(θ, θ′, (s, a, r, s′))2 =

∑
(s,a,r,s′)∈D

[Qθ(s, a)− r − γG(θ′, s′)]
2
,

where G(θ′, s′) is some return estimator usually depending on a bootstrap from a target network
θ′ [1]. Examples are G(θ′, a′) = maxa′ Qθ′(s′, a′) in the case of one step Q-learning, or G(θ′, a′) =∑

a′∈A π(a′|s′)Qθ′(s′, a′) in the case of policy evaluation in actor-critics.

Agents use empirically observed transitions (s, a, r, s′) to learn these models, requiring exploration
to sufficiently cover the environment to achieve accurate values. Quantifying uncertainty in the value
models can greatly improve the exploration capability of reinforcement learning algorithms through
Thompson Sampling [14, 15, 27, 16, 20, 17, 19] or exploration bonuses [28, 29, 18]. Furthermore,
uncertainty quantification can also aid in general stability of algorithms by reweighting Bellman
errors [30].

2.3 Bayesian Value Learning

One method to quantify uncertainty is through Bayesian algorithms. Generally, a Bayesian neural
network is any neural network parameterized by θ ∈ Θ where one attempts to model the posterior
distribution

p(θ|D) = p(D|θ)p(θ)∫
p(D|θ)p(θ)d(θ) ,

where p(D|θ) is the likelihood, p(θ) is a prior and D is some data set. The posterior density p(θ|D)
signifies how likely values of θ are, and is a natural method to model uncertainty as a distribution.

To equip an agent with uncertainty quantification, a posterior distribution over the parameters of a Q-
function can be constructed p(θ|D, θ′) ∝ p(D|θ, θ′)p(θ). Since the squared error loss is proportional
to the log-density of a normal distribution, defining

p(D|θ, θ′) = exp

− ∑
(s,a,r,s′)∈D

[Qθ(s, a)− r − γG(θ′, s′)]
2

 (2)

is a natural candidate for the likelihood when extending value learning algorithms to a Bayesian
paradigm. This corresponds to the assumption that the temporal difference errors are normally
distributed:

TD(θ, θ′, (s, a, r, s′)) ∼ N (0, σ). (3)

While this assumption is in general not correct for every MDP, it is a convenient design choice
and it should come as no surprise that several previous works have used this likelihood before
[15, 20, 19, 17, 22].

The likelihood p(D|θ, θ′) and therefore also the posterior density p(θ|D, θ′) does not only depend
on the data, i.e. the observed transitions, it is also conditioned on the target values θ′. Handling
this dependency is crucial for a theoretically sound algorithm that handles the sequential nature of
uncertainty in this setting. Furthermore, posterior distributions are generally difficult to compute in
practice, requiring approximate models. For example, BootDQN [14, 15] uses ensembles, Langevin-
DQN, LMCDQN and SMC-DQN [19, 22, 21] use Monte Carlo methods, EVE [20] uses a Laplace
approximation and BDQN [17] performs inference over only the final layer of the Q-network.
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3 Problem Statement

In this section, we identify a key problem with model-free Bayesian Reinforcement Learning algo-
rithms and motivate the value of our main contribution.

3.1 Problems with Target Updates

Roughly speaking, algorithms such as BootDQN, Langevin-DQN, LMCDQN, SMC-DQN, BDQN
and EVE operate by interleaving steps

1. Infer a posterior given the current targets, pmain(θ|D) = p(θ|D′, θ′), where the targets are
drawn or assumed to be from some distribution over targets ptarget(θ′).

2. Update the distribution over targets: ptarget(θ)← pmain(θ|D) = p(θ|D′, θ′) to the current
distribution over the main parameters θ.

This is analogous to the target update in many non-probabilistic algorithms that use temporal
difference learning, and may seem like a reasonable adaptation to the Bayesian setting. However,
for distributions there is no guarantee that this scheme converges, or is in fact well defined, since
setting ptarget(θ)← pmain(θ) is mathematically unsupported when pmain(θ) is a distribution that was
conditioned on the target parameters. Furthermore, if this scheme does not converge to the same
pmain(θ|D) for a fixed data set D and every starting distribution, it is not sensible to define a posterior
pmain(θ|D) that is only conditioned on the data.

Fellows et al. [23] propose interpreting the problem as inferring a posterior distribution over Bellman
operators, and show convergence of the posterior to the true Bellman operator as more data is
collected. Instead, we propose a new Bellman operator that operates on posterior-like distributions,
and prove that this operator is a contraction and has a fixed point. Roughly speaking, we show that an
algorithm that alternates between updating a distribution conditioned on the targets, and updating the
distribution over targets converges to a limiting distribution, proving that several common Bayesian
algorithms which are special cases of our operator can be expected to converge, independent of the
starting the starting distribution.

3.2 What Do These Distributions Look Like?

Before we introduce Epistemic Bellman Operators, we analyze which distributions Bayesian Q-
learning algorithms actually attempt to approximate. To this end, we study BootDQN and EVE in a
tabular setting, and assume there exists some idealized distribution over targets Q′ ∼ ptarget(Q) that
our agent currently has. Furthermore, as in BootDQN and EVE, we are equipped with a likelihood

p(D|Q,Q′) ∝ exp

− 1

2σ2

∑
s,a,r,s′∈D

TD(Q,Q′, s, a, r, s′)2

 ,

also conditioned on a set of target values Q′. This results in a posterior distribution

p(Q|D, Q′) ∝ p(D|Q,Q′)p(Q).

However, this distribution is conditioned on a single value for the targets and does not yet incorporate
the fact that Q′ ∼ ptarget(Q), i.e. the uncertainty over the targets.

In the case of BootDQN, ptarget(Q) is modelled by the ensemble of target networks θ′1, . . . , θ
′
n,

and to approximate the posterior each ensemble member optimizes for its own loss Q∗
i =

argmax p(Qi|D, Q′
i). On the other hand, EVE has a Laplace approximation for ptarget(Q), and up-

dates the main distribution by sampling one Q̃′ ∼ ptarget(Q), maximizing Q = argmax p(Q|D, Q̃′)
and also updating the Fisher information. .

In our idealized setting, we can directly consider the marginalization of the conditioned posterior
over the targets Q′:

pmain(Q|D) =
∫

p(Q|D, q′)dptarget(q′).

Figure 1 shows a graphical presentation of this marginalization, together with BootDQN and EVE, in
a simplified setting with an MDP with one state and one action. The top row is the idealized version
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Figure 1: Plots of the distribution over the Q-value of a single state-action. The final column shows
the difference between the target distribution (red) and the current distribution (blue). Rows are (1)
idealized model class, (2) ensemble approximation (BootDQN), (3) Laplace approximation (EVE).

of Bayesian model-free reinforcement learning algorithms. A distribution over the targets defines a
distribution over the main values, which can exactly be inferred by a fully expressive model class.
The second row contains a sketch of the situation with ensembles. The distribution ptarget is an
ensemble, which together with the normal distribution likelihoods makes a mixture distribution for
the main values. Estimating this distribution with an ensemble ideally returns an ensemble containing
the modes of the new distribution.

For EVE, the target distribution is a normal distribution. The distribution for the current state is
therefore also a normal distribution, and representing it in the model class of normal distributions
returns a normal distribution.

Both BootDQN and EVE can be considered as approximations to this marginalization, approximating
the integral with an ensemble in the case of BootDQN and a single sample from ptarget(q

′) in the
case of EVE. After constructing an approximate p̃main(Q|D) each method then attempts to represent
this distribution in their model class.

Considering this marginalization process, we can now define what it means for a well-defined
posterior to exist. If the process of

p
(k)
main(Q|D) =

∫
p(Q|D, q′)dp(k)target(q

′) (4)

p
(k+1)
target(q

′|D) = p
(k)
main(Q|D) (5)

k = k + 1 (6)

converges to the same limiting distribution p(Q|D)∗ for every starting p
(0)
target(q

′), the posterior-like
distribution p(Q|D) is well-defined. We formalize this process with the Epistemic Bellman Operator.

4 Epistemic Bellman Operators

For any Bellman operator or contraction BD, perhaps depending on some data set D, we can define a
pushforward distribution with additive noise as

p(Q|D, Q′) = Law (BD(Q
′) + ϵD) , (7)

5



where Law (X) denotes the probability density of X . This is equivalent to the notion that the
Q-values are distributed around the target values Q′ with some local uncertainty ϵD, independent
of Q′. This is a naturally occurring distribution in literature, since the posterior distribution of a
normal likelihood with a normal prior takes this shape, which is commonly used in model-free deep
RL literature [14, 15, 20, 16, 17, 19, 22]. The Epistemic Bellman Operator for this distribution
marginalizes the distribution over Q′, and returns a new distribution.

Definition 4.1 (EBO). For any measurable set A, let P(A) denote the set of probability distributions
over A. Let p(q|q′) be a distribution over Q-values conditioned on target Q-values, e.g. Equation 7.
We define the corresponding Epistemic Bellman Operator (EBO), as an operator Bp : P(R|S||A|)→
P(R|S||A|), mapping distributions over Q-values to another distribution over Q-values by

BpPQ(q) =

∫
p(q|q′)dPQ(q

′). (8)

When p(q|q′) is of the form Law (BD(q′) + ϵD), we can equivalently write Equation 8 as

BpPQ = Law (BD(Q) + ϵD, Q ∼ PQ) . (9)

If the distribution p(q|q′) = Law (BD(Q) + ϵD) has contracting properties, for example when BD is
a Bellman operator, it can be shown that the respective EBO is also a contraction. This is formalized
in Theorem 4.2, whose proof is provided in Appendix A.

Theorem 4.2 (Contraction). Let Q = (R|S||A|, ∥.∥∞) be a metric space, BD be a contraction on Q,
and let pB(q|q′) = Law (BD(q′) + ϵD) be a distribution over Q conditioned on target values in Q.

Then the corresponding Epistemic Bellman Operator Bp : P(Q) → P(Q) defined by Equation 9,
where ϵD is independent of Q, is a Wp-contraction on P(Q) for any p ∈ [1,∞).

This theorem states that even with finite data, repeatedly applying an EBO to any starting distribution
will converge to a fixed point. A consequence is that algorithms which interleave posterior inference
with target distribution updates are theoretically sound in the sense that they converge to a solution.

In the case of policy evaluation with a one step Bellman Operator

BQ = R+ γTπQ,

the fixed point of the EBO B is easy to characterize. This can be extended to any affine B. Notably,
the following theorem states that the mean of the fixed point is equal to the fixed point of the
non-epistemic Bellman operator in p(q|q′) when it is affine. We refer to Appendix A for the proof.

Theorem 4.3 (Mean of B). Let B be the EBO corresponding to pB(q|q′) = Law (B(q′) + ϵ).
Let PB(Q) be the fixed point of B, and QB be the fixed point of B. If B is an affine con-
traction, then EPB

[Q] = QB . Furthermore, writing B(Q) = AQ + b, the covariance ΣQ =
EPB

[
QQ⊤ −QBQ

⊤
B

]
is given by

Vec(ΣQ) = (I −A⊗A)−1Vec(Σϵ)

where Vec(X) denotes the vectorization of X and ⊗ is the Kronecker product.

To showcase what our theorems state, we conduct an experiment in an MDP with one state and two
actions so that the distributions are easy to visualize. We initialize a multivariate normal distribution,
and iteratively apply the EBO. Figure 2 displays the density of the distribution over time, with
the fixed point of the non-epistemic Bellman equation Qπ marked in red. It can be seen that the
distributions converge to a normal distribution centered around Qπ , where the Q-values are strongly
correlated. This correlation is expected, since both actions transition to the same state. Furthermore,
Figure 3 shows the Wasserstein distance between the distribution at each iteration and the fixed point.
It very closely matches the theoretical contraction rate of γ.

5 Epistemic Clipping PPO

Since Theorem 4.2 holds for any contraction, it is applicable to a wide range of return estimators
used in practice. To showcase the generality of our results, we modify Proximal Policy Optimization
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Figure 2: The Epistemic Bellman Operator applied iteratively to an initial distribution with a fixed
policy in a single state, two actions MDP. The fixed point of the regular Bellman operator is in red.
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Figure 3: The Wasserstein Distance between distributions over Q-values and the fixed point of
the EBO when iteratively applying the EBO (blue). The rate of contraction matches the predicted
contraction rate γ (black, dashed)

(PPO) [25] into Epistemic Clipping PPO (ECPPO) by replacing the value models with an ensemble.
PPO estimates the advantages of its policy with the following return estimator:

At = δt + γλδt+1 + · · ·+ (γλ)T−t+1δT−1 (10)
where δt = rt + γV (st+1)− V (st). (11)

An approximation of the posterior over V (s) provides the agent with uncertainty quantification on
the advantages, which we use to clip less aggressively in the policy loss whenever we are certain
about the advantages. To this end, the typical policy loss in PPO

LPPO(θ) = E[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)], (12)

is modified to

LECPPO(θ) = E[min(rt(θ)At, clip(rt(θ), 1− ϵϕ(Ut), 1 + ϵϕ(Ut))At)],

where Ut is an estimate of the uncertainty in At and ϕ is a monotonically decreasing function, so that
the clipping range expands whenever Ut is low.

In our implementation of ECPPO, the value network of PPO is replaced by an ensemble
V1(s), . . . , Vn(s), and the advantages are computed according to each ensemble member k in-
dependently:

A
(k)
t = δ

(k)
t + γλδ

(k)
t+1 + · · ·+ (γλ)T−t+1δ

(k)
T−1, (13)

where δ
(k)
t = rt + γVk(st+1)− Vk(st). (14)

As in standard PPO, the advantages are then normalized Ã
(k)
t =

A
(k)
t −µ
σ using statistics µ, σ estimated

from the minibatch, and the uncertainty is defined as Ut =

√
1
n

∑n
k=1(Ã

(k)
t )2 − ( 1n

∑n
k=1 Ã

(k)
t )2,

which is the empirical standard deviation of the ensemble. The clipping range is modified by a
function ϕ(Ut) such that 0.5 ≤ ϕ(Ut) ≤ 2. For exact specifications we refer to Appendix B.2.
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Figure 4: Mean learning curves of ECPPO and baseline PPO algorithms on 17 environments from
Gymnax. Shaded areas denote the standard error of the mean, based on 20 seeds per agent per
environment.

6 Empirical Study

Having introduced ECPPO as an example of how Epistemic Bellman Operators can be integrated
into an algorithm such as PPO, we now study the benefits experimentally. We test the RL agent
with base clipping ratio parameters ϵ = 0.2 and ϵ = 0.1 on all discrete state environments in
Gymnax [31], which includes environments from OpenAI Gym [32], BSuite [33], MinAtar [34], and
several miscellaneous environments [35, 36, 37, 38], but excluding SimpleBandit-bsuite, which is
non-sequential and trivial, and MemoryChain-bsuite, which requires memory.

We compare results against the baseline version of PPO in PureJaxRL [39], which is tuned for
these environments by the authors. Furthermore, since ECPPO is a modification to the clipping
behaviour, we also compare against modified baselines with different clipping parameters ϵ. The
clipping parameter of the additional baselines are set to ϵ = 0.1 and ϵ = 0.4, which is the minimum
and maximum of the range in which ECPPO can adapt its clipping ratio parameter.

Figure 4 shows the learning curves on each environment. It can be seen that in Pong, Acrobot, and
FourRooms, ECPPO outperforms all baselines. Furthermore, on MountainCar, Freeway, Breakout
and Space Invaders, lower ϵ is optimal in the baselines, and ECPPO matches the best baseline. In
UmbrellaChain, BernoulliBandit, and Gaussianbandit and Cartpole, higher ϵ lets PPO learn faster,
and ECPPO again closely matches the best baseline. In the rest of the environments the relationship
between ϵ and the performance of the baselines is not immediately clear, but ECPPO still matches or
outperforms the strongest baseline, Except for DiscountingChain, where ECPPO is slightly behind
the baseline with the respective ϵ. We note that none of our agents solve DeepSea reliably.

To further highlight how ECPPO improves over the baseline PPO with fixed ϵ, Figure 5 shows the
regret of ECPPO with ϵ = 0.2 relative to the regret of the baseline in 0.2. It is immediately visible that
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Figure 5: Regret of ECPPO with ϵ = 0.2 relative to the regret of the baseline with ϵ = 0.2 (lower is
better). Environments are grouped by whether more or less clipping is beneficial to the baseline.

ECPPO improves performance across many environments, independent of whether high or low ϵ is
optimal in the specific environment. Finally, we observe in Figure 6 that the uncertainty quantification
make sense in a qualitative manner in the FourRooms environment, where uncertainty is high where
the current policy has low support.

7 Related work

There is a large body of research for Bayesian methods in RL. On the practical side, there are
algorithms such as BootDQN [14, 15], EVE [20], BDQN [17], Langevin-DQN [19], LMCDQN [22]
and SMC-DQN [21]. Our main theoretical result aims to theoretically ground these methods within a
general framework by interpreting them as special cases of an EBO, which works on distributions,
and prove that this is a contraction.

Operators that work on distributions are also a main focus in Distributional RL [40]. The goal
in distributional RL is to model the distribution of returns, as opposed to learning only the mean.
Distributional methods model the aleatoric uncertainty, which is the inherent randomness of returns
due to the randomness in the policy and MDP. Instead, we focus on learning the mean of the returns,
and compute a distribution over possible means given our observations to model the epistemic
uncertainty on the mean. Furthermore, our operator naturally takes into account the dependency and
covariance of the Q-values.

Operators that propagate epistemic uncertainty as a scalar have previously been studied [27, 41],
whereas we model the epistemic uncertainty as a full distribution. Dearden [42] discusses a similar
operator on distributions, also providing convergence guarantees with a contraction argument. This
result can be interpreted as a special case of our results with a specific return estimator and specific
approximation class. Our main theorem instead applies to any return estimator with contractive
properties.

Furthermore, Luis et al. [43] study Bayesian value models in a model-based setting, also introducing
an operator on value functions with a distributional fixed point representing the epistemic uncertainty.
We focus on the model-free setting, losing accuracy in the posterior but more closely resembling
current Bayesian model-free algorithms.
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Figure 6: Value, uncertainty and state visitation density on FourRooms of ECPPO at several points
during training. The starting position and goal position are denoted by P and G respectively.

8 Conclusion

We have introduced Epistemic Bellman Operators, which are operators that map a distribution
over Q-values to the pushforward of regular Bellman operators with additive noise. We have
shown that our operator generalizes several probabilistic reinforcement learning algorithms, unifying
practical algorithms that appear to have dissimilar architectures. Furthermore, we have proven that
Epistemic Bellman Operators are contractions, which implies that interleaving posterior inference and
target updates converges to a fixed distribution and motivates these practical algorithms by showing
consistency in tabular settings. We showed that the fixed point of an EBO is sensible when doing
policy evaluation. Finally, we showcased the generality of our operators by modifying PPO into an
uncertainty-aware variant that outperforms the original PPO in several environments.

In the future, we aim to design new uncertainty-aware algorithms using the insights from our main
theorem to guide practical design choices regarding the treatment of target parameters. Furthermore,
we aim to investigate the influence of priors and likelihoods and study more suitable distributions
than normal distributions for model-free reinforcement learning.
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A Proofs

Proof of theorem 4.2. Recall that the Wasserstein distance can be written as

Wp(PX , PY ) =

(
inf

R∈RXY

E(X,Y )∼R(∥X − Y ∥p)
) 1

p

,

whereRXY is the set of joint probability measures that has marginals PX and PY .

We can define an operator analogous to the EBO that works on the joint space instead:

B̂R(X,Y ) = Law ((BD(X) + ϵD, BD(Y ) + ϵD)),

where crucially both ϵD are the same variable.

Because B̂R̄ has marginals BPX and BPY if R̄ has marginals PX and PY , we have

Wp(BPX ,BPY )
p = inf

R∈RBPX,BPY

ER [∥X − Y ∥p] ≤ inf
R̄∈RPX,PY

EB̂R̄ [∥X − Y ∥p] . (15)

The inequality holds because the first infimum is over all R with marginals BPX and BPY , while the
second infimum is restricted to the image of B̂.

Finally, using Equation 15, we can conclude that

Wp(BPX ,BPY )
p ≤ inf

R̄∈RPX,PY

EB̂R̄ [∥X − Y ∥p] = inf
R̄

ER̄∥BD(X) + ϵD −BD(Y )− ϵD∥p

(16)
= inf

R̄
ER̄∥BD(X)−BD(Y )∥p ≤ inf

R̄
ER̄γ

p∥X − Y ∥p ≤ γp inf
R̄

ER̄∥X − Y ∥p

(17)
= (γWp(PX , PY ))

p, (18)

where in Equation 17 we use the fact that BD is a γ-contraction in ∥.∥.

Proof of theorem 4.3. Since PB is a fixed point of B, we have

EPB
[Q] = EBPB

[Q] = EPϵ
EPB

[BQ+ ϵ] = EPB
[BQ] = B[EPB

[Q]], (19)

where the second equality is the definition of the EBO, the third equality follows from independence
of ϵ and Q, and the last equality uses the fact that B is an affine function, proving that EPB

[Q] is a
fixed point of B.

Since B is affine we define A and b such that BQ = AQ+ b.

For the covariance we have

EPB

[
QQ⊤] = EPϵ

[
EPB

[
(BQ+ ϵ)(BQ+ ϵ)⊤

]]
= EPϵ

[
EPB

[
(BQ)(BQ)⊤ +BQϵ⊤ + ϵ(BQ)⊤ + ϵϵ⊤

]]
= EPB

[
(BQ)(BQ)⊤

]
+ EPϵEPB

[
BQϵ⊤

]
+ EPϵEPB

[
ϵ(BQ)⊤

]
+ EPϵ

[
ϵϵ⊤

]
= EPB

[
(BQ)(BQ)⊤

]
+ EPϵ

[
ϵ⊤

]
EPB

[BQ] + EPϵ
[ϵ]EPB

[
(BQ)⊤

]
+ EPϵ

[
ϵϵ⊤

]
= EPB

[
(BQ)(BQ)⊤

]
+ EPϵ

[
ϵϵ⊤

]
= EPB

[
(BQ)(BQ)⊤

]
+Σϵ

= EPB

[
(AQ+ b)(Q⊤A⊤ + b⊤

]
+Σϵ

= AEPB

[
QQ⊤]A⊤ + bEPB

[
Q⊤]+ EPB

[Q] b⊤ + bb⊤ +Σϵ

= AEPB

[
QQ⊤]A⊤ + bEPB

[
Q⊤]+ EPB

[Q] b⊤ + bb⊤ +Σϵ

= AEPB

[
QQ⊤]A⊤ + bQ⊤

B +QBb
⊤ + bb⊤ +Σϵ,

(20)

and
QBQ

⊤
B = (BQB)(BQB)

⊤ = AQBQ
⊤
BA

⊤ + bQ⊤
B +QBb

⊤ + bb⊤,
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so

EPB

[
QQ⊤ −QBQ

⊤
B

]
= AEPB

[
QQ⊤]A⊤ −AQBQ

⊤
BA

⊤ +Σϵ

= AEPB

[
QQ⊤ −QBQ

⊤
B

]
A⊤ +Σϵ.

(21)

Vectorizing both sides yields

Vec(EPB

[
QQ⊤ −QBQ

⊤
B

]
)− Vec(AEPB

[
QQ⊤ −QBQ

⊤
B

]
A⊤) = (22)

Vec(EPB

[
QQ⊤ −QBQ

⊤
B

]
)− (A⊗A)Vec(EPB

[
QQ⊤ −QBQ

⊤
B

]
) = (23)

Vec(Σϵ). (24)

Finally, since B is a contraction, the absolute eigenvalues of A must be strictly smaller than 1. By
basic properties of the Kronecker product, A⊗A then also has absolute eigenvalues strictly smaller
than one. Therefore, I − (A⊗A) has only non-zero eigenvalues, and hence is invertible.

We conclude that

Vec(EPB

[
QQ⊤ −QBQ

⊤
B

]
) = (I −A⊗A)−1Vec(Σϵ)

to finish the proof.

B Experiment Details

Code is available at github.com/pascal314.

B.1 Tabular

The MDP in this experiment has reward function R = [0.05192758,−0.7084503], and the evaluated
policy is π = [0.4352794, 0.5647206]. We use a standard 1 step Bellman operator B such that

BQ = R+ γTπQ,

and the likelihood is given by p(Q|q′) = Bq′ + ϵ where ϵ ∼ N (0, diag(0.2, 0.2)). The initial
distribution is a normal distribution with mean 0 and covariance diag(2, 2).

These experiments were completed on a single CPU within a few minutes.

B.2 ECPPO

We modify PureJaxRL’s implementation of PPO to have an ensemble of value models of size 5. For
each time step t, the clipping parameter of the policy ratio is modified to ϵϕ(Ut), where

ϕ(u) =
1

2
+

3

2
σ (15 · (−u+ 0.3)) ,

and σ is the sigmoid function.

We hand-picked this function as a simple candidate that maps [0,∞)→ [0.5, 2.0], so that ECPPO
can either halve or double the clipping range based on the uncertainty. To find reasonable values for
scaling and shifting the uncertainty, we conducted an initial experiment on Acrobot-v1 where we
empirically evaluated the expected modification to the clipping EU [ϕ(U)]. We then picked the values
15 and 0.3 so that EU [ϕ(U)] ≈ 1 on this environment. We did not conduct any other hyperparameter
optimization based on algorithm performance to obtain ϕ(u). While we used a specifically shaped
function, we note that any positive and monotonically decreasing function ϕ is a valid choice.

We left all further hyperparameters unmodified from the baseline. For completion, we list the
hyperparemeters of PureJaxRL’s implementation in Table 1.

The learning rate starts at 0.005 and follows a linear schedule down to 0 at the final episode.

The network architectures for both the actor and the value is a fully connected network with hidden
sizes 64 and 64, and relu activations. The actor and value networks share no parameters. Epistemic
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Figure 7: A plot of the function ϕ(u) used in our ECPPO experiments.

Parallel environments 64
Rollout length 128

Epochs 4
Batch size 1024

γ 0.99
λ 0.95
ϵ [0.1, 0.2, 0.4]

Entropy loss factor 0.01
Value loss factor 0.5

Max gradient norm 0.5
Table 1: Hyperparameters of the PPO Baseline

Clipping PPO makes no modification to the actor network, and only replaces the value network with
an ensemble with randomized prior functions of size 5. The randomized prior functions are scaled by
β = 1.

Each baseline and variant of ECPPO ran for 20 seeds on each environment. All experiments were
completed on a single GPU, taking around one minute per agent per environment for all 20 seeds in
parallel.
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